neobytes/src/bloom.cpp

263 lines
7.8 KiB
C++
Raw Normal View History

// Copyright (c) 2012-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "bloom.h"
2014-11-18 22:03:02 +01:00
#include "primitives/transaction.h"
#include "hash.h"
2014-08-23 03:35:51 +02:00
#include "script/script.h"
#include "script/standard.h"
#include "streams.h"
#include <math.h>
#include <stdlib.h>
2014-08-23 05:09:47 +02:00
#include <boost/foreach.hpp>
#define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
#define LN2 0.6931471805599453094172321214581765680755001343602552
using namespace std;
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn, unsigned char nFlagsIn) :
/**
* The ideal size for a bloom filter with a given number of elements and false positive rate is:
* - nElements * log(fp rate) / ln(2)^2
* We ignore filter parameters which will create a bloom filter larger than the protocol limits
*/
vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
/**
* The ideal number of hash functions is filter size * ln(2) / number of elements
* Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
* See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
*/
isFull(false),
isEmpty(false),
nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
nTweak(nTweakIn),
nFlags(nFlagsIn)
{
}
// Private constructor used by CRollingBloomFilter
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn) :
vData((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)) / 8),
isFull(false),
isEmpty(true),
nHashFuncs((unsigned int)(vData.size() * 8 / nElements * LN2)),
nTweak(nTweakIn),
nFlags(BLOOM_UPDATE_NONE)
{
}
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
{
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
}
void CBloomFilter::insert(const vector<unsigned char>& vKey)
{
if (isFull)
return;
for (unsigned int i = 0; i < nHashFuncs; i++)
{
unsigned int nIndex = Hash(i, vKey);
// Sets bit nIndex of vData
2014-03-20 05:21:23 +01:00
vData[nIndex >> 3] |= (1 << (7 & nIndex));
}
isEmpty = false;
}
void CBloomFilter::insert(const COutPoint& outpoint)
{
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
stream << outpoint;
vector<unsigned char> data(stream.begin(), stream.end());
insert(data);
}
void CBloomFilter::insert(const uint256& hash)
{
vector<unsigned char> data(hash.begin(), hash.end());
insert(data);
}
bool CBloomFilter::contains(const vector<unsigned char>& vKey) const
{
if (isFull)
return true;
if (isEmpty)
return false;
for (unsigned int i = 0; i < nHashFuncs; i++)
{
unsigned int nIndex = Hash(i, vKey);
// Checks bit nIndex of vData
2014-03-20 05:21:23 +01:00
if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
return false;
}
return true;
}
bool CBloomFilter::contains(const COutPoint& outpoint) const
{
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
stream << outpoint;
vector<unsigned char> data(stream.begin(), stream.end());
return contains(data);
}
bool CBloomFilter::contains(const uint256& hash) const
{
vector<unsigned char> data(hash.begin(), hash.end());
return contains(data);
}
2014-07-21 20:50:07 +02:00
void CBloomFilter::clear()
{
vData.assign(vData.size(),0);
isFull = false;
isEmpty = true;
}
bool CBloomFilter::IsWithinSizeConstraints() const
{
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
}
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
{
bool fFound = false;
// Match if the filter contains the hash of tx
// for finding tx when they appear in a block
if (isFull)
return true;
if (isEmpty)
return false;
const uint256& hash = tx.GetHash();
if (contains(hash))
fFound = true;
for (unsigned int i = 0; i < tx.vout.size(); i++)
{
const CTxOut& txout = tx.vout[i];
// Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
// If this matches, also add the specific output that was matched.
// This means clients don't have to update the filter themselves when a new relevant tx
// is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
CScript::const_iterator pc = txout.scriptPubKey.begin();
vector<unsigned char> data;
while (pc < txout.scriptPubKey.end())
{
opcodetype opcode;
if (!txout.scriptPubKey.GetOp(pc, opcode, data))
break;
if (data.size() != 0 && contains(data))
{
fFound = true;
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
insert(COutPoint(hash, i));
else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
{
txnouttype type;
vector<vector<unsigned char> > vSolutions;
if (Solver(txout.scriptPubKey, type, vSolutions) &&
(type == TX_PUBKEY || type == TX_MULTISIG))
insert(COutPoint(hash, i));
}
break;
}
}
}
if (fFound)
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Match if the filter contains an outpoint tx spends
if (contains(txin.prevout))
return true;
// Match if the filter contains any arbitrary script data element in any scriptSig in tx
CScript::const_iterator pc = txin.scriptSig.begin();
vector<unsigned char> data;
while (pc < txin.scriptSig.end())
{
opcodetype opcode;
if (!txin.scriptSig.GetOp(pc, opcode, data))
break;
if (data.size() != 0 && contains(data))
return true;
}
}
return false;
}
void CBloomFilter::UpdateEmptyFull()
{
bool full = true;
bool empty = true;
for (unsigned int i = 0; i < vData.size(); i++)
{
full &= vData[i] == 0xff;
empty &= vData[i] == 0;
}
isFull = full;
isEmpty = empty;
}
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate, unsigned int nTweak) :
b1(nElements * 2, fpRate, nTweak), b2(nElements * 2, fpRate, nTweak)
{
// Implemented using two bloom filters of 2 * nElements each.
// We fill them up, and clear them, staggered, every nElements
// inserted, so at least one always contains the last nElements
// inserted.
nBloomSize = nElements * 2;
nInsertions = 0;
}
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
{
if (nInsertions == 0) {
b1.clear();
} else if (nInsertions == nBloomSize / 2) {
b2.clear();
}
b1.insert(vKey);
b2.insert(vKey);
if (++nInsertions == nBloomSize) {
nInsertions = 0;
}
}
void CRollingBloomFilter::insert(const uint256& hash)
{
2015-07-27 18:38:45 +02:00
vector<unsigned char> data(hash.begin(), hash.end());
insert(data);
}
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
{
if (nInsertions < nBloomSize / 2) {
return b2.contains(vKey);
}
return b1.contains(vKey);
}
bool CRollingBloomFilter::contains(const uint256& hash) const
{
2015-07-27 18:38:45 +02:00
vector<unsigned char> data(hash.begin(), hash.end());
return contains(data);
}
void CRollingBloomFilter::clear()
{
b1.clear();
b2.clear();
nInsertions = 0;
}