neobytes/src/miner.cpp

408 lines
14 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
2016-12-20 14:26:45 +01:00
// Copyright (c) 2014-2017 The Dash Core developers
2014-12-13 05:09:33 +01:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "miner.h"
#include "amount.h"
2015-07-05 14:17:46 +02:00
#include "chain.h"
#include "chainparams.h"
2015-07-05 14:17:46 +02:00
#include "coins.h"
#include "consensus/consensus.h"
#include "consensus/merkle.h"
#include "consensus/validation.h"
#include "hash.h"
#include "validation.h"
#include "net.h"
#include "policy/policy.h"
#include "pow.h"
#include "primitives/transaction.h"
2015-07-05 14:17:46 +02:00
#include "script/standard.h"
#include "timedata.h"
2015-07-05 14:17:46 +02:00
#include "txmempool.h"
#include "util.h"
#include "utilmoneystr.h"
2015-04-16 21:58:09 +02:00
#include "masternode-payments.h"
#include "masternode-sync.h"
2015-04-10 12:49:01 +02:00
#include "validationinterface.h"
2014-12-12 12:44:25 +01:00
#include <boost/thread.hpp>
#include <boost/tuple/tuple.hpp>
#include <queue>
using namespace std;
//////////////////////////////////////////////////////////////////////////////
//
2015-04-03 00:51:08 +02:00
// DashMiner
//
//
// Unconfirmed transactions in the memory pool often depend on other
// transactions in the memory pool. When we select transactions from the
// pool, we select by highest priority or fee rate, so we might consider
// transactions that depend on transactions that aren't yet in the block.
uint64_t nLastBlockTx = 0;
uint64_t nLastBlockSize = 0;
class ScoreCompare
{
public:
ScoreCompare() {}
bool operator()(const CTxMemPool::txiter a, const CTxMemPool::txiter b)
{
return CompareTxMemPoolEntryByScore()(*b,*a); // Convert to less than
}
};
int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
int64_t nOldTime = pblock->nTime;
int64_t nNewTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
if (nOldTime < nNewTime)
pblock->nTime = nNewTime;
// Updating time can change work required on testnet:
if (consensusParams.fPowAllowMinDifficultyBlocks)
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams);
return nNewTime - nOldTime;
}
BlockAssembler::BlockAssembler(const CChainParams& _chainparams)
: chainparams(_chainparams)
{
// Largest block you're willing to create:
nBlockMaxSize = GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE);
2015-08-10 23:56:04 +02:00
// Limit to between 1K and MAX_BLOCK_SIZE-1K for sanity:
nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MaxBlockSize(fDIP0001ActiveAtTip)-1000), nBlockMaxSize));
// Minimum block size you want to create; block will be filled with free transactions
// until there are no more or the block reaches this size:
nBlockMinSize = GetArg("-blockminsize", DEFAULT_BLOCK_MIN_SIZE);
nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize);
}
void BlockAssembler::resetBlock()
{
inBlock.clear();
// Reserve space for coinbase tx
nBlockSize = 1000;
nBlockSigOps = 100;
// These counters do not include coinbase tx
nBlockTx = 0;
nFees = 0;
lastFewTxs = 0;
blockFinished = false;
}
CBlockTemplate* BlockAssembler::CreateNewBlock(const CScript& scriptPubKeyIn)
{
resetBlock();
pblocktemplate.reset(new CBlockTemplate());
if(!pblocktemplate.get())
return NULL;
pblock = &pblocktemplate->block; // pointer for convenience
// Add dummy coinbase tx as first transaction
pblock->vtx.push_back(CTransaction());
pblocktemplate->vTxFees.push_back(-1); // updated at end
pblocktemplate->vTxSigOps.push_back(-1); // updated at end
LOCK2(cs_main, mempool.cs);
CBlockIndex* pindexPrev = chainActive.Tip();
nHeight = pindexPrev->nHeight + 1;
pblock->nVersion = ComputeBlockVersion(pindexPrev, chainparams.GetConsensus());
// -regtest only: allow overriding block.nVersion with
// -blockversion=N to test forking scenarios
if (chainparams.MineBlocksOnDemand())
pblock->nVersion = GetArg("-blockversion", pblock->nVersion);
pblock->nTime = GetAdjustedTime();
const int64_t nMedianTimePast = pindexPrev->GetMedianTimePast();
nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST)
? nMedianTimePast
: pblock->GetBlockTime();
addPriorityTxs();
addScoreTxs();
nLastBlockTx = nBlockTx;
nLastBlockSize = nBlockSize;
LogPrintf("CreateNewBlock(): total size %u txs: %u fees: %ld sigops %d\n", nBlockSize, nBlockTx, nFees, nBlockSigOps);
// Create coinbase transaction.
CMutableTransaction coinbaseTx;
coinbaseTx.vin.resize(1);
coinbaseTx.vin[0].prevout.SetNull();
coinbaseTx.vout.resize(1);
coinbaseTx.vout[0].scriptPubKey = scriptPubKeyIn;
// NOTE: unlike in bitcoin, we need to pass PREVIOUS block height here
CAmount blockReward = nFees + GetBlockSubsidy(pindexPrev->nBits, pindexPrev->nHeight, Params().GetConsensus());
// Compute regular coinbase transaction.
coinbaseTx.vout[0].nValue = blockReward;
coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0;
// Update coinbase transaction with additional info about masternode and governance payments,
// get some info back to pass to getblocktemplate
FillBlockPayments(coinbaseTx, nHeight, blockReward, pblock->txoutMasternode, pblock->voutSuperblock);
// LogPrintf("CreateNewBlock -- nBlockHeight %d blockReward %lld txoutMasternode %s coinbaseTx %s",
// nHeight, blockReward, pblock->txoutMasternode.ToString(), coinbaseTx.ToString());
pblock->vtx[0] = coinbaseTx;
pblocktemplate->vTxFees[0] = -nFees;
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus());
pblock->nNonce = 0;
pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(pblock->vtx[0]);
CValidationState state;
if (!TestBlockValidity(state, chainparams, *pblock, pindexPrev, false, false)) {
throw std::runtime_error(strprintf("%s: TestBlockValidity failed: %s", __func__, FormatStateMessage(state)));
}
return pblocktemplate.release();
}
bool BlockAssembler::isStillDependent(CTxMemPool::txiter iter)
{
BOOST_FOREACH(CTxMemPool::txiter parent, mempool.GetMemPoolParents(iter))
{
if (!inBlock.count(parent)) {
return true;
}
}
return false;
}
bool BlockAssembler::TestForBlock(CTxMemPool::txiter iter)
{
if (nBlockSize + iter->GetTxSize() >= nBlockMaxSize) {
// If the block is so close to full that no more txs will fit
// or if we've tried more than 50 times to fill remaining space
// then flag that the block is finished
if (nBlockSize > nBlockMaxSize - 100 || lastFewTxs > 50) {
blockFinished = true;
return false;
}
// Once we're within 1000 bytes of a full block, only look at 50 more txs
// to try to fill the remaining space.
if (nBlockSize > nBlockMaxSize - 1000) {
lastFewTxs++;
}
return false;
}
unsigned int nMaxBlockSigOps = MaxBlockSigOps(fDIP0001ActiveAtTip);
if (nBlockSigOps + iter->GetSigOpCount() >= nMaxBlockSigOps) {
// If the block has room for no more sig ops then
// flag that the block is finished
if (nBlockSigOps > nMaxBlockSigOps - 2) {
blockFinished = true;
return false;
}
// Otherwise attempt to find another tx with fewer sigops
// to put in the block.
return false;
}
// Must check that lock times are still valid
// This can be removed once MTP is always enforced
// as long as reorgs keep the mempool consistent.
if (!IsFinalTx(iter->GetTx(), nHeight, nLockTimeCutoff))
return false;
return true;
}
void BlockAssembler::AddToBlock(CTxMemPool::txiter iter)
{
pblock->vtx.push_back(iter->GetTx());
pblocktemplate->vTxFees.push_back(iter->GetFee());
pblocktemplate->vTxSigOps.push_back(iter->GetSigOpCount());
nBlockSize += iter->GetTxSize();
++nBlockTx;
nBlockSigOps += iter->GetSigOpCount();
nFees += iter->GetFee();
inBlock.insert(iter);
bool fPrintPriority = GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY);
if (fPrintPriority) {
double dPriority = iter->GetPriority(nHeight);
CAmount dummy;
mempool.ApplyDeltas(iter->GetTx().GetHash(), dPriority, dummy);
LogPrintf("priority %.1f fee %s txid %s\n",
dPriority,
CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(),
iter->GetTx().GetHash().ToString());
}
}
void BlockAssembler::addScoreTxs()
{
std::priority_queue<CTxMemPool::txiter, std::vector<CTxMemPool::txiter>, ScoreCompare> clearedTxs;
CTxMemPool::setEntries waitSet;
CTxMemPool::indexed_transaction_set::index<mining_score>::type::iterator mi = mempool.mapTx.get<mining_score>().begin();
CTxMemPool::txiter iter;
while (!blockFinished && (mi != mempool.mapTx.get<mining_score>().end() || !clearedTxs.empty()))
{
// If no txs that were previously postponed are available to try
// again, then try the next highest score tx
if (clearedTxs.empty()) {
iter = mempool.mapTx.project<0>(mi);
mi++;
}
// If a previously postponed tx is available to try again, then it
// has higher score than all untried so far txs
else {
iter = clearedTxs.top();
clearedTxs.pop();
}
// If tx already in block, skip (added by addPriorityTxs)
if (inBlock.count(iter)) {
continue;
}
// If tx is dependent on other mempool txs which haven't yet been included
// then put it in the waitSet
if (isStillDependent(iter)) {
waitSet.insert(iter);
continue;
}
// If the fee rate is below the min fee rate for mining, then we're done
// adding txs based on score (fee rate)
if (iter->GetModifiedFee() < ::minRelayTxFee.GetFee(iter->GetTxSize()) && nBlockSize >= nBlockMinSize) {
return;
}
// If this tx fits in the block add it, otherwise keep looping
if (TestForBlock(iter)) {
AddToBlock(iter);
// This tx was successfully added, so
// add transactions that depend on this one to the priority queue to try again
BOOST_FOREACH(CTxMemPool::txiter child, mempool.GetMemPoolChildren(iter))
{
if (waitSet.count(child)) {
clearedTxs.push(child);
waitSet.erase(child);
}
}
}
}
}
void BlockAssembler::addPriorityTxs()
{
// How much of the block should be dedicated to high-priority transactions,
// included regardless of the fees they pay
unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE);
nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize);
if (nBlockPrioritySize == 0) {
return;
}
// This vector will be sorted into a priority queue:
vector<TxCoinAgePriority> vecPriority;
TxCoinAgePriorityCompare pricomparer;
std::map<CTxMemPool::txiter, double, CTxMemPool::CompareIteratorByHash> waitPriMap;
typedef std::map<CTxMemPool::txiter, double, CTxMemPool::CompareIteratorByHash>::iterator waitPriIter;
double actualPriority = -1;
vecPriority.reserve(mempool.mapTx.size());
for (CTxMemPool::indexed_transaction_set::iterator mi = mempool.mapTx.begin();
mi != mempool.mapTx.end(); ++mi)
{
double dPriority = mi->GetPriority(nHeight);
CAmount dummy;
mempool.ApplyDeltas(mi->GetTx().GetHash(), dPriority, dummy);
vecPriority.push_back(TxCoinAgePriority(dPriority, mi));
}
std::make_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
CTxMemPool::txiter iter;
while (!vecPriority.empty() && !blockFinished) { // add a tx from priority queue to fill the blockprioritysize
iter = vecPriority.front().second;
actualPriority = vecPriority.front().first;
std::pop_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
vecPriority.pop_back();
// If tx already in block, skip
if (inBlock.count(iter)) {
assert(false); // shouldn't happen for priority txs
continue;
}
// If tx is dependent on other mempool txs which haven't yet been included
// then put it in the waitSet
if (isStillDependent(iter)) {
waitPriMap.insert(std::make_pair(iter, actualPriority));
continue;
}
// If this tx fits in the block add it, otherwise keep looping
if (TestForBlock(iter)) {
AddToBlock(iter);
// If now that this txs is added we've surpassed our desired priority size
// or have dropped below the AllowFreeThreshold, then we're done adding priority txs
if (nBlockSize >= nBlockPrioritySize || !AllowFree(actualPriority)) {
return;
}
// This tx was successfully added, so
// add transactions that depend on this one to the priority queue to try again
BOOST_FOREACH(CTxMemPool::txiter child, mempool.GetMemPoolChildren(iter))
{
waitPriIter wpiter = waitPriMap.find(child);
if (wpiter != waitPriMap.end()) {
vecPriority.push_back(TxCoinAgePriority(wpiter->second,child));
std::push_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
waitPriMap.erase(wpiter);
}
}
}
}
}
void IncrementExtraNonce(CBlock* pblock, const CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
// Update nExtraNonce
static uint256 hashPrevBlock;
if (hashPrevBlock != pblock->hashPrevBlock)
{
nExtraNonce = 0;
hashPrevBlock = pblock->hashPrevBlock;
}
++nExtraNonce;
unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
CMutableTransaction txCoinbase(pblock->vtx[0]);
txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce)) + COINBASE_FLAGS;
assert(txCoinbase.vin[0].scriptSig.size() <= 100);
pblock->vtx[0] = txCoinbase;
pblock->hashMerkleRoot = BlockMerkleRoot(*pblock);
}