2010-08-29 18:58:15 +02:00
// Copyright (c) 2009-2010 Satoshi Nakamoto
2015-12-13 14:51:43 +01:00
// Copyright (c) 2009-2015 The Bitcoin Core developers
2016-12-20 14:26:45 +01:00
// Copyright (c) 2014-2017 The Dash Core developers
2014-12-13 05:09:33 +01:00
// Distributed under the MIT software license, see the accompanying
2012-05-18 16:02:28 +02:00
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
2010-08-29 18:58:15 +02:00
2013-05-28 01:55:01 +02:00
# if defined(HAVE_CONFIG_H)
2015-04-03 00:51:08 +02:00
# include "config/dash-config.h"
2013-05-28 01:55:01 +02:00
# endif
2011-05-14 23:20:30 +02:00
# include "net.h"
2013-04-13 07:13:08 +02:00
2012-01-04 23:39:45 +01:00
# include "addrman.h"
2013-04-13 07:13:08 +02:00
# include "chainparams.h"
2014-10-29 02:33:23 +01:00
# include "clientversion.h"
2015-09-02 17:03:27 +02:00
# include "consensus/consensus.h"
2015-07-05 14:30:07 +02:00
# include "crypto/common.h"
# include "hash.h"
2014-11-18 22:03:02 +01:00
# include "primitives/transaction.h"
2017-09-03 15:29:10 +02:00
# include "netbase.h"
2015-04-02 18:04:59 +02:00
# include "scheduler.h"
2012-04-15 22:10:54 +02:00
# include "ui_interface.h"
2016-02-02 16:28:56 +01:00
# include "wallet/wallet.h"
2015-07-05 14:30:07 +02:00
# include "utilstrencodings.h"
2013-04-13 07:13:08 +02:00
2016-12-20 14:27:59 +01:00
# include "instantx.h"
2017-02-16 16:14:42 +01:00
# include "masternode-sync.h"
2017-01-21 20:03:55 +01:00
# include "masternodeman.h"
2017-05-05 13:26:27 +02:00
# include "privatesend.h"
2016-12-20 14:27:59 +01:00
2011-10-07 17:02:21 +02:00
# ifdef WIN32
2011-07-02 03:59:37 +02:00
# include <string.h>
2013-04-13 07:13:08 +02:00
# else
2013-07-17 10:51:40 +02:00
# include <fcntl.h>
# endif
2011-03-26 13:01:27 +01:00
# ifdef USE_UPNP
# include <miniupnpc/miniupnpc.h>
2013-04-13 07:13:08 +02:00
# include <miniupnpc/miniwget.h>
2011-03-26 13:01:27 +01:00
# include <miniupnpc/upnpcommands.h>
# include <miniupnpc/upnperrors.h>
# endif
2014-01-30 10:55:55 +01:00
2015-04-08 20:20:00 +02:00
# include <math.h>
2017-07-04 23:39:05 +02:00
// Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
2013-06-24 00:23:28 +02:00
# define DUMP_ADDRESSES_INTERVAL 900
2013-04-13 07:13:08 +02:00
2017-07-17 12:39:12 +02:00
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
# define FEELER_SLEEP_WINDOW 1
2013-04-13 07:13:08 +02:00
# if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
2013-05-28 01:55:01 +02:00
# define MSG_NOSIGNAL 0
# endif
2013-06-24 00:23:28 +02:00
2014-06-24 09:03:18 +02:00
// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
# ifdef WIN32
# ifndef PROTECTION_LEVEL_UNRESTRICTED
# define PROTECTION_LEVEL_UNRESTRICTED 10
# endif
# ifndef IPV6_PROTECTION_LEVEL
# define IPV6_PROTECTION_LEVEL 23
# endif
# endif
2017-06-29 03:51:10 +02:00
const static std : : string NET_MESSAGE_COMMAND_OTHER = " *other* " ;
2017-08-17 20:37:22 +02:00
constexpr const CConnman : : CFullyConnectedOnly CConnman : : FullyConnectedOnly ;
constexpr const CConnman : : CAllNodes CConnman : : AllNodes ;
2010-08-29 18:58:15 +02:00
//
// Global state variables
//
2012-05-24 19:02:21 +02:00
bool fDiscover = true ;
2014-05-29 12:33:17 +02:00
bool fListen = true ;
2017-07-21 20:31:47 +02:00
bool fRelayTxes = true ;
2014-05-05 13:22:28 +02:00
CCriticalSection cs_mapLocalHost ;
2017-07-12 03:20:12 +02:00
std : : map < CNetAddr , LocalServiceInfo > mapLocalHost ;
2012-05-04 16:46:22 +02:00
static bool vfLimited [ NET_MAX ] = { } ;
2011-08-11 13:41:01 +02:00
static CNode * pnodeLocalHost = NULL ;
2015-07-31 18:05:42 +02:00
std : : string strSubVersion ;
2010-08-29 18:58:15 +02:00
2017-07-12 03:20:12 +02:00
std : : map < CInv , CDataStream > mapRelay ;
std : : deque < pair < int64_t , CInv > > vRelayExpiration ;
2010-08-29 18:58:15 +02:00
CCriticalSection cs_mapRelay ;
2016-04-11 18:52:29 +02:00
limitedmap < uint256 , int64_t > mapAlreadyAskedFor ( MAX_INV_SZ ) ;
2010-08-29 18:58:15 +02:00
2013-06-06 05:21:41 +02:00
// Signals for message handling
static CNodeSignals g_signals ;
CNodeSignals & GetNodeSignals ( ) { return g_signals ; }
2013-01-07 17:07:51 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : AddOneShot ( const std : : string & strDest )
2012-04-24 02:15:00 +02:00
{
LOCK ( cs_vOneShots ) ;
vOneShots . push_back ( strDest ) ;
}
2011-04-21 16:45:08 +02:00
unsigned short GetListenPort ( )
{
2013-05-07 15:16:25 +02:00
return ( unsigned short ) ( GetArg ( " -port " , Params ( ) . GetDefaultPort ( ) ) ) ;
2011-04-21 16:45:08 +02:00
}
2010-08-29 18:58:15 +02:00
2012-02-12 13:45:24 +01:00
// find 'best' local address for a particular peer
2012-05-10 20:35:13 +02:00
bool GetLocal ( CService & addr , const CNetAddr * paddrPeer )
2012-02-12 13:45:24 +01:00
{
2014-05-29 12:33:17 +02:00
if ( ! fListen )
2012-02-12 13:45:24 +01:00
return false ;
2010-08-29 18:58:15 +02:00
2012-05-13 00:41:24 +02:00
int nBestScore = - 1 ;
2012-02-12 13:45:24 +01:00
int nBestReachability = - 1 ;
{
LOCK ( cs_mapLocalHost ) ;
2017-07-12 03:20:12 +02:00
for ( std : : map < CNetAddr , LocalServiceInfo > : : iterator it = mapLocalHost . begin ( ) ; it ! = mapLocalHost . end ( ) ; it + + )
2012-02-12 13:45:24 +01:00
{
2012-05-13 00:41:24 +02:00
int nScore = ( * it ) . second . nScore ;
2012-02-12 13:45:24 +01:00
int nReachability = ( * it ) . first . GetReachabilityFrom ( paddrPeer ) ;
2012-05-13 00:41:24 +02:00
if ( nReachability > nBestReachability | | ( nReachability = = nBestReachability & & nScore > nBestScore ) )
2012-02-12 13:45:24 +01:00
{
2012-05-13 00:41:24 +02:00
addr = CService ( ( * it ) . first , ( * it ) . second . nPort ) ;
2012-02-12 13:45:24 +01:00
nBestReachability = nReachability ;
2012-05-13 00:41:24 +02:00
nBestScore = nScore ;
2012-02-12 13:45:24 +01:00
}
}
}
2012-05-13 00:41:24 +02:00
return nBestScore > = 0 ;
2012-02-12 13:45:24 +01:00
}
2010-08-29 18:58:15 +02:00
2015-01-24 05:40:50 +01:00
//! Convert the pnSeeds6 array into usable address objects.
static std : : vector < CAddress > convertSeed6 ( const std : : vector < SeedSpec6 > & vSeedsIn )
{
// It'll only connect to one or two seed nodes because once it connects,
// it'll get a pile of addresses with newer timestamps.
// Seed nodes are given a random 'last seen time' of between one and two
// weeks ago.
const int64_t nOneWeek = 7 * 24 * 60 * 60 ;
std : : vector < CAddress > vSeedsOut ;
vSeedsOut . reserve ( vSeedsIn . size ( ) ) ;
for ( std : : vector < SeedSpec6 > : : const_iterator i ( vSeedsIn . begin ( ) ) ; i ! = vSeedsIn . end ( ) ; + + i )
{
struct in6_addr ip ;
memcpy ( & ip , i - > addr , sizeof ( ip ) ) ;
2017-07-05 05:45:23 +02:00
CAddress addr ( CService ( ip , i - > port ) , NODE_NETWORK ) ;
2015-01-24 05:40:50 +01:00
addr . nTime = GetTime ( ) - GetRand ( nOneWeek ) - nOneWeek ;
vSeedsOut . push_back ( addr ) ;
}
return vSeedsOut ;
}
2012-02-12 13:45:24 +01:00
// get best local address for a particular peer as a CAddress
2014-07-21 08:32:25 +02:00
// Otherwise, return the unroutable 0.0.0.0 but filled in with
// the normal parameters, since the IP may be changed to a useful
// one by discovery.
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CAddress GetLocalAddress ( const CNetAddr * paddrPeer , ServiceFlags nLocalServices )
2012-02-12 13:45:24 +01:00
{
2017-09-03 15:29:10 +02:00
CAddress ret ( CService ( CNetAddr ( ) , GetListenPort ( ) ) , NODE_NONE ) ;
2012-05-10 20:35:13 +02:00
CService addr ;
2012-02-12 13:45:24 +01:00
if ( GetLocal ( addr , paddrPeer ) )
{
2017-07-05 05:45:23 +02:00
ret = CAddress ( addr , nLocalServices ) ;
2012-02-12 13:45:24 +01:00
}
2014-07-21 08:32:25 +02:00
ret . nTime = GetAdjustedTime ( ) ;
2012-02-12 13:45:24 +01:00
return ret ;
}
2010-08-29 18:58:15 +02:00
2014-07-21 08:32:25 +02:00
int GetnScore ( const CService & addr )
2012-02-12 13:45:24 +01:00
{
2014-07-21 08:32:25 +02:00
LOCK ( cs_mapLocalHost ) ;
if ( mapLocalHost . count ( addr ) = = LOCAL_NONE )
return 0 ;
return mapLocalHost [ addr ] . nScore ;
}
// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood ( CNode * pnode )
{
return fDiscover & & pnode - > addr . IsRoutable ( ) & & pnode - > addrLocal . IsRoutable ( ) & &
! IsLimited ( pnode - > addrLocal . GetNetwork ( ) ) ;
}
// pushes our own address to a peer
2016-02-12 19:35:32 +01:00
void AdvertiseLocal ( CNode * pnode )
2014-07-21 08:32:25 +02:00
{
if ( fListen & & pnode - > fSuccessfullyConnected )
2012-02-12 13:45:24 +01:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CAddress addrLocal = GetLocalAddress ( & pnode - > addr , pnode - > GetLocalServices ( ) ) ;
2014-07-21 08:32:25 +02:00
// If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our
// address than we do.
if ( IsPeerAddrLocalGood ( pnode ) & & ( ! addrLocal . IsRoutable ( ) | |
GetRand ( ( GetnScore ( addrLocal ) > LOCAL_MANUAL ) ? 8 : 2 ) = = 0 ) )
2012-02-12 13:45:24 +01:00
{
2014-07-21 08:32:25 +02:00
addrLocal . SetIP ( pnode - > addrLocal ) ;
}
if ( addrLocal . IsRoutable ( ) )
{
2016-02-12 19:35:32 +01:00
LogPrintf ( " AdvertiseLocal: advertising address %s \n " , addrLocal . ToString ( ) ) ;
2014-07-21 08:32:25 +02:00
pnode - > PushAddress ( addrLocal ) ;
2012-02-12 13:45:24 +01:00
}
}
}
// learn a new local address
2012-05-10 20:35:13 +02:00
bool AddLocal ( const CService & addr , int nScore )
2012-02-12 13:45:24 +01:00
{
if ( ! addr . IsRoutable ( ) )
return false ;
2012-05-24 19:02:21 +02:00
if ( ! fDiscover & & nScore < LOCAL_MANUAL )
2012-05-13 14:11:53 +02:00
return false ;
2012-05-13 23:50:49 +02:00
if ( IsLimited ( addr ) )
2012-05-13 15:11:51 +02:00
return false ;
2014-01-16 16:15:27 +01:00
LogPrintf ( " AddLocal(%s,%i) \n " , addr . ToString ( ) , nScore ) ;
2012-02-12 13:45:24 +01:00
{
LOCK ( cs_mapLocalHost ) ;
2012-05-13 00:41:24 +02:00
bool fAlready = mapLocalHost . count ( addr ) > 0 ;
LocalServiceInfo & info = mapLocalHost [ addr ] ;
if ( ! fAlready | | nScore > = info . nScore ) {
2012-08-29 02:33:25 +02:00
info . nScore = nScore + ( fAlready ? 1 : 0 ) ;
info . nPort = addr . GetPort ( ) ;
2012-05-13 00:41:24 +02:00
}
2012-02-12 13:45:24 +01:00
}
return true ;
}
2012-05-13 01:26:14 +02:00
bool AddLocal ( const CNetAddr & addr , int nScore )
2012-05-10 20:35:13 +02:00
{
2012-05-13 01:26:14 +02:00
return AddLocal ( CService ( addr , GetListenPort ( ) ) , nScore ) ;
2012-05-10 20:35:13 +02:00
}
2015-09-08 17:48:45 +02:00
bool RemoveLocal ( const CService & addr )
{
LOCK ( cs_mapLocalHost ) ;
LogPrintf ( " RemoveLocal(%s) \n " , addr . ToString ( ) ) ;
mapLocalHost . erase ( addr ) ;
return true ;
}
2012-05-04 16:46:22 +02:00
/** Make a particular network entirely off-limits (no automatic connects to it) */
void SetLimited ( enum Network net , bool fLimited )
{
2012-05-14 17:15:58 +02:00
if ( net = = NET_UNROUTABLE )
return ;
2012-05-04 16:46:22 +02:00
LOCK ( cs_mapLocalHost ) ;
vfLimited [ net ] = fLimited ;
}
2012-05-14 17:15:58 +02:00
bool IsLimited ( enum Network net )
2012-05-04 16:46:22 +02:00
{
LOCK ( cs_mapLocalHost ) ;
2012-05-14 17:15:58 +02:00
return vfLimited [ net ] ;
}
bool IsLimited ( const CNetAddr & addr )
{
return IsLimited ( addr . GetNetwork ( ) ) ;
2012-05-04 16:46:22 +02:00
}
/** vote for a local address */
2012-05-10 20:35:13 +02:00
bool SeenLocal ( const CService & addr )
2012-02-12 13:45:24 +01:00
{
{
LOCK ( cs_mapLocalHost ) ;
if ( mapLocalHost . count ( addr ) = = 0 )
return false ;
2012-05-13 00:41:24 +02:00
mapLocalHost [ addr ] . nScore + + ;
2012-02-12 13:45:24 +01:00
}
return true ;
}
2014-07-21 08:32:25 +02:00
2012-05-04 16:46:22 +02:00
/** check whether a given address is potentially local */
2012-05-10 20:35:13 +02:00
bool IsLocal ( const CService & addr )
2012-02-12 13:45:24 +01:00
{
LOCK ( cs_mapLocalHost ) ;
return mapLocalHost . count ( addr ) > 0 ;
}
2010-08-29 18:58:15 +02:00
2014-07-30 15:31:36 +02:00
/** check whether a given network is one we can probably connect to */
bool IsReachable ( enum Network net )
2012-04-10 20:22:04 +02:00
{
LOCK ( cs_mapLocalHost ) ;
2016-02-18 07:44:32 +01:00
return ! vfLimited [ net ] ;
2012-04-10 20:22:04 +02:00
}
2010-08-29 18:58:15 +02:00
2012-05-04 16:46:22 +02:00
/** check whether a given address is in a network we can probably connect to */
2012-04-10 20:22:04 +02:00
bool IsReachable ( const CNetAddr & addr )
2010-12-15 23:43:51 +01:00
{
2012-05-04 16:46:22 +02:00
enum Network net = addr . GetNetwork ( ) ;
2014-07-30 15:31:36 +02:00
return IsReachable ( net ) ;
2010-12-15 23:43:51 +01:00
}
2015-09-02 17:03:27 +02:00
2017-03-13 07:29:16 +01:00
std : : vector < unsigned char > CNode : : vchSecretKey ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * CConnman : : FindNode ( const CNetAddr & ip )
2010-08-29 18:58:15 +02:00
{
2013-04-04 11:30:55 +02:00
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( ( CNetAddr ) pnode - > addr = = ip )
return ( pnode ) ;
2010-08-29 18:58:15 +02:00
return NULL ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * CConnman : : FindNode ( const CSubNet & subNet )
2015-05-25 20:03:51 +02:00
{
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( subNet . Match ( ( CNetAddr ) pnode - > addr ) )
return ( pnode ) ;
return NULL ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * CConnman : : FindNode ( const std : : string & addrName )
2012-04-19 17:38:03 +02:00
{
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( pnode - > addrName = = addrName )
return ( pnode ) ;
return NULL ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * CConnman : : FindNode ( const CService & addr )
2010-08-29 18:58:15 +02:00
{
2013-04-04 11:30:55 +02:00
LOCK ( cs_vNodes ) ;
2017-07-13 08:07:50 +02:00
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( ( CService ) pnode - > addr = = addr )
return ( pnode ) ;
2010-08-29 18:58:15 +02:00
return NULL ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : CheckIncomingNonce ( uint64_t nonce )
{
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes ) {
if ( ! pnode - > fSuccessfullyConnected & & ! pnode - > fInbound & & pnode - > GetLocalNonce ( ) = = nonce )
return false ;
}
return true ;
}
CNode * CConnman : : ConnectNode ( CAddress addrConnect , const char * pszDest , bool fConnectToMasternode )
2010-08-29 18:58:15 +02:00
{
2017-09-11 15:38:14 +02:00
// TODO: This is different from what we have in Bitcoin which only calls ConnectNode from OpenNetworkConnection
// If we ever switch to using OpenNetworkConnection for MNs as well, this can be removed
if ( ! fNetworkActive ) {
return NULL ;
}
2012-04-24 02:15:00 +02:00
if ( pszDest = = NULL ) {
2015-08-31 04:28:37 +02:00
// we clean masternode connections in CMasternodeMan::ProcessMasternodeConnections()
2016-08-05 21:49:45 +02:00
// so should be safe to skip this and connect to local Hot MN on CActiveMasternode::ManageState()
2016-07-30 13:05:41 +02:00
if ( IsLocal ( addrConnect ) & & ! fConnectToMasternode )
2012-04-19 17:38:03 +02:00
return NULL ;
2010-08-29 18:58:15 +02:00
2017-02-01 18:24:00 +01:00
LOCK ( cs_vNodes ) ;
2012-04-19 17:38:03 +02:00
// Look for an existing connection
CNode * pnode = FindNode ( ( CService ) addrConnect ) ;
if ( pnode )
{
2016-07-30 13:05:41 +02:00
// we have existing connection to this node but it was not a connection to masternode,
// change flag and add reference so that we can correctly clear it later
if ( fConnectToMasternode & & ! pnode - > fMasternode ) {
pnode - > AddRef ( ) ;
2017-02-01 18:24:00 +01:00
pnode - > fMasternode = true ;
2016-07-30 13:05:41 +02:00
}
2012-04-19 17:38:03 +02:00
return pnode ;
}
2010-08-29 18:58:15 +02:00
}
/// debug print
2013-09-18 12:38:08 +02:00
LogPrint ( " net " , " trying connection %s lastseen=%.1fhrs \n " ,
2014-01-16 16:15:27 +01:00
pszDest ? pszDest : addrConnect . ToString ( ) ,
2014-05-24 11:14:52 +02:00
pszDest ? 0.0 : ( double ) ( GetAdjustedTime ( ) - addrConnect . nTime ) / 3600.0 ) ;
2010-08-29 18:58:15 +02:00
// Connect
SOCKET hSocket ;
2014-12-02 17:43:42 +01:00
bool proxyConnectionFailed = false ;
if ( pszDest ? ConnectSocketByName ( addrConnect , hSocket , pszDest , Params ( ) . GetDefaultPort ( ) , nConnectTimeout , & proxyConnectionFailed ) :
ConnectSocket ( addrConnect , hSocket , nConnectTimeout , & proxyConnectionFailed ) )
2010-08-29 18:58:15 +02:00
{
2015-07-10 00:23:27 +02:00
if ( ! IsSelectableSocket ( hSocket ) ) {
LogPrintf ( " Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?) \n " ) ;
CloseSocket ( hSocket ) ;
return NULL ;
}
2017-07-14 18:58:57 +02:00
if ( pszDest & & addrConnect . IsValid ( ) ) {
// It is possible that we already have a connection to the IP/port pszDest resolved to.
// In that case, drop the connection that was just created, and return the existing CNode instead.
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that
// name catch this early.
2017-08-29 01:51:56 +02:00
LOCK ( cs_vNodes ) ;
2017-07-14 18:58:57 +02:00
CNode * pnode = FindNode ( ( CService ) addrConnect ) ;
if ( pnode )
{
// we have existing connection to this node but it was not a connection to masternode,
// change flag and add reference so that we can correctly clear it later
if ( fConnectToMasternode & & ! pnode - > fMasternode ) {
pnode - > AddRef ( ) ;
pnode - > fMasternode = true ;
}
2017-08-29 01:51:56 +02:00
if ( pnode - > addrName . empty ( ) ) {
pnode - > addrName = std : : string ( pszDest ) ;
2017-07-14 18:58:57 +02:00
}
CloseSocket ( hSocket ) ;
return pnode ;
}
}
2012-04-19 17:38:03 +02:00
addrman . Attempt ( addrConnect ) ;
2010-08-29 18:58:15 +02:00
// Add node
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * pnode = new CNode ( GetNewNodeId ( ) , nLocalServices , GetBestHeight ( ) , hSocket , addrConnect , pszDest ? pszDest : " " , false , true ) ;
2012-04-19 17:38:03 +02:00
2017-07-27 16:28:05 +02:00
pnode - > nServicesExpected = ServiceFlags ( addrConnect . nServices & nRelevantServices ) ;
2017-08-24 01:38:29 +02:00
pnode - > nTimeConnected = GetSystemTimeInSeconds ( ) ;
2016-07-30 13:05:41 +02:00
if ( fConnectToMasternode ) {
pnode - > AddRef ( ) ;
2017-02-01 18:24:00 +01:00
pnode - > fMasternode = true ;
2016-07-30 13:05:41 +02:00
}
2014-02-27 02:55:04 +01:00
2017-07-27 16:28:05 +02:00
GetNodeSignals ( ) . InitializeNode ( pnode , * this ) ;
2017-02-02 09:22:47 +01:00
LOCK ( cs_vNodes ) ;
vNodes . push_back ( pnode ) ;
2010-08-29 18:58:15 +02:00
return pnode ;
2014-12-02 17:43:42 +01:00
} else if ( ! proxyConnectionFailed ) {
// If connecting to the node failed, and failure is not caused by a problem connecting to
// the proxy, mark this as an attempt.
addrman . Attempt ( addrConnect ) ;
2010-08-29 18:58:15 +02:00
}
2014-05-24 11:14:52 +02:00
return NULL ;
2010-08-29 18:58:15 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : DumpBanlist ( )
2017-07-12 03:20:12 +02:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SweepBanned ( ) ; // clean unused entries (if bantime has expired)
2017-07-12 03:20:12 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( ! BannedSetIsDirty ( ) )
2017-07-12 03:20:12 +02:00
return ;
int64_t nStart = GetTimeMillis ( ) ;
CBanDB bandb ;
banmap_t banmap ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SetBannedSetDirty ( false ) ;
GetBanned ( banmap ) ;
2017-07-12 03:20:12 +02:00
if ( ! bandb . Write ( banmap ) )
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SetBannedSetDirty ( true ) ;
2017-07-12 03:20:12 +02:00
LogPrint ( " net " , " Flushed %d banned node ips/subnets to banlist.dat %dms \n " ,
banmap . size ( ) , GetTimeMillis ( ) - nStart ) ;
}
2010-08-29 18:58:15 +02:00
void CNode : : CloseSocketDisconnect ( )
{
fDisconnect = true ;
if ( hSocket ! = INVALID_SOCKET )
{
2014-02-27 02:55:04 +01:00
LogPrint ( " net " , " disconnecting peer=%d \n " , id ) ;
2014-07-10 12:13:03 +02:00
CloseSocket ( hSocket ) ;
2010-08-29 18:58:15 +02:00
}
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ClearBanned ( )
2011-09-06 22:09:04 +02:00
{
2017-07-12 03:20:12 +02:00
{
LOCK ( cs_setBanned ) ;
setBanned . clear ( ) ;
setBannedIsDirty = true ;
}
DumpBanlist ( ) ; //store banlist to disk
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( clientInterface )
clientInterface - > BannedListChanged ( ) ;
2011-09-06 22:09:04 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : IsBanned ( CNetAddr ip )
2011-09-06 22:09:04 +02:00
{
bool fResult = false ;
{
2012-04-06 18:39:12 +02:00
LOCK ( cs_setBanned ) ;
2015-06-26 21:38:33 +02:00
for ( banmap_t : : iterator it = setBanned . begin ( ) ; it ! = setBanned . end ( ) ; it + + )
2011-09-06 22:09:04 +02:00
{
2015-05-25 20:03:51 +02:00
CSubNet subNet = ( * it ) . first ;
2015-06-26 21:38:33 +02:00
CBanEntry banEntry = ( * it ) . second ;
2015-05-25 20:03:51 +02:00
2015-06-26 21:38:33 +02:00
if ( subNet . Match ( ip ) & & GetTime ( ) < banEntry . nBanUntil )
2011-09-06 22:09:04 +02:00
fResult = true ;
}
}
return fResult ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : IsBanned ( CSubNet subnet )
2015-05-25 20:03:51 +02:00
{
bool fResult = false ;
2011-09-06 22:09:04 +02:00
{
2013-11-18 01:25:17 +01:00
LOCK ( cs_setBanned ) ;
2015-06-26 21:38:33 +02:00
banmap_t : : iterator i = setBanned . find ( subnet ) ;
2011-09-06 22:09:04 +02:00
if ( i ! = setBanned . end ( ) )
{
2015-06-26 21:38:33 +02:00
CBanEntry banEntry = ( * i ) . second ;
if ( GetTime ( ) < banEntry . nBanUntil )
2011-09-06 22:09:04 +02:00
fResult = true ;
}
}
return fResult ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : Ban ( const CNetAddr & addr , const BanReason & banReason , int64_t bantimeoffset , bool sinceUnixEpoch ) {
2015-06-29 20:37:22 +02:00
CSubNet subNet ( addr ) ;
2015-06-26 21:38:33 +02:00
Ban ( subNet , banReason , bantimeoffset , sinceUnixEpoch ) ;
2015-05-25 20:03:51 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : Ban ( const CSubNet & subNet , const BanReason & banReason , int64_t bantimeoffset , bool sinceUnixEpoch ) {
2015-06-26 21:38:33 +02:00
CBanEntry banEntry ( GetTime ( ) ) ;
banEntry . banReason = banReason ;
if ( bantimeoffset < = 0 )
{
2015-06-27 21:21:41 +02:00
bantimeoffset = GetArg ( " -bantime " , DEFAULT_MISBEHAVING_BANTIME ) ;
2015-06-26 21:38:33 +02:00
sinceUnixEpoch = false ;
}
banEntry . nBanUntil = ( sinceUnixEpoch ? 0 : GetTime ( ) ) + bantimeoffset ;
2017-07-12 03:20:12 +02:00
{
LOCK ( cs_setBanned ) ;
if ( setBanned [ subNet ] . nBanUntil < banEntry . nBanUntil ) {
setBanned [ subNet ] = banEntry ;
setBannedIsDirty = true ;
}
else
return ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( clientInterface )
clientInterface - > BannedListChanged ( ) ;
2017-07-12 03:20:12 +02:00
{
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes ) {
if ( subNet . Match ( ( CNetAddr ) pnode - > addr ) )
pnode - > fDisconnect = true ;
}
}
if ( banReason = = BanReasonManuallyAdded )
DumpBanlist ( ) ; //store banlist to disk immediately if user requested ban
2011-09-06 22:09:04 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : Unban ( const CNetAddr & addr ) {
2015-06-29 20:37:22 +02:00
CSubNet subNet ( addr ) ;
2015-05-25 20:03:51 +02:00
return Unban ( subNet ) ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : Unban ( const CSubNet & subNet ) {
2015-06-19 15:27:37 +02:00
{
2017-07-12 03:20:12 +02:00
LOCK ( cs_setBanned ) ;
if ( ! setBanned . erase ( subNet ) )
return false ;
2015-06-19 15:27:37 +02:00
setBannedIsDirty = true ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( clientInterface )
clientInterface - > BannedListChanged ( ) ;
2017-07-12 03:20:12 +02:00
DumpBanlist ( ) ; //store banlist to disk immediately
return true ;
2015-05-19 10:07:23 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : GetBanned ( banmap_t & banMap )
2015-05-19 10:07:23 +02:00
{
LOCK ( cs_setBanned ) ;
banMap = setBanned ; //create a thread safe copy
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : SetBanned ( const banmap_t & banMap )
2015-06-19 15:27:37 +02:00
{
LOCK ( cs_setBanned ) ;
setBanned = banMap ;
setBannedIsDirty = true ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : SweepBanned ( )
2015-06-19 15:27:37 +02:00
{
int64_t now = GetTime ( ) ;
LOCK ( cs_setBanned ) ;
2015-06-26 21:38:33 +02:00
banmap_t : : iterator it = setBanned . begin ( ) ;
2015-06-19 15:27:37 +02:00
while ( it ! = setBanned . end ( ) )
{
2017-07-04 23:39:05 +02:00
CSubNet subNet = ( * it ) . first ;
2015-06-26 21:38:33 +02:00
CBanEntry banEntry = ( * it ) . second ;
if ( now > banEntry . nBanUntil )
2015-06-19 15:27:37 +02:00
{
setBanned . erase ( it + + ) ;
setBannedIsDirty = true ;
2017-07-04 23:39:05 +02:00
LogPrint ( " net " , " %s: Removed banned node ip/subnet from banlist.dat: %s \n " , __func__ , subNet . ToString ( ) ) ;
2015-06-19 15:27:37 +02:00
}
else
+ + it ;
}
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : BannedSetIsDirty ( )
2015-06-19 15:27:37 +02:00
{
LOCK ( cs_setBanned ) ;
return setBannedIsDirty ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : SetBannedSetDirty ( bool dirty )
2015-06-19 15:27:37 +02:00
{
LOCK ( cs_setBanned ) ; //reuse setBanned lock for the isDirty flag
setBannedIsDirty = dirty ;
2011-09-06 22:09:04 +02:00
}
2014-06-21 13:34:36 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : IsWhitelistedRange ( const CNetAddr & addr ) {
2014-06-21 13:34:36 +02:00
LOCK ( cs_vWhitelistedRange ) ;
BOOST_FOREACH ( const CSubNet & subnet , vWhitelistedRange ) {
if ( subnet . Match ( addr ) )
return true ;
}
return false ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : AddWhitelistedRange ( const CSubNet & subnet ) {
2014-06-21 13:34:36 +02:00
LOCK ( cs_vWhitelistedRange ) ;
vWhitelistedRange . push_back ( subnet ) ;
}
2012-06-29 23:24:53 +02:00
# undef X
# define X(name) stats.name = name
void CNode : : copyStats ( CNodeStats & stats )
{
2013-11-18 01:25:17 +01:00
stats . nodeid = this - > GetId ( ) ;
2012-06-29 23:24:53 +02:00
X ( nServices ) ;
2017-09-09 09:04:02 +02:00
X ( addr ) ;
2015-11-21 00:51:44 +01:00
X ( fRelayTxes ) ;
2012-06-29 23:24:53 +02:00
X ( nLastSend ) ;
X ( nLastRecv ) ;
X ( nTimeConnected ) ;
2014-12-15 11:06:15 +01:00
X ( nTimeOffset ) ;
2012-06-29 23:24:53 +02:00
X ( addrName ) ;
X ( nVersion ) ;
2013-11-26 12:52:21 +01:00
X ( cleanSubVer ) ;
2012-06-29 23:24:53 +02:00
X ( fInbound ) ;
X ( nStartingHeight ) ;
2013-04-07 19:31:13 +02:00
X ( nSendBytes ) ;
2017-06-29 03:51:10 +02:00
X ( mapSendBytesPerMsgCmd ) ;
2013-04-07 19:31:13 +02:00
X ( nRecvBytes ) ;
2017-06-29 03:51:10 +02:00
X ( mapRecvBytesPerMsgCmd ) ;
2014-06-21 13:34:36 +02:00
X ( fWhitelisted ) ;
2013-11-15 12:24:34 +01:00
2013-08-22 13:34:33 +02:00
// It is common for nodes with good ping times to suddenly become lagged,
// due to a new block arriving or other large transfer.
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
// since pingtime does not update until the ping is complete, which might take a while.
// So, if a ping is taking an unusually long time in flight,
// the caller can immediately detect that this is happening.
2013-04-13 07:13:08 +02:00
int64_t nPingUsecWait = 0 ;
2013-08-22 13:34:33 +02:00
if ( ( 0 ! = nPingNonceSent ) & & ( 0 ! = nPingUsecStart ) ) {
nPingUsecWait = GetTimeMicros ( ) - nPingUsecStart ;
}
2013-11-15 12:24:34 +01:00
2015-03-18 00:06:58 +01:00
// Raw ping time is in microseconds, but show it to user as whole seconds (Dash users should be well used to small numbers with many decimal places by now :)
2013-08-22 13:34:33 +02:00
stats . dPingTime = ( ( ( double ) nPingUsecTime ) / 1e6 ) ;
2017-09-09 09:04:02 +02:00
stats . dMinPing = ( ( ( double ) nMinPingUsecTime ) / 1e6 ) ;
2013-08-22 13:34:33 +02:00
stats . dPingWait = ( ( ( double ) nPingUsecWait ) / 1e6 ) ;
2013-11-15 12:24:34 +01:00
2013-08-22 07:50:19 +02:00
// Leave string empty if addrLocal invalid (not filled in yet)
stats . addrLocal = addrLocal . IsValid ( ) ? addrLocal . ToString ( ) : " " ;
2012-06-29 23:24:53 +02:00
}
# undef X
2010-08-29 18:58:15 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CNode : : ReceiveMsgBytes ( const char * pch , unsigned int nBytes , bool & complete )
2012-11-16 01:41:12 +01:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
complete = false ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
int64_t nTimeMicros = GetTimeMicros ( ) ;
nLastRecv = nTimeMicros / 1000000 ;
nRecvBytes + = nBytes ;
2012-11-16 01:41:12 +01:00
while ( nBytes > 0 ) {
// get current incomplete message, or create a new one
2013-03-01 01:41:28 +01:00
if ( vRecvMsg . empty ( ) | |
2012-11-16 01:41:12 +01:00
vRecvMsg . back ( ) . complete ( ) )
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
vRecvMsg . push_back ( CNetMessage ( Params ( ) . MessageStart ( ) , SER_NETWORK , INIT_PROTO_VERSION ) ) ;
2012-11-16 01:41:12 +01:00
CNetMessage & msg = vRecvMsg . back ( ) ;
// absorb network data
int handled ;
if ( ! msg . in_data )
handled = msg . readHeader ( pch , nBytes ) ;
else
handled = msg . readData ( pch , nBytes ) ;
if ( handled < 0 )
return false ;
2015-03-05 13:01:22 +01:00
if ( msg . in_data & & msg . hdr . nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH ) {
2015-08-29 18:40:13 +02:00
LogPrint ( " net " , " Oversized message from peer=%i, disconnecting \n " , GetId ( ) ) ;
2015-03-05 13:01:22 +01:00
return false ;
}
2012-11-16 01:41:12 +01:00
pch + = handled ;
nBytes - = handled ;
2014-07-06 16:06:46 +02:00
2015-04-05 11:35:37 +02:00
if ( msg . complete ( ) ) {
2017-06-29 03:51:10 +02:00
//store received bytes per message command
//to prevent a memory DOS, only allow valid commands
mapMsgCmdSize : : iterator i = mapRecvBytesPerMsgCmd . find ( msg . hdr . pchCommand ) ;
if ( i = = mapRecvBytesPerMsgCmd . end ( ) )
i = mapRecvBytesPerMsgCmd . find ( NET_MESSAGE_COMMAND_OTHER ) ;
assert ( i ! = mapRecvBytesPerMsgCmd . end ( ) ) ;
i - > second + = msg . hdr . nMessageSize + CMessageHeader : : HEADER_SIZE ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
msg . nTime = nTimeMicros ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
complete = true ;
2015-04-05 11:35:37 +02:00
}
2012-11-16 01:41:12 +01:00
}
return true ;
}
2017-08-17 20:37:22 +02:00
void CNode : : SetSendVersion ( int nVersionIn )
{
// Send version may only be changed in the version message, and
// only one version message is allowed per session. We can therefore
// treat this value as const and even atomic as long as it's only used
// once a version message has been successfully processed. Any attempt to
// set this twice is an error.
if ( nSendVersion ! = 0 ) {
error ( " Send version already set for node: %i. Refusing to change from %i to %i " , id , nSendVersion , nVersionIn ) ;
} else {
nSendVersion = nVersionIn ;
}
}
int CNode : : GetSendVersion ( ) const
{
// The send version should always be explicitly set to
// INIT_PROTO_VERSION rather than using this value until SetSendVersion
// has been called.
if ( nSendVersion = = 0 ) {
error ( " Requesting unset send version for node: %i. Using %i " , id , INIT_PROTO_VERSION ) ;
return INIT_PROTO_VERSION ;
}
return nSendVersion ;
}
2012-11-16 01:41:12 +01:00
int CNetMessage : : readHeader ( const char * pch , unsigned int nBytes )
{
// copy data to temporary parsing buffer
unsigned int nRemaining = 24 - nHdrPos ;
unsigned int nCopy = std : : min ( nRemaining , nBytes ) ;
memcpy ( & hdrbuf [ nHdrPos ] , pch , nCopy ) ;
nHdrPos + = nCopy ;
// if header incomplete, exit
if ( nHdrPos < 24 )
return nCopy ;
// deserialize to CMessageHeader
try {
hdrbuf > > hdr ;
}
2014-12-07 13:29:06 +01:00
catch ( const std : : exception & ) {
2012-11-16 01:41:12 +01:00
return - 1 ;
}
// reject messages larger than MAX_SIZE
if ( hdr . nMessageSize > MAX_SIZE )
return - 1 ;
// switch state to reading message data
in_data = true ;
return nCopy ;
}
int CNetMessage : : readData ( const char * pch , unsigned int nBytes )
{
unsigned int nRemaining = hdr . nMessageSize - nDataPos ;
unsigned int nCopy = std : : min ( nRemaining , nBytes ) ;
2014-06-21 17:00:38 +02:00
if ( vRecv . size ( ) < nDataPos + nCopy ) {
// Allocate up to 256 KiB ahead, but never more than the total message size.
vRecv . resize ( std : : min ( hdr . nMessageSize , nDataPos + nCopy + 256 * 1024 ) ) ;
}
2012-11-16 01:41:12 +01:00
memcpy ( & vRecv [ nDataPos ] , pch , nCopy ) ;
nDataPos + = nCopy ;
return nCopy ;
}
2010-08-29 18:58:15 +02:00
2012-11-16 00:04:52 +01:00
// requires LOCK(cs_vSend)
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
size_t CConnman : : SocketSendData ( CNode * pnode )
2012-11-16 00:04:52 +01:00
{
2013-03-24 16:52:24 +01:00
std : : deque < CSerializeData > : : iterator it = pnode - > vSendMsg . begin ( ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
size_t nSentSize = 0 ;
2013-03-24 16:52:24 +01:00
while ( it ! = pnode - > vSendMsg . end ( ) ) {
const CSerializeData & data = * it ;
assert ( data . size ( ) > pnode - > nSendOffset ) ;
int nBytes = send ( pnode - > hSocket , & data [ pnode - > nSendOffset ] , data . size ( ) - pnode - > nSendOffset , MSG_NOSIGNAL | MSG_DONTWAIT ) ;
if ( nBytes > 0 ) {
2017-08-24 01:38:29 +02:00
pnode - > nLastSend = GetSystemTimeInSeconds ( ) ;
2013-04-07 19:31:13 +02:00
pnode - > nSendBytes + = nBytes ;
2013-03-24 16:52:24 +01:00
pnode - > nSendOffset + = nBytes ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
nSentSize + = nBytes ;
2013-03-24 16:52:24 +01:00
if ( pnode - > nSendOffset = = data . size ( ) ) {
pnode - > nSendOffset = 0 ;
pnode - > nSendSize - = data . size ( ) ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
pnode - > fPauseSend = pnode - > nSendSize > nSendBufferMaxSize ;
2013-03-24 16:52:24 +01:00
it + + ;
} else {
// could not send full message; stop sending more
break ;
}
} else {
if ( nBytes < 0 ) {
// error
int nErr = WSAGetLastError ( ) ;
if ( nErr ! = WSAEWOULDBLOCK & & nErr ! = WSAEMSGSIZE & & nErr ! = WSAEINTR & & nErr ! = WSAEINPROGRESS )
{
2014-05-08 14:15:19 +02:00
LogPrintf ( " socket send error %s \n " , NetworkErrorString ( nErr ) ) ;
2017-01-19 20:02:57 +01:00
pnode - > fDisconnect = true ;
2013-03-24 16:52:24 +01:00
}
}
// couldn't send anything at all
break ;
2012-11-16 00:04:52 +01:00
}
}
2013-03-24 16:52:24 +01:00
if ( it = = pnode - > vSendMsg . end ( ) ) {
assert ( pnode - > nSendOffset = = 0 ) ;
assert ( pnode - > nSendSize = = 0 ) ;
}
pnode - > vSendMsg . erase ( pnode - > vSendMsg . begin ( ) , it ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
return nSentSize ;
2012-11-16 00:04:52 +01:00
}
2010-08-29 18:58:15 +02:00
2017-03-13 07:29:16 +01:00
struct NodeEvictionCandidate
{
NodeEvictionCandidate ( CNode * pnode )
: id ( pnode - > id ) ,
nTimeConnected ( pnode - > nTimeConnected ) ,
nMinPingUsecTime ( pnode - > nMinPingUsecTime ) ,
2017-07-12 13:13:38 +02:00
nLastBlockTime ( pnode - > nLastBlockTime ) ,
nLastTXTime ( pnode - > nLastTXTime ) ,
fNetworkNode ( pnode - > fNetworkNode ) ,
fRelayTxes ( pnode - > fRelayTxes ) ,
fBloomFilter ( pnode - > pfilter ! = NULL ) ,
2017-03-13 07:29:16 +01:00
vchNetGroup ( pnode - > addr . GetGroup ( ) ) ,
vchKeyedNetGroup ( pnode - > vchKeyedNetGroup )
{ }
int id ;
int64_t nTimeConnected ;
int64_t nMinPingUsecTime ;
2017-07-12 13:13:38 +02:00
int64_t nLastBlockTime ;
int64_t nLastTXTime ;
bool fNetworkNode ;
bool fRelayTxes ;
bool fBloomFilter ;
2017-03-13 07:29:16 +01:00
std : : vector < unsigned char > vchNetGroup ;
std : : vector < unsigned char > vchKeyedNetGroup ;
2015-08-21 02:29:04 +02:00
} ;
2017-03-13 07:29:16 +01:00
static bool ReverseCompareNodeMinPingTime ( const NodeEvictionCandidate & a , const NodeEvictionCandidate & b )
2015-08-13 11:58:58 +02:00
{
2017-03-13 07:29:16 +01:00
return a . nMinPingUsecTime > b . nMinPingUsecTime ;
2015-08-13 11:58:58 +02:00
}
2017-03-13 07:29:16 +01:00
static bool ReverseCompareNodeTimeConnected ( const NodeEvictionCandidate & a , const NodeEvictionCandidate & b )
2015-08-13 11:58:58 +02:00
{
2017-03-13 07:29:16 +01:00
return a . nTimeConnected > b . nTimeConnected ;
2015-08-13 11:58:58 +02:00
}
2017-03-13 07:29:16 +01:00
static bool CompareKeyedNetGroup ( const NodeEvictionCandidate & a , const NodeEvictionCandidate & b )
2015-08-13 11:58:58 +02:00
{
2017-03-13 07:29:16 +01:00
return a . vchKeyedNetGroup < b . vchKeyedNetGroup ;
}
2015-08-13 11:58:58 +02:00
2017-07-12 13:13:38 +02:00
static bool CompareNodeBlockTime ( const NodeEvictionCandidate & a , const NodeEvictionCandidate & b )
{
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
if ( a . nLastBlockTime ! = b . nLastBlockTime ) return a . nLastBlockTime < b . nLastBlockTime ;
if ( a . fNetworkNode ! = b . fNetworkNode ) return b . fNetworkNode ;
return a . nTimeConnected > b . nTimeConnected ;
}
static bool CompareNodeTXTime ( const NodeEvictionCandidate & a , const NodeEvictionCandidate & b )
{
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
if ( a . nLastTXTime ! = b . nLastTXTime ) return a . nLastTXTime < b . nLastTXTime ;
if ( a . fRelayTxes ! = b . fRelayTxes ) return b . fRelayTxes ;
if ( a . fBloomFilter ! = b . fBloomFilter ) return a . fBloomFilter ;
return a . nTimeConnected > b . nTimeConnected ;
}
/** Try to find a connection to evict when the node is full.
* Extreme care must be taken to avoid opening the node to attacker
* triggered network partitioning .
* The strategy used here is to protect a small number of peers
* for each of several distinct characteristics which are difficult
* to forge . In order to partition a node the attacker must be
* simultaneously better at all of them than honest peers .
*/
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : AttemptToEvictConnection ( )
{
2017-03-13 07:29:16 +01:00
std : : vector < NodeEvictionCandidate > vEvictionCandidates ;
2015-08-13 11:58:58 +02:00
{
LOCK ( cs_vNodes ) ;
2017-03-13 07:29:16 +01:00
for ( size_t i = 0 ; i < vNodes . size ( ) ; + + i ) {
CNode * pnode = vNodes [ i ] ;
if ( pnode - > fWhitelisted )
2015-08-13 11:58:58 +02:00
continue ;
2017-03-13 07:29:16 +01:00
if ( ! pnode - > fInbound )
2015-08-13 11:58:58 +02:00
continue ;
2017-03-13 07:29:16 +01:00
if ( pnode - > fDisconnect )
2015-08-13 11:58:58 +02:00
continue ;
2017-03-13 07:29:16 +01:00
vEvictionCandidates . push_back ( NodeEvictionCandidate ( pnode ) ) ;
2015-08-13 11:58:58 +02:00
}
}
2015-08-23 00:15:39 +02:00
if ( vEvictionCandidates . empty ( ) ) return false ;
2015-08-13 11:58:58 +02:00
// Protect connections with certain characteristics
2015-08-21 01:47:49 +02:00
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected.
2017-03-13 07:29:16 +01:00
std : : sort ( vEvictionCandidates . begin ( ) , vEvictionCandidates . end ( ) , CompareKeyedNetGroup ) ;
2015-08-13 11:58:58 +02:00
vEvictionCandidates . erase ( vEvictionCandidates . end ( ) - std : : min ( 4 , static_cast < int > ( vEvictionCandidates . size ( ) ) ) , vEvictionCandidates . end ( ) ) ;
2015-08-23 00:15:39 +02:00
if ( vEvictionCandidates . empty ( ) ) return false ;
2015-08-21 01:47:49 +02:00
// Protect the 8 nodes with the best ping times.
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
2015-08-13 11:58:58 +02:00
std : : sort ( vEvictionCandidates . begin ( ) , vEvictionCandidates . end ( ) , ReverseCompareNodeMinPingTime ) ;
vEvictionCandidates . erase ( vEvictionCandidates . end ( ) - std : : min ( 8 , static_cast < int > ( vEvictionCandidates . size ( ) ) ) , vEvictionCandidates . end ( ) ) ;
2015-08-23 00:15:39 +02:00
if ( vEvictionCandidates . empty ( ) ) return false ;
2017-07-12 13:13:38 +02:00
// Protect 4 nodes that most recently sent us transactions.
// An attacker cannot manipulate this metric without performing useful work.
std : : sort ( vEvictionCandidates . begin ( ) , vEvictionCandidates . end ( ) , CompareNodeTXTime ) ;
vEvictionCandidates . erase ( vEvictionCandidates . end ( ) - std : : min ( 4 , static_cast < int > ( vEvictionCandidates . size ( ) ) ) , vEvictionCandidates . end ( ) ) ;
if ( vEvictionCandidates . empty ( ) ) return false ;
// Protect 4 nodes that most recently sent us blocks.
// An attacker cannot manipulate this metric without performing useful work.
std : : sort ( vEvictionCandidates . begin ( ) , vEvictionCandidates . end ( ) , CompareNodeBlockTime ) ;
vEvictionCandidates . erase ( vEvictionCandidates . end ( ) - std : : min ( 4 , static_cast < int > ( vEvictionCandidates . size ( ) ) ) , vEvictionCandidates . end ( ) ) ;
if ( vEvictionCandidates . empty ( ) ) return false ;
2015-08-26 01:31:13 +02:00
// Protect the half of the remaining nodes which have been connected the longest.
2015-08-21 01:47:49 +02:00
// This replicates the existing implicit behavior.
2015-08-13 11:58:58 +02:00
std : : sort ( vEvictionCandidates . begin ( ) , vEvictionCandidates . end ( ) , ReverseCompareNodeTimeConnected ) ;
2015-08-23 00:15:39 +02:00
vEvictionCandidates . erase ( vEvictionCandidates . end ( ) - static_cast < int > ( vEvictionCandidates . size ( ) / 2 ) , vEvictionCandidates . end ( ) ) ;
2015-08-13 11:58:58 +02:00
2015-08-23 00:15:39 +02:00
if ( vEvictionCandidates . empty ( ) ) return false ;
2015-08-13 11:58:58 +02:00
2015-11-23 04:48:54 +01:00
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
2015-08-26 02:06:15 +02:00
std : : vector < unsigned char > naMostConnections ;
2015-08-13 11:58:58 +02:00
unsigned int nMostConnections = 0 ;
2015-11-23 04:48:54 +01:00
int64_t nMostConnectionsTime = 0 ;
2017-03-13 07:29:16 +01:00
std : : map < std : : vector < unsigned char > , std : : vector < NodeEvictionCandidate > > mapAddrCounts ;
for ( size_t i = 0 ; i < vEvictionCandidates . size ( ) ; + + i ) {
const NodeEvictionCandidate & candidate = vEvictionCandidates [ i ] ;
mapAddrCounts [ candidate . vchNetGroup ] . push_back ( candidate ) ;
int64_t grouptime = mapAddrCounts [ candidate . vchNetGroup ] [ 0 ] . nTimeConnected ;
size_t groupsize = mapAddrCounts [ candidate . vchNetGroup ] . size ( ) ;
2015-08-13 11:58:58 +02:00
2015-11-23 04:48:54 +01:00
if ( groupsize > nMostConnections | | ( groupsize = = nMostConnections & & grouptime > nMostConnectionsTime ) ) {
nMostConnections = groupsize ;
nMostConnectionsTime = grouptime ;
2017-03-13 07:29:16 +01:00
naMostConnections = candidate . vchNetGroup ;
2015-08-13 11:58:58 +02:00
}
}
2015-08-26 02:06:15 +02:00
// Reduce to the network group with the most connections
2017-03-13 07:29:16 +01:00
std : : vector < NodeEvictionCandidate > vEvictionNodes = mapAddrCounts [ naMostConnections ] ;
if ( vEvictionNodes . empty ( ) ) {
return false ;
}
2015-08-13 11:58:58 +02:00
2015-11-23 04:48:54 +01:00
// Disconnect from the network group with the most connections
2017-03-13 07:29:16 +01:00
int nEvictionId = vEvictionNodes [ 0 ] . id ;
{
LOCK ( cs_vNodes ) ;
for ( size_t i = 0 ; i < vNodes . size ( ) ; + + i ) {
CNode * pnode = vNodes [ i ] ;
if ( pnode - > id = = nEvictionId ) {
pnode - > fDisconnect = true ;
return true ;
}
}
}
2015-08-13 11:58:58 +02:00
2017-03-13 07:29:16 +01:00
return false ;
2015-08-13 11:58:58 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : AcceptConnection ( const ListenSocket & hListenSocket ) {
2015-08-13 11:00:10 +02:00
struct sockaddr_storage sockaddr ;
socklen_t len = sizeof ( sockaddr ) ;
SOCKET hSocket = accept ( hListenSocket . socket , ( struct sockaddr * ) & sockaddr , & len ) ;
CAddress addr ;
int nInbound = 0 ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
int nMaxInbound = nMaxConnections - ( nMaxOutbound + nMaxFeeler ) ;
2015-08-13 11:00:10 +02:00
if ( hSocket ! = INVALID_SOCKET )
if ( ! addr . SetSockAddr ( ( const struct sockaddr * ) & sockaddr ) )
LogPrintf ( " Warning: Unknown socket family \n " ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool whitelisted = hListenSocket . whitelisted | | IsWhitelistedRange ( addr ) ;
2015-08-13 11:00:10 +02:00
{
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( pnode - > fInbound )
nInbound + + ;
}
if ( hSocket = = INVALID_SOCKET )
{
int nErr = WSAGetLastError ( ) ;
if ( nErr ! = WSAEWOULDBLOCK )
LogPrintf ( " socket error accept failed: %s \n " , NetworkErrorString ( nErr ) ) ;
2015-08-13 11:16:46 +02:00
return ;
2015-08-13 11:00:10 +02:00
}
2015-08-13 11:16:46 +02:00
2017-09-11 15:38:14 +02:00
if ( ! fNetworkActive ) {
LogPrintf ( " connection from %s dropped: not accepting new connections \n " , addr . ToString ( ) ) ;
CloseSocket ( hSocket ) ;
return ;
}
2015-08-13 11:16:46 +02:00
if ( ! IsSelectableSocket ( hSocket ) )
2015-08-13 11:00:10 +02:00
{
LogPrintf ( " connection from %s dropped: non-selectable socket \n " , addr . ToString ( ) ) ;
CloseSocket ( hSocket ) ;
2015-08-13 11:16:46 +02:00
return ;
2015-08-13 11:00:10 +02:00
}
2015-08-13 11:16:46 +02:00
2015-10-22 01:52:29 +02:00
// According to the internet TCP_NODELAY is not carried into accepted sockets
// on all platforms. Set it again here just to be sure.
int set = 1 ;
# ifdef WIN32
setsockopt ( hSocket , IPPROTO_TCP , TCP_NODELAY , ( const char * ) & set , sizeof ( int ) ) ;
# else
setsockopt ( hSocket , IPPROTO_TCP , TCP_NODELAY , ( void * ) & set , sizeof ( int ) ) ;
# endif
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( IsBanned ( addr ) & & ! whitelisted )
2015-08-13 11:00:10 +02:00
{
2015-08-13 11:19:17 +02:00
LogPrintf ( " connection from %s dropped (banned) \n " , addr . ToString ( ) ) ;
2015-08-13 11:00:10 +02:00
CloseSocket ( hSocket ) ;
2015-08-13 11:16:46 +02:00
return ;
2015-08-13 11:00:10 +02:00
}
2015-08-13 11:16:46 +02:00
2015-08-13 11:19:17 +02:00
if ( nInbound > = nMaxInbound )
2015-08-13 11:00:10 +02:00
{
2017-07-12 13:13:38 +02:00
if ( ! AttemptToEvictConnection ( ) ) {
2015-08-13 11:58:58 +02:00
// No connection to evict, disconnect the new connection
LogPrint ( " net " , " failed to find an eviction candidate - connection dropped (full) \n " ) ;
CloseSocket ( hSocket ) ;
return ;
}
2015-08-13 11:00:10 +02:00
}
2017-02-16 16:40:40 +01:00
// don't accept incoming connections until fully synced
if ( fMasterNode & & ! masternodeSync . IsSynced ( ) ) {
LogPrintf ( " AcceptConnection -- masternode is not synced yet, skipping inbound connection attempt \n " ) ;
CloseSocket ( hSocket ) ;
return ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * pnode = new CNode ( GetNewNodeId ( ) , nLocalServices , GetBestHeight ( ) , hSocket , addr , " " , true ) ;
2015-08-13 11:16:46 +02:00
pnode - > fWhitelisted = whitelisted ;
2017-07-27 16:28:05 +02:00
GetNodeSignals ( ) . InitializeNode ( pnode , * this ) ;
2015-08-13 11:00:10 +02:00
2015-08-13 11:16:46 +02:00
LogPrint ( " net " , " connection from %s accepted \n " , addr . ToString ( ) ) ;
{
LOCK ( cs_vNodes ) ;
vNodes . push_back ( pnode ) ;
2015-08-13 11:00:10 +02:00
}
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ThreadSocketHandler ( )
2010-08-29 18:58:15 +02:00
{
2012-04-22 20:01:25 +02:00
unsigned int nPrevNodeCount = 0 ;
2017-08-09 18:06:31 +02:00
while ( ! interruptNet )
2010-08-29 18:58:15 +02:00
{
//
// Disconnect nodes
//
{
2012-04-06 18:39:12 +02:00
LOCK ( cs_vNodes ) ;
2010-08-29 18:58:15 +02:00
// Disconnect unused nodes
2017-07-12 03:20:12 +02:00
std : : vector < CNode * > vNodesCopy = vNodes ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CNode * pnode , vNodesCopy )
2010-08-29 18:58:15 +02:00
{
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
if ( pnode - > fDisconnect )
2010-08-29 18:58:15 +02:00
{
2017-02-05 17:45:36 +01:00
LogPrintf ( " ThreadSocketHandler -- removing node: peer=%d addr=%s nRefCount=%d fNetworkNode=%d fInbound=%d fMasternode=%d \n " ,
pnode - > id , pnode - > addr . ToString ( ) , pnode - > GetRefCount ( ) , pnode - > fNetworkNode , pnode - > fInbound , pnode - > fMasternode ) ;
2010-08-29 18:58:15 +02:00
// remove from vNodes
vNodes . erase ( remove ( vNodes . begin ( ) , vNodes . end ( ) , pnode ) , vNodes . end ( ) ) ;
2012-05-10 18:44:07 +02:00
// release outbound grant (if any)
pnode - > grantOutbound . Release ( ) ;
2017-01-21 20:03:55 +01:00
pnode - > grantMasternodeOutbound . Release ( ) ;
2012-04-04 16:01:57 +02:00
2010-08-29 18:58:15 +02:00
// close socket and cleanup
pnode - > CloseSocketDisconnect ( ) ;
// hold in disconnected pool until all refs are released
if ( pnode - > fNetworkNode | | pnode - > fInbound )
pnode - > Release ( ) ;
2016-07-30 13:05:41 +02:00
if ( pnode - > fMasternode )
pnode - > Release ( ) ;
2010-08-29 18:58:15 +02:00
vNodesDisconnected . push_back ( pnode ) ;
}
}
2013-07-25 02:25:25 +02:00
}
{
2010-08-29 18:58:15 +02:00
// Delete disconnected nodes
2017-07-12 03:20:12 +02:00
std : : list < CNode * > vNodesDisconnectedCopy = vNodesDisconnected ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CNode * pnode , vNodesDisconnectedCopy )
2010-08-29 18:58:15 +02:00
{
// wait until threads are done using it
if ( pnode - > GetRefCount ( ) < = 0 )
{
bool fDelete = false ;
2012-04-06 18:39:12 +02:00
{
TRY_LOCK ( pnode - > cs_vSend , lockSend ) ;
if ( lockSend )
{
2012-10-03 19:03:43 +02:00
TRY_LOCK ( pnode - > cs_inventory , lockInv ) ;
if ( lockInv )
fDelete = true ;
2012-04-06 18:39:12 +02:00
}
}
2010-08-29 18:58:15 +02:00
if ( fDelete )
{
vNodesDisconnected . remove ( pnode ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
DeleteNode ( pnode ) ;
2010-08-29 18:58:15 +02:00
}
}
}
}
2013-08-22 18:09:32 +02:00
if ( vNodes . size ( ) ! = nPrevNodeCount ) {
2010-08-29 18:58:15 +02:00
nPrevNodeCount = vNodes . size ( ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( clientInterface )
clientInterface - > NotifyNumConnectionsChanged ( nPrevNodeCount ) ;
2010-08-29 18:58:15 +02:00
}
//
// Find which sockets have data to receive
//
struct timeval timeout ;
timeout . tv_sec = 0 ;
timeout . tv_usec = 50000 ; // frequency to poll pnode->vSend
fd_set fdsetRecv ;
fd_set fdsetSend ;
fd_set fdsetError ;
FD_ZERO ( & fdsetRecv ) ;
FD_ZERO ( & fdsetSend ) ;
FD_ZERO ( & fdsetError ) ;
SOCKET hSocketMax = 0 ;
2012-09-05 22:01:28 +02:00
bool have_fds = false ;
2010-12-22 14:08:00 +01:00
2014-06-21 13:34:36 +02:00
BOOST_FOREACH ( const ListenSocket & hListenSocket , vhListenSocket ) {
FD_SET ( hListenSocket . socket , & fdsetRecv ) ;
2017-07-12 03:20:12 +02:00
hSocketMax = std : : max ( hSocketMax , hListenSocket . socket ) ;
2012-09-05 22:01:28 +02:00
have_fds = true ;
2012-05-11 15:28:59 +02:00
}
2014-06-24 09:09:45 +02:00
2010-08-29 18:58:15 +02:00
{
2012-04-06 18:39:12 +02:00
LOCK ( cs_vNodes ) ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CNode * pnode , vNodes )
2010-08-29 18:58:15 +02:00
{
2011-06-24 20:09:24 +02:00
if ( pnode - > hSocket = = INVALID_SOCKET )
2010-08-29 18:58:15 +02:00
continue ;
2013-04-30 18:42:01 +02:00
FD_SET ( pnode - > hSocket , & fdsetError ) ;
2017-07-12 03:20:12 +02:00
hSocketMax = std : : max ( hSocketMax , pnode - > hSocket ) ;
2013-04-30 18:42:01 +02:00
have_fds = true ;
// Implement the following logic:
// * If there is data to send, select() for sending data. As this only
// happens when optimistic write failed, we choose to first drain the
// write buffer in this case before receiving more. This avoids
// needlessly queueing received data, if the remote peer is not themselves
// receiving data. This means properly utilizing TCP flow control signalling.
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
// * Otherwise, if there is space left in the receive buffer, select() for
// receiving data.
// * Hand off all complete messages to the processor, to be handled without
// blocking here.
2012-04-06 18:39:12 +02:00
{
TRY_LOCK ( pnode - > cs_vSend , lockSend ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( lockSend ) {
if ( ! pnode - > vSendMsg . empty ( ) ) {
FD_SET ( pnode - > hSocket , & fdsetSend ) ;
continue ;
}
2012-11-16 00:20:26 +01:00
}
2012-04-06 18:39:12 +02:00
}
2013-04-30 18:42:01 +02:00
{
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
if ( ! pnode - > fPauseRecv )
2013-04-30 18:42:01 +02:00
FD_SET ( pnode - > hSocket , & fdsetRecv ) ;
}
2010-08-29 18:58:15 +02:00
}
}
2012-09-05 22:01:28 +02:00
int nSelect = select ( have_fds ? hSocketMax + 1 : 0 ,
& fdsetRecv , & fdsetSend , & fdsetError , & timeout ) ;
2017-08-09 18:06:31 +02:00
if ( interruptNet )
return ;
2013-03-07 04:31:26 +01:00
2010-08-29 18:58:15 +02:00
if ( nSelect = = SOCKET_ERROR )
{
2012-09-05 22:01:28 +02:00
if ( have_fds )
2011-06-07 00:48:37 +02:00
{
2012-09-05 22:01:28 +02:00
int nErr = WSAGetLastError ( ) ;
2014-05-08 14:15:19 +02:00
LogPrintf ( " socket select error %s \n " , NetworkErrorString ( nErr ) ) ;
2012-04-15 22:52:09 +02:00
for ( unsigned int i = 0 ; i < = hSocketMax ; i + + )
2011-06-07 00:48:37 +02:00
FD_SET ( i , & fdsetRecv ) ;
}
2010-08-29 18:58:15 +02:00
FD_ZERO ( & fdsetSend ) ;
FD_ZERO ( & fdsetError ) ;
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( timeout . tv_usec / 1000 ) ) )
return ;
2010-08-29 18:58:15 +02:00
}
//
// Accept new connections
//
2014-06-21 13:34:36 +02:00
BOOST_FOREACH ( const ListenSocket & hListenSocket , vhListenSocket )
2010-08-29 18:58:15 +02:00
{
2014-06-21 13:34:36 +02:00
if ( hListenSocket . socket ! = INVALID_SOCKET & & FD_ISSET ( hListenSocket . socket , & fdsetRecv ) )
2012-04-06 18:39:12 +02:00
{
2015-08-13 11:00:10 +02:00
AcceptConnection ( hListenSocket ) ;
2010-08-29 18:58:15 +02:00
}
}
//
// Service each socket
//
2017-07-12 03:20:12 +02:00
std : : vector < CNode * > vNodesCopy = CopyNodeVector ( ) ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CNode * pnode , vNodesCopy )
2010-08-29 18:58:15 +02:00
{
2017-08-09 18:06:31 +02:00
if ( interruptNet )
return ;
2010-08-29 18:58:15 +02:00
//
// Receive
//
if ( pnode - > hSocket = = INVALID_SOCKET )
continue ;
if ( FD_ISSET ( pnode - > hSocket , & fdsetRecv ) | | FD_ISSET ( pnode - > hSocket , & fdsetError ) )
{
{
2013-04-30 18:42:01 +02:00
{
2011-02-16 19:18:11 +01:00
// typical socket buffer is 8K-64K
char pchBuf [ 0x10000 ] ;
int nBytes = recv ( pnode - > hSocket , pchBuf , sizeof ( pchBuf ) , MSG_DONTWAIT ) ;
if ( nBytes > 0 )
2010-08-29 18:58:15 +02:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool notify = false ;
if ( ! pnode - > ReceiveMsgBytes ( pchBuf , nBytes , notify ) )
2012-11-16 01:41:12 +01:00
pnode - > CloseSocketDisconnect ( ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
RecordBytesRecv ( nBytes ) ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
if ( notify ) {
size_t nSizeAdded = 0 ;
auto it ( pnode - > vRecvMsg . begin ( ) ) ;
for ( ; it ! = pnode - > vRecvMsg . end ( ) ; + + it ) {
if ( ! it - > complete ( ) )
break ;
nSizeAdded + = it - > vRecv . size ( ) + CMessageHeader : : HEADER_SIZE ;
}
{
LOCK ( pnode - > cs_vProcessMsg ) ;
pnode - > vProcessMsg . splice ( pnode - > vProcessMsg . end ( ) , pnode - > vRecvMsg , pnode - > vRecvMsg . begin ( ) , it ) ;
pnode - > nProcessQueueSize + = nSizeAdded ;
pnode - > fPauseRecv = pnode - > nProcessQueueSize > nReceiveFloodSize ;
}
WakeMessageHandler ( ) ;
}
2011-02-16 19:18:11 +01:00
}
else if ( nBytes = = 0 )
{
// socket closed gracefully
2010-08-29 18:58:15 +02:00
if ( ! pnode - > fDisconnect )
2013-09-18 12:38:08 +02:00
LogPrint ( " net " , " socket closed \n " ) ;
2010-08-29 18:58:15 +02:00
pnode - > CloseSocketDisconnect ( ) ;
}
2011-02-16 19:18:11 +01:00
else if ( nBytes < 0 )
{
// error
int nErr = WSAGetLastError ( ) ;
if ( nErr ! = WSAEWOULDBLOCK & & nErr ! = WSAEMSGSIZE & & nErr ! = WSAEINTR & & nErr ! = WSAEINPROGRESS )
{
if ( ! pnode - > fDisconnect )
2014-05-08 14:15:19 +02:00
LogPrintf ( " socket recv error %s \n " , NetworkErrorString ( nErr ) ) ;
2011-02-16 19:18:11 +01:00
pnode - > CloseSocketDisconnect ( ) ;
}
}
2010-08-29 18:58:15 +02:00
}
}
}
//
// Send
//
if ( pnode - > hSocket = = INVALID_SOCKET )
continue ;
if ( FD_ISSET ( pnode - > hSocket , & fdsetSend ) )
{
2012-04-06 18:39:12 +02:00
TRY_LOCK ( pnode - > cs_vSend , lockSend ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( lockSend ) {
size_t nBytes = SocketSendData ( pnode ) ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
if ( nBytes ) {
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
RecordBytesSent ( nBytes ) ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
}
2010-08-29 18:58:15 +02:00
}
//
// Inactivity checking
//
2017-08-24 01:38:29 +02:00
int64_t nTime = GetSystemTimeInSeconds ( ) ;
2013-10-15 00:34:20 +02:00
if ( nTime - pnode - > nTimeConnected > 60 )
2010-08-29 18:58:15 +02:00
{
if ( pnode - > nLastRecv = = 0 | | pnode - > nLastSend = = 0 )
{
2014-02-27 02:55:04 +01:00
LogPrint ( " net " , " socket no message in first 60 seconds, %d %d from %d \n " , pnode - > nLastRecv ! = 0 , pnode - > nLastSend ! = 0 , pnode - > id ) ;
2010-08-29 18:58:15 +02:00
pnode - > fDisconnect = true ;
}
2013-10-15 00:34:20 +02:00
else if ( nTime - pnode - > nLastSend > TIMEOUT_INTERVAL )
2010-08-29 18:58:15 +02:00
{
2013-10-15 00:34:20 +02:00
LogPrintf ( " socket sending timeout: %is \n " , nTime - pnode - > nLastSend ) ;
2010-08-29 18:58:15 +02:00
pnode - > fDisconnect = true ;
}
2013-10-15 00:34:20 +02:00
else if ( nTime - pnode - > nLastRecv > ( pnode - > nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90 * 60 ) )
2010-08-29 18:58:15 +02:00
{
2013-10-15 00:34:20 +02:00
LogPrintf ( " socket receive timeout: %is \n " , nTime - pnode - > nLastRecv ) ;
pnode - > fDisconnect = true ;
}
else if ( pnode - > nPingNonceSent & & pnode - > nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros ( ) )
{
LogPrintf ( " ping timeout: %fs \n " , 0.000001 * ( GetTimeMicros ( ) - pnode - > nPingUsecStart ) ) ;
2010-08-29 18:58:15 +02:00
pnode - > fDisconnect = true ;
}
}
}
2017-03-05 20:16:12 +01:00
ReleaseNodeVector ( vNodesCopy ) ;
2010-08-29 18:58:15 +02:00
}
}
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
void CConnman : : WakeMessageHandler ( )
{
{
std : : lock_guard < std : : mutex > lock ( mutexMsgProc ) ;
fMsgProcWake = true ;
}
condMsgProc . notify_one ( ) ;
}
2010-08-29 18:58:15 +02:00
2011-03-26 13:01:27 +01:00
# ifdef USE_UPNP
2013-03-07 04:31:26 +01:00
void ThreadMapPort ( )
2011-03-26 13:01:27 +01:00
{
2012-09-05 23:36:19 +02:00
std : : string port = strprintf ( " %u " , GetListenPort ( ) ) ;
2011-03-26 13:01:27 +01:00
const char * multicastif = 0 ;
const char * minissdpdpath = 0 ;
struct UPNPDev * devlist = 0 ;
char lanaddr [ 64 ] ;
2011-12-10 17:52:50 +01:00
# ifndef UPNPDISCOVER_SUCCESS
/* miniupnpc 1.5 */
devlist = upnpDiscover ( 2000 , multicastif , minissdpdpath , 0 ) ;
2015-12-09 10:06:41 +01:00
# elif MINIUPNPC_API_VERSION < 14
2011-12-10 17:52:50 +01:00
/* miniupnpc 1.6 */
int error = 0 ;
2011-08-12 00:20:07 +02:00
devlist = upnpDiscover ( 2000 , multicastif , minissdpdpath , 0 , 0 , & error ) ;
2015-12-09 10:06:41 +01:00
# else
/* miniupnpc 1.9.20150730 */
int error = 0 ;
devlist = upnpDiscover ( 2000 , multicastif , minissdpdpath , 0 , 0 , 2 , & error ) ;
2011-12-10 17:52:50 +01:00
# endif
2011-03-26 13:01:27 +01:00
struct UPNPUrls urls ;
struct IGDdatas data ;
int r ;
2011-04-16 20:35:45 +02:00
r = UPNP_GetValidIGD ( devlist , & urls , & data , lanaddr , sizeof ( lanaddr ) ) ;
if ( r = = 1 )
2011-03-26 13:01:27 +01:00
{
2012-05-24 19:02:21 +02:00
if ( fDiscover ) {
2012-02-10 04:41:42 +01:00
char externalIPAddress [ 40 ] ;
r = UPNP_GetExternalIPAddress ( urls . controlURL , data . first . servicetype , externalIPAddress ) ;
if ( r ! = UPNPCOMMAND_SUCCESS )
2013-09-18 12:38:08 +02:00
LogPrintf ( " UPnP: GetExternalIPAddress() returned %d \n " , r ) ;
2012-02-10 04:41:42 +01:00
else
{
if ( externalIPAddress [ 0 ] )
{
2017-09-03 15:29:10 +02:00
CNetAddr resolved ;
if ( LookupHost ( externalIPAddress , resolved , false ) ) {
LogPrintf ( " UPnP: ExternalIPAddress = %s \n " , resolved . ToString ( ) . c_str ( ) ) ;
AddLocal ( resolved , LOCAL_UPNP ) ;
}
2012-02-10 04:41:42 +01:00
}
else
2013-09-18 12:38:08 +02:00
LogPrintf ( " UPnP: GetExternalIPAddress failed. \n " ) ;
2012-02-10 04:41:42 +01:00
}
}
2017-07-12 03:20:12 +02:00
std : : string strDesc = " Dash Core " + FormatFullVersion ( ) ;
2011-08-12 00:20:07 +02:00
2013-03-07 04:31:26 +01:00
try {
2013-07-31 06:06:44 +02:00
while ( true ) {
2012-01-31 23:36:25 +01:00
# ifndef UPNPDISCOVER_SUCCESS
/* miniupnpc 1.5 */
r = UPNP_AddPortMapping ( urls . controlURL , data . first . servicetype ,
2012-09-03 08:23:34 +02:00
port . c_str ( ) , port . c_str ( ) , lanaddr , strDesc . c_str ( ) , " TCP " , 0 ) ;
2012-01-31 23:36:25 +01:00
# else
/* miniupnpc 1.6 */
r = UPNP_AddPortMapping ( urls . controlURL , data . first . servicetype ,
2012-09-03 08:23:34 +02:00
port . c_str ( ) , port . c_str ( ) , lanaddr , strDesc . c_str ( ) , " TCP " , 0 , " 0 " ) ;
2012-01-31 23:36:25 +01:00
# endif
if ( r ! = UPNPCOMMAND_SUCCESS )
2013-09-18 12:38:08 +02:00
LogPrintf ( " AddPortMapping(%s, %s, %s) failed with code %d (%s) \n " ,
2014-01-16 16:15:27 +01:00
port , port , lanaddr , r , strupnperror ( r ) ) ;
2012-01-31 23:36:25 +01:00
else
2017-09-07 17:59:00 +02:00
LogPrintf ( " UPnP Port Mapping successful. \n " ) ;
2013-03-07 04:31:26 +01:00
MilliSleep ( 20 * 60 * 1000 ) ; // Refresh every 20 minutes
2012-01-31 23:36:25 +01:00
}
2013-03-07 04:31:26 +01:00
}
2014-12-07 13:29:06 +01:00
catch ( const boost : : thread_interrupted & )
2013-03-07 04:31:26 +01:00
{
r = UPNP_DeletePortMapping ( urls . controlURL , data . first . servicetype , port . c_str ( ) , " TCP " , 0 ) ;
2015-01-08 11:44:25 +01:00
LogPrintf ( " UPNP_DeletePortMapping() returned: %d \n " , r ) ;
2013-03-07 04:31:26 +01:00
freeUPNPDevlist ( devlist ) ; devlist = 0 ;
FreeUPNPUrls ( & urls ) ;
throw ;
2011-03-26 13:01:27 +01:00
}
} else {
2013-09-18 12:38:08 +02:00
LogPrintf ( " No valid UPnP IGDs found \n " ) ;
2011-03-26 13:01:27 +01:00
freeUPNPDevlist ( devlist ) ; devlist = 0 ;
2011-04-16 20:35:45 +02:00
if ( r ! = 0 )
FreeUPNPUrls ( & urls ) ;
2011-03-26 13:01:27 +01:00
}
}
2013-03-07 04:31:26 +01:00
void MapPort ( bool fUseUPnP )
2011-03-26 13:01:27 +01:00
{
2013-03-07 04:31:26 +01:00
static boost : : thread * upnp_thread = NULL ;
if ( fUseUPnP )
2011-03-26 13:01:27 +01:00
{
2013-03-07 04:31:26 +01:00
if ( upnp_thread ) {
upnp_thread - > interrupt ( ) ;
upnp_thread - > join ( ) ;
delete upnp_thread ;
}
2013-04-23 11:36:54 +02:00
upnp_thread = new boost : : thread ( boost : : bind ( & TraceThread < void ( * ) ( ) > , " upnp " , & ThreadMapPort ) ) ;
2013-03-07 04:31:26 +01:00
}
else if ( upnp_thread ) {
upnp_thread - > interrupt ( ) ;
upnp_thread - > join ( ) ;
delete upnp_thread ;
upnp_thread = NULL ;
2011-03-26 13:01:27 +01:00
}
}
2013-03-07 04:31:26 +01:00
2011-08-09 18:38:17 +02:00
# else
2013-03-07 04:31:26 +01:00
void MapPort ( bool )
2011-08-09 18:38:17 +02:00
{
// Intentionally left blank.
}
2011-03-26 13:01:27 +01:00
# endif
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ThreadDNSAddressSeed ( )
2011-11-21 18:25:00 +01:00
{
2014-07-29 17:04:46 +02:00
// goal: only query DNS seeds if address need is acute
if ( ( addrman . size ( ) > 0 ) & &
2015-06-27 21:21:41 +02:00
( ! GetBoolArg ( " -forcednsseed " , DEFAULT_FORCEDNSSEED ) ) ) {
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : seconds ( 11 ) ) )
return ;
2014-07-29 17:04:46 +02:00
LOCK ( cs_vNodes ) ;
if ( vNodes . size ( ) > = 2 ) {
LogPrintf ( " P2P peers available. Skipped DNS seeding. \n " ) ;
return ;
}
}
2017-07-12 03:20:12 +02:00
const std : : vector < CDNSSeedData > & vSeeds = Params ( ) . DNSSeeds ( ) ;
2011-03-09 04:40:50 +01:00
int found = 0 ;
2013-09-18 12:38:08 +02:00
LogPrintf ( " Loading addresses from DNS seeds (could take a while) \n " ) ;
2013-01-30 05:13:17 +01:00
2013-05-07 15:16:25 +02:00
BOOST_FOREACH ( const CDNSSeedData & seed , vSeeds ) {
2013-01-30 05:13:17 +01:00
if ( HaveNameProxy ( ) ) {
2013-05-07 15:16:25 +02:00
AddOneShot ( seed . host ) ;
2013-01-30 05:13:17 +01:00
} else {
2017-07-12 03:20:12 +02:00
std : : vector < CNetAddr > vIPs ;
std : : vector < CAddress > vAdd ;
2017-09-02 22:07:11 +02:00
if ( LookupHost ( seed . host . c_str ( ) , vIPs , 0 , true ) )
2013-01-30 05:13:17 +01:00
{
2015-05-31 15:36:44 +02:00
BOOST_FOREACH ( const CNetAddr & ip , vIPs )
2011-05-02 15:34:42 +02:00
{
2013-01-30 05:13:17 +01:00
int nOneDay = 24 * 3600 ;
2017-07-05 05:45:23 +02:00
CAddress addr = CAddress ( CService ( ip , Params ( ) . GetDefaultPort ( ) ) , NODE_NETWORK ) ;
2013-01-30 05:13:17 +01:00
addr . nTime = GetTime ( ) - 3 * nOneDay - GetRand ( 4 * nOneDay ) ; // use a random age between 3 and 7 days old
vAdd . push_back ( addr ) ;
found + + ;
2011-05-02 15:34:42 +02:00
}
2011-03-09 04:40:50 +01:00
}
2017-09-02 22:07:11 +02:00
// TODO: The seed name resolve may fail, yielding an IP of [::], which results in
// addrman assigning the same source to results from different seeds.
// This should switch to a hard-coded stable dummy IP for each seed name, so that the
// resolve is not required at all.
if ( ! vIPs . empty ( ) ) {
CService seedSource ;
Lookup ( seed . name . c_str ( ) , seedSource , 0 , true ) ;
addrman . Add ( vAdd , seedSource ) ;
}
2011-03-09 04:40:50 +01:00
}
}
2013-09-18 12:38:08 +02:00
LogPrintf ( " %d addresses found from DNS seeds \n " , found ) ;
2011-03-09 04:40:50 +01:00
}
2010-08-29 18:58:15 +02:00
2011-11-21 18:25:00 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : DumpAddresses ( )
2012-01-04 23:39:45 +01:00
{
2013-04-13 07:13:08 +02:00
int64_t nStart = GetTimeMillis ( ) ;
2012-05-17 04:11:19 +02:00
2012-01-04 23:39:45 +01:00
CAddrDB adb ;
2012-05-17 04:11:19 +02:00
adb . Write ( addrman ) ;
2014-02-24 09:08:56 +01:00
LogPrint ( " net " , " Flushed %d addresses to peers.dat %dms \n " ,
2012-05-17 04:11:19 +02:00
addrman . size ( ) , GetTimeMillis ( ) - nStart ) ;
2012-01-04 23:39:45 +01:00
}
2010-08-29 18:58:15 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : DumpData ( )
2015-06-19 15:27:37 +02:00
{
DumpAddresses ( ) ;
2017-07-04 23:39:05 +02:00
DumpBanlist ( ) ;
2015-06-19 15:27:37 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ProcessOneShot ( )
2012-04-24 02:15:00 +02:00
{
2017-07-12 03:20:12 +02:00
std : : string strDest ;
2012-04-24 02:15:00 +02:00
{
LOCK ( cs_vOneShots ) ;
if ( vOneShots . empty ( ) )
return ;
strDest = vOneShots . front ( ) ;
vOneShots . pop_front ( ) ;
}
CAddress addr ;
2012-05-10 18:44:07 +02:00
CSemaphoreGrant grant ( * semOutbound , true ) ;
if ( grant ) {
if ( ! OpenNetworkConnection ( addr , & grant , strDest . c_str ( ) , true ) )
AddOneShot ( strDest ) ;
}
2012-04-24 02:15:00 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ThreadOpenConnections ( )
2010-08-29 18:58:15 +02:00
{
// Connect to specific addresses
2012-08-21 17:32:04 +02:00
if ( mapArgs . count ( " -connect " ) & & mapMultiArgs [ " -connect " ] . size ( ) > 0 )
2010-08-29 18:58:15 +02:00
{
2013-04-13 07:13:08 +02:00
for ( int64_t nLoop = 0 ; ; nLoop + + )
2010-08-29 18:58:15 +02:00
{
2012-04-24 02:15:00 +02:00
ProcessOneShot ( ) ;
2015-05-31 15:36:44 +02:00
BOOST_FOREACH ( const std : : string & strAddr , mapMultiArgs [ " -connect " ] )
2010-08-29 18:58:15 +02:00
{
2017-07-05 05:45:23 +02:00
CAddress addr ( CService ( ) , NODE_NONE ) ;
2012-05-10 18:44:07 +02:00
OpenNetworkConnection ( addr , NULL , strAddr . c_str ( ) ) ;
2010-08-29 18:58:15 +02:00
for ( int i = 0 ; i < 10 & & i < nLoop ; i + + )
{
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( 500 ) ) )
return ;
2010-08-29 18:58:15 +02:00
}
}
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( 500 ) ) )
return ;
2010-08-29 18:58:15 +02:00
}
}
// Initiate network connections
2013-04-13 07:13:08 +02:00
int64_t nStart = GetTime ( ) ;
2017-07-17 12:39:12 +02:00
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler = PoissonNextSend ( nStart * 1000 * 1000 , FEELER_INTERVAL ) ;
2017-08-09 18:06:31 +02:00
while ( ! interruptNet )
2010-08-29 18:58:15 +02:00
{
2012-04-24 02:15:00 +02:00
ProcessOneShot ( ) ;
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( 500 ) ) )
return ;
2012-02-15 21:17:15 +01:00
2012-05-10 18:44:07 +02:00
CSemaphoreGrant grant ( * semOutbound ) ;
2017-08-09 18:06:31 +02:00
if ( interruptNet )
return ;
2010-08-29 18:58:15 +02:00
2013-05-07 15:16:25 +02:00
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
if ( addrman . size ( ) = = 0 & & ( GetTime ( ) - nStart > 60 ) ) {
static bool done = false ;
if ( ! done ) {
2013-09-18 12:38:08 +02:00
LogPrintf ( " Adding fixed seed nodes as DNS doesn't seem to be available. \n " ) ;
2017-09-03 15:29:10 +02:00
CNetAddr local ;
LookupHost ( " 127.0.0.1 " , local , false ) ;
addrman . Add ( convertSeed6 ( Params ( ) . FixedSeeds ( ) ) , local ) ;
2013-05-07 15:16:25 +02:00
done = true ;
2010-08-29 18:58:15 +02:00
}
}
//
// Choose an address to connect to based on most recently seen
//
CAddress addrConnect ;
2012-07-02 02:23:26 +02:00
// Only connect out to one peer per network group (/16 for IPv4).
2010-08-29 18:58:15 +02:00
// Do this here so we don't have to critsect vNodes inside mapAddresses critsect.
2012-05-10 18:44:07 +02:00
int nOutbound = 0 ;
2017-07-12 03:20:12 +02:00
std : : set < std : : vector < unsigned char > > setConnected ;
2012-04-06 18:39:12 +02:00
{
LOCK ( cs_vNodes ) ;
2012-05-10 18:44:07 +02:00
BOOST_FOREACH ( CNode * pnode , vNodes ) {
2017-07-17 15:54:35 +02:00
if ( ! pnode - > fInbound & & ! pnode - > fMasternode ) {
2012-07-02 02:23:26 +02:00
setConnected . insert ( pnode - > addr . GetGroup ( ) ) ;
2012-05-10 18:44:07 +02:00
nOutbound + + ;
2012-07-02 02:23:26 +02:00
}
2012-05-10 18:44:07 +02:00
}
2012-04-06 18:39:12 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
assert ( nOutbound < = ( nMaxOutbound + nMaxFeeler ) ) ;
2010-08-29 18:58:15 +02:00
2017-07-17 12:39:12 +02:00
// Feeler Connections
//
// Design goals:
// * Increase the number of connectable addresses in the tried table.
//
// Method:
// * Choose a random address from new and attempt to connect to it if we can connect
// successfully it is added to tried.
// * Start attempting feeler connections only after node finishes making outbound
// connections.
// * Only make a feeler connection once every few minutes.
//
bool fFeeler = false ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( nOutbound > = nMaxOutbound ) {
2017-07-17 12:39:12 +02:00
int64_t nTime = GetTimeMicros ( ) ; // The current time right now (in microseconds).
if ( nTime > nNextFeeler ) {
nNextFeeler = PoissonNextSend ( nTime , FEELER_INTERVAL ) ;
fFeeler = true ;
} else {
continue ;
}
}
2011-10-04 05:41:47 +02:00
2017-07-17 12:39:12 +02:00
int64_t nANow = GetAdjustedTime ( ) ;
2012-01-04 23:39:45 +01:00
int nTries = 0 ;
2017-08-09 18:06:31 +02:00
while ( ! interruptNet )
2010-08-29 18:58:15 +02:00
{
2017-07-17 12:39:12 +02:00
CAddrInfo addr = addrman . Select ( fFeeler ) ;
2010-08-29 18:58:15 +02:00
2012-01-04 23:39:45 +01:00
// if we selected an invalid address, restart
2012-03-31 17:58:25 +02:00
if ( ! addr . IsValid ( ) | | setConnected . count ( addr . GetGroup ( ) ) | | IsLocal ( addr ) )
2012-01-04 23:39:45 +01:00
break ;
2010-08-29 18:58:15 +02:00
2012-08-21 17:32:04 +02:00
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
// already-connected network ranges, ...) before trying new addrman addresses.
2012-01-04 23:39:45 +01:00
nTries + + ;
2012-08-21 17:32:04 +02:00
if ( nTries > 100 )
break ;
2010-08-29 18:58:15 +02:00
2012-05-04 16:46:22 +02:00
if ( IsLimited ( addr ) )
continue ;
2017-07-05 05:45:23 +02:00
// only connect to full nodes
if ( ( addr . nServices & REQUIRED_SERVICES ) ! = REQUIRED_SERVICES )
continue ;
2012-01-04 23:39:45 +01:00
// only consider very recently tried nodes after 30 failed attempts
if ( nANow - addr . nLastTry < 600 & & nTries < 30 )
continue ;
// do not allow non-default ports, unless after 50 invalid addresses selected already
2013-05-07 15:16:25 +02:00
if ( addr . GetPort ( ) ! = Params ( ) . GetDefaultPort ( ) & & nTries < 50 )
2012-01-04 23:39:45 +01:00
continue ;
addrConnect = addr ;
break ;
2010-08-29 18:58:15 +02:00
}
2017-07-17 12:39:12 +02:00
if ( addrConnect . IsValid ( ) ) {
if ( fFeeler ) {
// Add small amount of random noise before connection to avoid synchronization.
int randsleep = GetRandInt ( FEELER_SLEEP_WINDOW * 1000 ) ;
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( randsleep ) ) )
return ;
2017-07-17 12:39:12 +02:00
LogPrint ( " net " , " Making feeler connection to %s \n " , addrConnect . ToString ( ) ) ;
}
OpenNetworkConnection ( addrConnect , & grant , NULL , false , fFeeler ) ;
}
2010-08-29 18:58:15 +02:00
}
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
std : : vector < AddedNodeInfo > CConnman : : GetAddedNodeInfo ( )
2011-12-17 01:48:03 +01:00
{
2017-07-14 18:58:57 +02:00
std : : vector < AddedNodeInfo > ret ;
std : : list < std : : string > lAddresses ( 0 ) ;
2012-07-02 19:55:16 +02:00
{
LOCK ( cs_vAddedNodes ) ;
2017-07-14 18:58:57 +02:00
ret . reserve ( vAddedNodes . size ( ) ) ;
BOOST_FOREACH ( const std : : string & strAddNode , vAddedNodes )
lAddresses . push_back ( strAddNode ) ;
2012-07-02 19:55:16 +02:00
}
2011-12-17 01:48:03 +01:00
2017-07-14 18:58:57 +02:00
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
std : : map < CService , bool > mapConnected ;
std : : map < std : : string , std : : pair < bool , CService > > mapConnectedByName ;
{
LOCK ( cs_vNodes ) ;
for ( const CNode * pnode : vNodes ) {
if ( pnode - > addr . IsValid ( ) ) {
mapConnected [ pnode - > addr ] = pnode - > fInbound ;
2012-07-02 19:55:16 +02:00
}
2017-07-14 18:58:57 +02:00
if ( ! pnode - > addrName . empty ( ) ) {
mapConnectedByName [ pnode - > addrName ] = std : : make_pair ( pnode - > fInbound , static_cast < const CService & > ( pnode - > addr ) ) ;
}
}
}
BOOST_FOREACH ( const std : : string & strAddNode , lAddresses ) {
2017-09-03 15:29:10 +02:00
CService service ( LookupNumeric ( strAddNode . c_str ( ) , Params ( ) . GetDefaultPort ( ) ) ) ;
2017-07-14 18:58:57 +02:00
if ( service . IsValid ( ) ) {
// strAddNode is an IP:port
auto it = mapConnected . find ( service ) ;
if ( it ! = mapConnected . end ( ) ) {
ret . push_back ( AddedNodeInfo { strAddNode , service , true , it - > second } ) ;
} else {
ret . push_back ( AddedNodeInfo { strAddNode , CService ( ) , false , false } ) ;
}
} else {
// strAddNode is a name
auto it = mapConnectedByName . find ( strAddNode ) ;
if ( it ! = mapConnectedByName . end ( ) ) {
ret . push_back ( AddedNodeInfo { strAddNode , it - > second . second , true , it - > second . first } ) ;
} else {
ret . push_back ( AddedNodeInfo { strAddNode , CService ( ) , false , false } ) ;
2012-04-19 17:38:03 +02:00
}
}
}
2017-07-14 18:58:57 +02:00
return ret ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ThreadOpenAddedConnections ( )
2017-07-14 18:58:57 +02:00
{
{
LOCK ( cs_vAddedNodes ) ;
vAddedNodes = mapMultiArgs [ " -addnode " ] ;
}
2012-07-02 21:11:57 +02:00
for ( unsigned int i = 0 ; true ; i + + )
2011-12-17 01:48:03 +01:00
{
2017-07-14 18:58:57 +02:00
std : : vector < AddedNodeInfo > vInfo = GetAddedNodeInfo ( ) ;
for ( const AddedNodeInfo & info : vInfo ) {
if ( ! info . fConnected ) {
CSemaphoreGrant grant ( * semOutbound ) ;
// If strAddedNode is an IP/port, decode it immediately, so
// OpenNetworkConnection can detect existing connections to that IP/port.
2017-09-03 15:29:10 +02:00
CService service ( LookupNumeric ( info . strAddedNode . c_str ( ) , Params ( ) . GetDefaultPort ( ) ) ) ;
2017-07-14 18:58:57 +02:00
OpenNetworkConnection ( CAddress ( service , NODE_NONE ) , & grant , info . strAddedNode . c_str ( ) , false ) ;
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( 500 ) ) )
return ;
2017-07-14 18:58:57 +02:00
}
2012-07-02 19:55:16 +02:00
}
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : minutes ( 2 ) ) )
return ;
2011-12-17 01:48:03 +01:00
}
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ThreadMnbRequestConnections ( )
2017-01-21 20:03:55 +01:00
{
// Connecting to specific addresses, no masternode connections available
if ( mapArgs . count ( " -connect " ) & & mapMultiArgs [ " -connect " ] . size ( ) > 0 )
return ;
2017-08-09 18:06:31 +02:00
while ( ! interruptNet )
2017-01-21 20:03:55 +01:00
{
2017-08-09 18:06:31 +02:00
if ( ! interruptNet . sleep_for ( std : : chrono : : milliseconds ( 1000 ) ) )
return ;
2017-01-21 20:03:55 +01:00
CSemaphoreGrant grant ( * semMasternodeOutbound ) ;
2017-08-09 18:06:31 +02:00
if ( interruptNet )
return ;
2017-01-21 20:03:55 +01:00
2017-01-31 16:29:27 +01:00
std : : pair < CService , std : : set < uint256 > > p = mnodeman . PopScheduledMnbRequestConnection ( ) ;
if ( p . first = = CService ( ) | | p . second . empty ( ) ) continue ;
CNode * pnode = NULL ;
{
2017-01-31 18:11:21 +01:00
LOCK2 ( cs_main , cs_vNodes ) ;
2017-07-05 05:45:23 +02:00
pnode = ConnectNode ( CAddress ( p . first , NODE_NETWORK ) , NULL , true ) ;
2017-01-31 16:29:27 +01:00
if ( ! pnode ) continue ;
pnode - > AddRef ( ) ;
2017-01-21 20:03:55 +01:00
}
2017-01-31 16:29:27 +01:00
grant . MoveTo ( pnode - > grantMasternodeOutbound ) ;
// compile request vector
std : : vector < CInv > vToFetch ;
std : : set < uint256 > : : iterator it = p . second . begin ( ) ;
while ( it ! = p . second . end ( ) ) {
if ( * it ! = uint256 ( ) ) {
vToFetch . push_back ( CInv ( MSG_MASTERNODE_ANNOUNCE , * it ) ) ;
LogPrint ( " masternode " , " ThreadMnbRequestConnections -- asking for mnb %s from addr=%s \n " , it - > ToString ( ) , p . first . ToString ( ) ) ;
}
+ + it ;
}
// ask for data
2017-07-27 16:28:05 +02:00
PushMessage ( pnode , NetMsgType : : GETDATA , vToFetch ) ;
2017-01-31 16:29:27 +01:00
pnode - > Release ( ) ;
2017-01-21 20:03:55 +01:00
}
}
2012-07-26 02:48:39 +02:00
// if successful, this moves the passed grant to the constructed node
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : OpenNetworkConnection ( const CAddress & addrConnect , CSemaphoreGrant * grantOutbound , const char * pszDest , bool fOneShot , bool fFeeler )
2010-08-29 18:58:15 +02:00
{
//
// Initiate outbound network connection
//
2017-08-09 18:06:31 +02:00
if ( interruptNet ) {
return false ;
}
2017-09-11 15:38:14 +02:00
if ( ! fNetworkActive ) {
return false ;
}
2014-05-24 11:14:52 +02:00
if ( ! pszDest ) {
2012-02-12 13:45:24 +01:00
if ( IsLocal ( addrConnect ) | |
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
FindNode ( ( CNetAddr ) addrConnect ) | | IsBanned ( addrConnect ) | |
2014-07-21 15:00:42 +02:00
FindNode ( addrConnect . ToStringIPPort ( ) ) )
2012-04-19 17:38:03 +02:00
return false ;
2015-05-31 15:44:22 +02:00
} else if ( FindNode ( std : : string ( pszDest ) ) )
2010-08-29 18:58:15 +02:00
return false ;
2014-05-24 11:14:52 +02:00
CNode * pnode = ConnectNode ( addrConnect , pszDest ) ;
2013-03-07 04:31:26 +01:00
2010-08-29 18:58:15 +02:00
if ( ! pnode )
return false ;
2012-05-10 18:44:07 +02:00
if ( grantOutbound )
grantOutbound - > MoveTo ( pnode - > grantOutbound ) ;
2012-04-24 02:15:00 +02:00
if ( fOneShot )
pnode - > fOneShot = true ;
2017-07-17 12:39:12 +02:00
if ( fFeeler )
pnode - > fFeeler = true ;
2010-08-29 18:58:15 +02:00
return true ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ThreadMessageHandler ( )
2010-08-29 18:58:15 +02:00
{
SetThreadPriority ( THREAD_PRIORITY_BELOW_NORMAL ) ;
2017-08-09 18:06:31 +02:00
while ( ! flagInterruptMsgProc )
2010-08-29 18:58:15 +02:00
{
2017-07-12 03:20:12 +02:00
std : : vector < CNode * > vNodesCopy = CopyNodeVector ( ) ;
2010-08-29 18:58:15 +02:00
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
bool fMoreWork = false ;
2013-11-15 12:24:34 +01:00
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CNode * pnode , vNodesCopy )
2010-08-29 18:58:15 +02:00
{
2013-03-01 01:41:28 +01:00
if ( pnode - > fDisconnect )
continue ;
2010-08-29 18:58:15 +02:00
// Receive messages
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
bool fMoreNodeWork = GetNodeSignals ( ) . ProcessMessages ( pnode , * this , flagInterruptMsgProc ) ;
fMoreWork | = ( fMoreNodeWork & & ! pnode - > fPauseSend ) ;
2017-08-09 18:06:31 +02:00
if ( flagInterruptMsgProc )
return ;
2010-08-29 18:58:15 +02:00
// Send messages
2012-04-06 18:39:12 +02:00
{
TRY_LOCK ( pnode - > cs_vSend , lockSend ) ;
2013-06-06 05:21:41 +02:00
if ( lockSend )
2017-08-09 18:06:31 +02:00
GetNodeSignals ( ) . SendMessages ( pnode , * this , flagInterruptMsgProc ) ;
2012-04-06 18:39:12 +02:00
}
2017-08-09 18:06:31 +02:00
if ( flagInterruptMsgProc )
return ;
2010-08-29 18:58:15 +02:00
}
2017-03-05 20:16:12 +01:00
ReleaseNodeVector ( vNodesCopy ) ;
2013-11-15 12:24:34 +01:00
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
std : : unique_lock < std : : mutex > lock ( mutexMsgProc ) ;
if ( ! fMoreWork ) {
condMsgProc . wait_until ( lock , std : : chrono : : steady_clock : : now ( ) + std : : chrono : : milliseconds ( 100 ) , [ this ] { return fMsgProcWake ; } ) ;
2017-08-09 18:06:31 +02:00
}
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
fMsgProcWake = false ;
2010-08-29 18:58:15 +02:00
}
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : BindListenPort ( const CService & addrBind , std : : string & strError , bool fWhitelisted )
2010-08-29 18:58:15 +02:00
{
strError = " " ;
int nOne = 1 ;
// Create socket for listening for incoming connections
2012-05-11 15:28:59 +02:00
struct sockaddr_storage sockaddr ;
socklen_t len = sizeof ( sockaddr ) ;
if ( ! addrBind . GetSockAddr ( ( struct sockaddr * ) & sockaddr , & len ) )
{
2014-05-24 11:14:52 +02:00
strError = strprintf ( " Error: Bind address family for %s not supported " , addrBind . ToString ( ) ) ;
2014-01-16 16:15:27 +01:00
LogPrintf ( " %s \n " , strError ) ;
2012-05-11 15:28:59 +02:00
return false ;
}
SOCKET hListenSocket = socket ( ( ( struct sockaddr * ) & sockaddr ) - > sa_family , SOCK_STREAM , IPPROTO_TCP ) ;
2010-08-29 18:58:15 +02:00
if ( hListenSocket = = INVALID_SOCKET )
{
2014-05-08 14:15:19 +02:00
strError = strprintf ( " Error: Couldn't open socket for incoming connections (socket returned error %s) " , NetworkErrorString ( WSAGetLastError ( ) ) ) ;
2014-01-16 16:15:27 +01:00
LogPrintf ( " %s \n " , strError ) ;
2010-08-29 18:58:15 +02:00
return false ;
}
2015-07-10 00:23:27 +02:00
if ( ! IsSelectableSocket ( hListenSocket ) )
{
strError = " Error: Couldn't create a listenable socket for incoming connections " ;
LogPrintf ( " %s \n " , strError ) ;
return false ;
}
2010-08-29 18:58:15 +02:00
2014-06-24 09:03:18 +02:00
# ifndef WIN32
2011-08-07 18:18:05 +02:00
# ifdef SO_NOSIGPIPE
2010-08-29 18:58:15 +02:00
// Different way of disabling SIGPIPE on BSD
setsockopt ( hListenSocket , SOL_SOCKET , SO_NOSIGPIPE , ( void * ) & nOne , sizeof ( int ) ) ;
# endif
// Allow binding if the port is still in TIME_WAIT state after
2015-08-20 21:50:13 +02:00
// the program was closed and restarted.
2010-08-29 18:58:15 +02:00
setsockopt ( hListenSocket , SOL_SOCKET , SO_REUSEADDR , ( void * ) & nOne , sizeof ( int ) ) ;
2015-10-22 01:52:29 +02:00
// Disable Nagle's algorithm
setsockopt ( hListenSocket , IPPROTO_TCP , TCP_NODELAY , ( void * ) & nOne , sizeof ( int ) ) ;
2015-08-20 21:50:13 +02:00
# else
setsockopt ( hListenSocket , SOL_SOCKET , SO_REUSEADDR , ( const char * ) & nOne , sizeof ( int ) ) ;
2015-10-22 01:52:29 +02:00
setsockopt ( hListenSocket , IPPROTO_TCP , TCP_NODELAY , ( const char * ) & nOne , sizeof ( int ) ) ;
2010-08-29 18:58:15 +02:00
# endif
2012-07-26 02:48:39 +02:00
// Set to non-blocking, incoming connections will also inherit this
2014-07-09 11:00:00 +02:00
if ( ! SetSocketNonBlocking ( hListenSocket , true ) ) {
strError = strprintf ( " BindListenPort: Setting listening socket to non-blocking failed, error %s \n " , NetworkErrorString ( WSAGetLastError ( ) ) ) ;
2014-01-16 16:15:27 +01:00
LogPrintf ( " %s \n " , strError ) ;
2010-08-29 18:58:15 +02:00
return false ;
}
2012-05-11 15:28:59 +02:00
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
// and enable it by default or not. Try to enable it, if possible.
if ( addrBind . IsIPv6 ( ) ) {
# ifdef IPV6_V6ONLY
2013-07-13 13:05:04 +02:00
# ifdef WIN32
setsockopt ( hListenSocket , IPPROTO_IPV6 , IPV6_V6ONLY , ( const char * ) & nOne , sizeof ( int ) ) ;
# else
2012-05-11 15:28:59 +02:00
setsockopt ( hListenSocket , IPPROTO_IPV6 , IPV6_V6ONLY , ( void * ) & nOne , sizeof ( int ) ) ;
2012-03-31 17:58:25 +02:00
# endif
2013-07-13 13:05:04 +02:00
# endif
2012-05-11 15:28:59 +02:00
# ifdef WIN32
2014-06-24 09:03:18 +02:00
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED ;
setsockopt ( hListenSocket , IPPROTO_IPV6 , IPV6_PROTECTION_LEVEL , ( const char * ) & nProtLevel , sizeof ( int ) ) ;
2012-05-11 15:28:59 +02:00
# endif
}
if ( : : bind ( hListenSocket , ( struct sockaddr * ) & sockaddr , len ) = = SOCKET_ERROR )
2010-08-29 18:58:15 +02:00
{
int nErr = WSAGetLastError ( ) ;
if ( nErr = = WSAEADDRINUSE )
2015-03-18 00:06:58 +01:00
strError = strprintf ( _ ( " Unable to bind to %s on this computer. Dash Core is probably already running. " ) , addrBind . ToString ( ) ) ;
2010-08-29 18:58:15 +02:00
else
2014-05-08 14:15:19 +02:00
strError = strprintf ( _ ( " Unable to bind to %s on this computer (bind returned error %s) " ) , addrBind . ToString ( ) , NetworkErrorString ( nErr ) ) ;
2014-01-16 16:15:27 +01:00
LogPrintf ( " %s \n " , strError ) ;
2014-07-17 22:33:58 +02:00
CloseSocket ( hListenSocket ) ;
2010-08-29 18:58:15 +02:00
return false ;
}
2014-01-16 16:15:27 +01:00
LogPrintf ( " Bound to %s \n " , addrBind . ToString ( ) ) ;
2010-08-29 18:58:15 +02:00
// Listen for incoming connections
if ( listen ( hListenSocket , SOMAXCONN ) = = SOCKET_ERROR )
{
2014-05-08 14:15:19 +02:00
strError = strprintf ( _ ( " Error: Listening for incoming connections failed (listen returned error %s) " ) , NetworkErrorString ( WSAGetLastError ( ) ) ) ;
2014-01-16 16:15:27 +01:00
LogPrintf ( " %s \n " , strError ) ;
2014-07-17 22:33:58 +02:00
CloseSocket ( hListenSocket ) ;
2010-08-29 18:58:15 +02:00
return false ;
}
2014-06-21 13:34:36 +02:00
vhListenSocket . push_back ( ListenSocket ( hListenSocket , fWhitelisted ) ) ;
2012-05-11 15:28:59 +02:00
2014-06-21 13:34:36 +02:00
if ( addrBind . IsRoutable ( ) & & fDiscover & & ! fWhitelisted )
2012-05-11 15:28:59 +02:00
AddLocal ( addrBind , LOCAL_BIND ) ;
2010-08-29 18:58:15 +02:00
return true ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void Discover ( boost : : thread_group & threadGroup )
2010-08-29 18:58:15 +02:00
{
2012-05-24 19:02:21 +02:00
if ( ! fDiscover )
2012-02-19 20:44:35 +01:00
return ;
2010-08-29 18:58:15 +02:00
2011-10-07 17:02:21 +02:00
# ifdef WIN32
2012-07-26 02:48:39 +02:00
// Get local host IP
2014-11-13 15:23:15 +01:00
char pszHostName [ 256 ] = " " ;
2010-08-29 18:58:15 +02:00
if ( gethostname ( pszHostName , sizeof ( pszHostName ) ) ! = SOCKET_ERROR )
{
2017-07-12 03:20:12 +02:00
std : : vector < CNetAddr > vaddr ;
2017-09-02 22:07:11 +02:00
if ( LookupHost ( pszHostName , vaddr , 0 , true ) )
2012-05-01 01:44:59 +02:00
{
2012-01-03 23:33:31 +01:00
BOOST_FOREACH ( const CNetAddr & addr , vaddr )
2012-05-01 01:44:59 +02:00
{
2014-11-13 15:20:57 +01:00
if ( AddLocal ( addr , LOCAL_IF ) )
LogPrintf ( " %s: %s - %s \n " , __func__ , pszHostName , addr . ToString ( ) ) ;
2012-05-01 01:44:59 +02:00
}
}
2010-08-29 18:58:15 +02:00
}
# else
// Get local host ip
struct ifaddrs * myaddrs ;
if ( getifaddrs ( & myaddrs ) = = 0 )
{
for ( struct ifaddrs * ifa = myaddrs ; ifa ! = NULL ; ifa = ifa - > ifa_next )
{
if ( ifa - > ifa_addr = = NULL ) continue ;
if ( ( ifa - > ifa_flags & IFF_UP ) = = 0 ) continue ;
if ( strcmp ( ifa - > ifa_name , " lo " ) = = 0 ) continue ;
if ( strcmp ( ifa - > ifa_name , " lo0 " ) = = 0 ) continue ;
if ( ifa - > ifa_addr - > sa_family = = AF_INET )
{
struct sockaddr_in * s4 = ( struct sockaddr_in * ) ( ifa - > ifa_addr ) ;
2012-02-12 13:45:24 +01:00
CNetAddr addr ( s4 - > sin_addr ) ;
2012-03-31 17:58:25 +02:00
if ( AddLocal ( addr , LOCAL_IF ) )
2014-11-13 15:20:57 +01:00
LogPrintf ( " %s: IPv4 %s: %s \n " , __func__ , ifa - > ifa_name , addr . ToString ( ) ) ;
2010-08-29 18:58:15 +02:00
}
else if ( ifa - > ifa_addr - > sa_family = = AF_INET6 )
{
struct sockaddr_in6 * s6 = ( struct sockaddr_in6 * ) ( ifa - > ifa_addr ) ;
2012-02-12 13:45:24 +01:00
CNetAddr addr ( s6 - > sin6_addr ) ;
2012-03-31 17:58:25 +02:00
if ( AddLocal ( addr , LOCAL_IF ) )
2014-11-13 15:20:57 +01:00
LogPrintf ( " %s: IPv6 %s: %s \n " , __func__ , ifa - > ifa_name , addr . ToString ( ) ) ;
2010-08-29 18:58:15 +02:00
}
}
freeifaddrs ( myaddrs ) ;
}
# endif
2012-02-19 20:44:35 +01:00
}
2017-09-11 15:38:14 +02:00
void CConnman : : SetNetworkActive ( bool active )
{
if ( fDebug ) {
LogPrint ( " net " , " SetNetworkActive: %s \n " , active ) ;
}
if ( ! active ) {
fNetworkActive = false ;
LOCK ( cs_vNodes ) ;
// Close sockets to all nodes
BOOST_FOREACH ( CNode * pnode , vNodes ) {
pnode - > CloseSocketDisconnect ( ) ;
}
} else {
fNetworkActive = true ;
}
uiInterface . NotifyNetworkActiveChanged ( fNetworkActive ) ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CConnman : : CConnman ( )
{
2017-09-11 15:38:14 +02:00
fNetworkActive = true ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
setBannedIsDirty = false ;
fAddressesInitialized = false ;
nLastNodeId = 0 ;
nSendBufferMaxSize = 0 ;
nReceiveFloodSize = 0 ;
semOutbound = NULL ;
semMasternodeOutbound = NULL ;
nMaxConnections = 0 ;
nMaxOutbound = 0 ;
nBestHeight = 0 ;
clientInterface = NULL ;
2017-08-09 18:06:31 +02:00
flagInterruptMsgProc = false ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
}
NodeId CConnman : : GetNewNodeId ( )
2012-02-19 20:44:35 +01:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
return nLastNodeId . fetch_add ( 1 , std : : memory_order_relaxed ) ;
}
2017-08-09 18:06:31 +02:00
bool CConnman : : Start ( CScheduler & scheduler , std : : string & strNodeError , Options connOptions )
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
nTotalBytesRecv = 0 ;
nTotalBytesSent = 0 ;
nMaxOutboundLimit = 0 ;
nMaxOutboundTotalBytesSentInCycle = 0 ;
nMaxOutboundTimeframe = 60 * 60 * 24 ; //1 day
nMaxOutboundCycleStartTime = 0 ;
nRelevantServices = connOptions . nRelevantServices ;
nLocalServices = connOptions . nLocalServices ;
nMaxConnections = connOptions . nMaxConnections ;
nMaxOutbound = std : : min ( ( connOptions . nMaxOutbound ) , nMaxConnections ) ;
nMaxFeeler = connOptions . nMaxFeeler ;
nSendBufferMaxSize = connOptions . nSendBufferMaxSize ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
nReceiveFloodSize = connOptions . nReceiveFloodSize ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SetBestHeight ( connOptions . nBestHeight ) ;
clientInterface = connOptions . uiInterface ;
if ( clientInterface )
clientInterface - > InitMessage ( _ ( " Loading addresses... " ) ) ;
2017-07-04 23:39:05 +02:00
// Load addresses from peers.dat
2014-09-18 14:08:43 +02:00
int64_t nStart = GetTimeMillis ( ) ;
{
CAddrDB adb ;
2017-07-04 23:39:05 +02:00
if ( adb . Read ( addrman ) )
LogPrintf ( " Loaded %i addresses from peers.dat %dms \n " , addrman . size ( ) , GetTimeMillis ( ) - nStart ) ;
2017-07-05 01:26:13 +02:00
else {
2017-07-05 02:40:22 +02:00
addrman . Clear ( ) ; // Addrman can be in an inconsistent state after failure, reset it
2014-09-18 14:08:43 +02:00
LogPrintf ( " Invalid or missing peers.dat; recreating \n " ) ;
2017-07-05 01:26:13 +02:00
DumpAddresses ( ) ;
}
2014-09-18 14:08:43 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( clientInterface )
clientInterface - > InitMessage ( _ ( " Loading banlist... " ) ) ;
2017-07-04 23:39:05 +02:00
// Load addresses from banlist.dat
nStart = GetTimeMillis ( ) ;
2015-06-19 15:27:37 +02:00
CBanDB bandb ;
2015-06-26 21:38:33 +02:00
banmap_t banmap ;
2017-07-04 23:39:05 +02:00
if ( bandb . Read ( banmap ) ) {
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SetBanned ( banmap ) ; // thread save setter
SetBannedSetDirty ( false ) ; // no need to write down, just read data
SweepBanned ( ) ; // sweep out unused entries
2017-07-04 23:39:05 +02:00
LogPrint ( " net " , " Loaded %d banned node ips/subnets from banlist.dat %dms \n " ,
banmap . size ( ) , GetTimeMillis ( ) - nStart ) ;
2017-07-05 01:26:13 +02:00
} else {
2015-06-19 15:27:37 +02:00
LogPrintf ( " Invalid or missing banlist.dat; recreating \n " ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SetBannedSetDirty ( true ) ; // force write
2017-07-05 01:26:13 +02:00
DumpBanlist ( ) ;
}
2015-06-19 15:27:37 +02:00
2014-09-18 14:08:43 +02:00
fAddressesInitialized = true ;
2012-05-10 18:44:07 +02:00
if ( semOutbound = = NULL ) {
// initialize semaphore
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
semOutbound = new CSemaphore ( std : : min ( ( nMaxOutbound + nMaxFeeler ) , nMaxConnections ) ) ;
2012-05-10 18:44:07 +02:00
}
2017-01-21 20:03:55 +01:00
if ( semMasternodeOutbound = = NULL ) {
// initialize semaphore
semMasternodeOutbound = new CSemaphore ( MAX_OUTBOUND_MASTERNODE_CONNECTIONS ) ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( pnodeLocalHost = = NULL ) {
2017-09-03 15:29:10 +02:00
CNetAddr local ;
LookupHost ( " 127.0.0.1 " , local , false ) ;
pnodeLocalHost = new CNode ( GetNewNodeId ( ) , nLocalServices , GetBestHeight ( ) , INVALID_SOCKET , CAddress ( CService ( local , 0 ) , nLocalServices ) ) ;
2017-07-27 16:28:05 +02:00
GetNodeSignals ( ) . InitializeNode ( pnodeLocalHost , * this ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
}
2010-08-29 18:58:15 +02:00
//
// Start threads
//
2017-08-09 18:06:31 +02:00
InterruptSocks5 ( false ) ;
interruptNet . reset ( ) ;
flagInterruptMsgProc = false ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
{
std : : unique_lock < std : : mutex > lock ( mutexMsgProc ) ;
fMsgProcWake = false ;
}
2017-08-09 18:06:31 +02:00
// Send and receive from sockets, accept connections
threadSocketHandler = std : : thread ( & TraceThread < std : : function < void ( ) > > , " net " , std : : function < void ( ) > ( std : : bind ( & CConnman : : ThreadSocketHandler , this ) ) ) ;
2010-08-29 18:58:15 +02:00
2012-02-06 20:35:57 +01:00
if ( ! GetBoolArg ( " -dnsseed " , true ) )
2013-09-18 12:38:08 +02:00
LogPrintf ( " DNS seeding disabled \n " ) ;
2011-11-21 18:25:00 +01:00
else
2017-08-09 18:06:31 +02:00
threadDNSAddressSeed = std : : thread ( & TraceThread < std : : function < void ( ) > > , " dnsseed " , std : : function < void ( ) > ( std : : bind ( & CConnman : : ThreadDNSAddressSeed , this ) ) ) ;
2010-08-29 18:58:15 +02:00
2011-12-17 01:48:03 +01:00
// Initiate outbound connections from -addnode
2017-08-09 18:06:31 +02:00
threadOpenAddedConnections = std : : thread ( & TraceThread < std : : function < void ( ) > > , " addcon " , std : : function < void ( ) > ( std : : bind ( & CConnman : : ThreadOpenAddedConnections , this ) ) ) ;
2011-12-17 01:48:03 +01:00
2010-08-29 18:58:15 +02:00
// Initiate outbound connections
2017-08-09 18:06:31 +02:00
threadOpenConnections = std : : thread ( & TraceThread < std : : function < void ( ) > > , " opencon " , std : : function < void ( ) > ( std : : bind ( & CConnman : : ThreadOpenConnections , this ) ) ) ;
2010-08-29 18:58:15 +02:00
2017-01-21 20:03:55 +01:00
// Initiate masternode connections
2017-08-09 18:06:31 +02:00
threadMnbRequestConnections = std : : thread ( & TraceThread < std : : function < void ( ) > > , " mnbcon " , std : : function < void ( ) > ( std : : bind ( & CConnman : : ThreadMnbRequestConnections , this ) ) ) ;
2017-01-21 20:03:55 +01:00
2010-08-29 18:58:15 +02:00
// Process messages
2017-08-09 18:06:31 +02:00
threadMessageHandler = std : : thread ( & TraceThread < std : : function < void ( ) > > , " msghand " , std : : function < void ( ) > ( std : : bind ( & CConnman : : ThreadMessageHandler , this ) ) ) ;
2010-08-29 18:58:15 +02:00
2012-01-04 23:39:45 +01:00
// Dump network addresses
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
scheduler . scheduleEvery ( boost : : bind ( & CConnman : : DumpData , this ) , DUMP_ADDRESSES_INTERVAL ) ;
return true ;
2010-08-29 18:58:15 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
class CNetCleanup
2010-08-29 18:58:15 +02:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
public :
CNetCleanup ( ) { }
~ CNetCleanup ( )
{
# ifdef WIN32
// Shutdown Windows Sockets
WSACleanup ( ) ;
# endif
}
}
instance_of_cnetcleanup ;
void CExplicitNetCleanup : : callCleanup ( )
{
// Explicit call to destructor of CNetCleanup because it's not implicitly called
// when the wallet is restarted from within the wallet itself.
CNetCleanup * tmp = new CNetCleanup ( ) ;
delete tmp ; // Stroustrup's gonna kill me for that
}
2017-08-09 18:06:31 +02:00
void CConnman : : Interrupt ( )
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
2017-08-09 18:06:31 +02:00
{
std : : lock_guard < std : : mutex > lock ( mutexMsgProc ) ;
flagInterruptMsgProc = true ;
}
condMsgProc . notify_all ( ) ;
interruptNet ( ) ;
InterruptSocks5 ( true ) ;
2012-05-12 17:44:14 +02:00
if ( semOutbound )
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
for ( int i = 0 ; i < ( nMaxOutbound + nMaxFeeler ) ; i + + )
2012-05-12 17:44:14 +02:00
semOutbound - > post ( ) ;
2017-08-09 18:06:31 +02:00
}
void CConnman : : Stop ( )
{
if ( threadMessageHandler . joinable ( ) )
threadMessageHandler . join ( ) ;
if ( threadMnbRequestConnections . joinable ( ) )
threadMnbRequestConnections . join ( ) ;
if ( threadOpenConnections . joinable ( ) )
threadOpenConnections . join ( ) ;
if ( threadOpenAddedConnections . joinable ( ) )
threadOpenAddedConnections . join ( ) ;
if ( threadDNSAddressSeed . joinable ( ) )
threadDNSAddressSeed . join ( ) ;
if ( threadSocketHandler . joinable ( ) )
threadSocketHandler . join ( ) ;
2014-09-18 14:08:43 +02:00
2017-01-21 20:03:55 +01:00
if ( semMasternodeOutbound )
for ( int i = 0 ; i < MAX_OUTBOUND_MASTERNODE_CONNECTIONS ; i + + )
semMasternodeOutbound - > post ( ) ;
2014-09-18 14:08:43 +02:00
if ( fAddressesInitialized )
{
2015-06-19 15:27:37 +02:00
DumpData ( ) ;
2014-09-18 14:08:43 +02:00
fAddressesInitialized = false ;
}
2013-03-29 02:17:10 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
// Close sockets
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( pnode - > hSocket ! = INVALID_SOCKET )
CloseSocket ( pnode - > hSocket ) ;
BOOST_FOREACH ( ListenSocket & hListenSocket , vhListenSocket )
if ( hListenSocket . socket ! = INVALID_SOCKET )
if ( ! CloseSocket ( hListenSocket . socket ) )
LogPrintf ( " CloseSocket(hListenSocket) failed with error %s \n " , NetworkErrorString ( WSAGetLastError ( ) ) ) ;
// clean up some globals (to help leak detection)
BOOST_FOREACH ( CNode * pnode , vNodes ) {
DeleteNode ( pnode ) ;
}
BOOST_FOREACH ( CNode * pnode , vNodesDisconnected ) {
DeleteNode ( pnode ) ;
}
vNodes . clear ( ) ;
vNodesDisconnected . clear ( ) ;
vhListenSocket . clear ( ) ;
delete semOutbound ;
semOutbound = NULL ;
delete semMasternodeOutbound ;
semMasternodeOutbound = NULL ;
if ( pnodeLocalHost )
DeleteNode ( pnodeLocalHost ) ;
pnodeLocalHost = NULL ;
}
void CConnman : : DeleteNode ( CNode * pnode )
{
assert ( pnode ) ;
bool fUpdateConnectionTime = false ;
GetNodeSignals ( ) . FinalizeNode ( pnode - > GetId ( ) , fUpdateConnectionTime ) ;
if ( fUpdateConnectionTime )
addrman . Connected ( pnode - > addr ) ;
delete pnode ;
}
CConnman : : ~ CConnman ( )
{
2017-08-09 18:06:31 +02:00
Interrupt ( ) ;
2017-07-28 00:39:53 +02:00
Stop ( ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
}
size_t CConnman : : GetAddressCount ( ) const
{
return addrman . size ( ) ;
}
void CConnman : : SetServices ( const CService & addr , ServiceFlags nServices )
{
addrman . SetServices ( addr , nServices ) ;
}
void CConnman : : MarkAddressGood ( const CAddress & addr )
{
addrman . Good ( addr ) ;
}
void CConnman : : AddNewAddress ( const CAddress & addr , const CAddress & addrFrom , int64_t nTimePenalty )
{
addrman . Add ( addr , addrFrom , nTimePenalty ) ;
}
void CConnman : : AddNewAddresses ( const std : : vector < CAddress > & vAddr , const CAddress & addrFrom , int64_t nTimePenalty )
{
addrman . Add ( vAddr , addrFrom , nTimePenalty ) ;
}
std : : vector < CAddress > CConnman : : GetAddresses ( )
{
return addrman . GetAddr ( ) ;
}
bool CConnman : : AddNode ( const std : : string & strNode )
{
LOCK ( cs_vAddedNodes ) ;
for ( std : : vector < std : : string > : : const_iterator it = vAddedNodes . begin ( ) ; it ! = vAddedNodes . end ( ) ; + + it ) {
if ( strNode = = * it )
return false ;
}
vAddedNodes . push_back ( strNode ) ;
2010-08-29 18:58:15 +02:00
return true ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : RemoveAddedNode ( const std : : string & strNode )
2010-08-29 18:58:15 +02:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
LOCK ( cs_vAddedNodes ) ;
for ( std : : vector < std : : string > : : iterator it = vAddedNodes . begin ( ) ; it ! = vAddedNodes . end ( ) ; + + it ) {
if ( strNode = = * it ) {
vAddedNodes . erase ( it ) ;
return true ;
}
}
return false ;
}
2014-05-24 11:14:52 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
size_t CConnman : : GetNodeCount ( NumConnections flags )
{
LOCK ( cs_vNodes ) ;
if ( flags = = CConnman : : CONNECTIONS_ALL ) // Shortcut if we want total
return vNodes . size ( ) ;
2013-03-29 02:17:10 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
int nNum = 0 ;
for ( std : : vector < CNode * > : : const_iterator it = vNodes . begin ( ) ; it ! = vNodes . end ( ) ; + + it )
if ( flags & ( ( * it ) - > fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT ) )
nNum + + ;
return nNum ;
}
void CConnman : : GetNodeStats ( std : : vector < CNodeStats > & vstats )
{
vstats . clear ( ) ;
LOCK ( cs_vNodes ) ;
vstats . reserve ( vNodes . size ( ) ) ;
for ( std : : vector < CNode * > : : iterator it = vNodes . begin ( ) ; it ! = vNodes . end ( ) ; + + it ) {
CNode * pnode = * it ;
CNodeStats stats ;
pnode - > copyStats ( stats ) ;
vstats . push_back ( stats ) ;
2010-08-29 18:58:15 +02:00
}
}
2012-08-13 05:26:30 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : DisconnectNode ( const std : : string & strNode )
{
2017-08-29 01:51:56 +02:00
LOCK ( cs_vNodes ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
if ( CNode * pnode = FindNode ( strNode ) ) {
pnode - > fDisconnect = true ;
return true ;
}
return false ;
}
bool CConnman : : DisconnectNode ( NodeId id )
{
LOCK ( cs_vNodes ) ;
for ( CNode * pnode : vNodes ) {
if ( id = = pnode - > id ) {
pnode - > fDisconnect = true ;
return true ;
}
}
return false ;
2015-05-25 22:59:38 +02:00
}
2012-08-13 05:26:30 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : RelayTransaction ( const CTransaction & tx )
2012-08-13 05:26:30 +02:00
{
CDataStream ss ( SER_NETWORK , PROTOCOL_VERSION ) ;
ss . reserve ( 10000 ) ;
2016-05-24 01:06:09 +02:00
uint256 hash = tx . GetHash ( ) ;
2017-01-29 09:22:14 +01:00
CTxLockRequest txLockRequest ;
2017-06-30 20:30:16 +02:00
CDarksendBroadcastTx dstx = CPrivateSend : : GetDSTX ( hash ) ;
if ( dstx ) { // MSG_DSTX
ss < < dstx ;
2017-01-29 09:22:14 +01:00
} else if ( instantsend . GetTxLockRequest ( hash , txLockRequest ) ) { // MSG_TXLOCK_REQUEST
ss < < txLockRequest ;
2016-05-24 01:06:09 +02:00
} else { // MSG_TX
ss < < tx ;
}
2014-06-09 10:02:00 +02:00
RelayTransaction ( tx , ss ) ;
2012-08-13 05:26:30 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : RelayTransaction ( const CTransaction & tx , const CDataStream & ss )
2012-08-13 05:26:30 +02:00
{
2016-05-24 01:06:09 +02:00
uint256 hash = tx . GetHash ( ) ;
2017-06-30 20:30:16 +02:00
int nInv = static_cast < bool > ( CPrivateSend : : GetDSTX ( hash ) ) ? MSG_DSTX :
2017-01-29 09:22:14 +01:00
( instantsend . HasTxLockRequest ( hash ) ? MSG_TXLOCK_REQUEST : MSG_TX ) ;
2016-05-24 01:06:09 +02:00
CInv inv ( nInv , hash ) ;
2012-08-13 05:26:30 +02:00
{
LOCK ( cs_mapRelay ) ;
// Expire old relay messages
while ( ! vRelayExpiration . empty ( ) & & vRelayExpiration . front ( ) . first < GetTime ( ) )
{
mapRelay . erase ( vRelayExpiration . front ( ) . second ) ;
vRelayExpiration . pop_front ( ) ;
}
// Save original serialized message so newer versions are preserved
mapRelay . insert ( std : : make_pair ( inv , ss ) ) ;
vRelayExpiration . push_back ( std : : make_pair ( GetTime ( ) + 15 * 60 , inv ) ) ;
}
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
{
2012-08-21 03:10:25 +02:00
if ( ! pnode - > fRelayTxes )
continue ;
2012-08-13 05:26:30 +02:00
LOCK ( pnode - > cs_filter ) ;
if ( pnode - > pfilter )
{
2014-06-09 10:02:00 +02:00
if ( pnode - > pfilter - > IsRelevantAndUpdate ( tx ) )
2012-08-13 05:26:30 +02:00
pnode - > PushInventory ( inv ) ;
} else
pnode - > PushInventory ( inv ) ;
}
}
2013-08-22 18:09:32 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : RelayInv ( CInv & inv , const int minProtoVersion ) {
2015-07-08 02:37:23 +02:00
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( pnode - > nVersion > = minProtoVersion )
pnode - > PushInventory ( inv ) ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : RecordBytesRecv ( uint64_t bytes )
2013-08-22 18:09:32 +02:00
{
LOCK ( cs_totalBytesRecv ) ;
nTotalBytesRecv + = bytes ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : RecordBytesSent ( uint64_t bytes )
2013-08-22 18:09:32 +02:00
{
LOCK ( cs_totalBytesSent ) ;
nTotalBytesSent + = bytes ;
2015-09-02 17:03:27 +02:00
uint64_t now = GetTime ( ) ;
if ( nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now )
{
// timeframe expired, reset cycle
nMaxOutboundCycleStartTime = now ;
nMaxOutboundTotalBytesSentInCycle = 0 ;
}
// TODO, exclude whitebind peers
nMaxOutboundTotalBytesSentInCycle + = bytes ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : SetMaxOutboundTarget ( uint64_t limit )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
2017-09-11 16:13:30 +02:00
uint64_t recommendedMinimum = ( nMaxOutboundTimeframe / 600 ) * MaxBlockSize ( fDIP0001ActiveAtTip ) ;
2015-09-02 17:03:27 +02:00
nMaxOutboundLimit = limit ;
2015-11-06 00:05:06 +01:00
if ( limit > 0 & & limit < recommendedMinimum )
LogPrintf ( " Max outbound target is very small (%s bytes) and will be overshot. Recommended minimum is %s bytes. \n " , nMaxOutboundLimit , recommendedMinimum ) ;
2015-09-02 17:03:27 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CConnman : : GetMaxOutboundTarget ( )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
return nMaxOutboundLimit ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CConnman : : GetMaxOutboundTimeframe ( )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
return nMaxOutboundTimeframe ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CConnman : : GetMaxOutboundTimeLeftInCycle ( )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
if ( nMaxOutboundLimit = = 0 )
return 0 ;
if ( nMaxOutboundCycleStartTime = = 0 )
return nMaxOutboundTimeframe ;
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe ;
uint64_t now = GetTime ( ) ;
return ( cycleEndTime < now ) ? 0 : cycleEndTime - GetTime ( ) ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : SetMaxOutboundTimeframe ( uint64_t timeframe )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
if ( nMaxOutboundTimeframe ! = timeframe )
{
// reset measure-cycle in case of changing
// the timeframe
nMaxOutboundCycleStartTime = GetTime ( ) ;
}
nMaxOutboundTimeframe = timeframe ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CConnman : : OutboundTargetReached ( bool historicalBlockServingLimit )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
if ( nMaxOutboundLimit = = 0 )
return false ;
if ( historicalBlockServingLimit )
{
2017-09-07 17:59:00 +02:00
// keep a large enough buffer to at least relay each block once
2015-09-02 17:03:27 +02:00
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle ( ) ;
2017-09-11 16:13:30 +02:00
uint64_t buffer = timeLeftInCycle / 600 * MaxBlockSize ( fDIP0001ActiveAtTip ) ;
2015-09-02 17:03:27 +02:00
if ( buffer > = nMaxOutboundLimit | | nMaxOutboundTotalBytesSentInCycle > = nMaxOutboundLimit - buffer )
return true ;
}
else if ( nMaxOutboundTotalBytesSentInCycle > = nMaxOutboundLimit )
return true ;
return false ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CConnman : : GetOutboundTargetBytesLeft ( )
2015-09-02 17:03:27 +02:00
{
LOCK ( cs_totalBytesSent ) ;
if ( nMaxOutboundLimit = = 0 )
return 0 ;
return ( nMaxOutboundTotalBytesSentInCycle > = nMaxOutboundLimit ) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle ;
2013-08-22 18:09:32 +02:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CConnman : : GetTotalBytesRecv ( )
2013-08-22 18:09:32 +02:00
{
LOCK ( cs_totalBytesRecv ) ;
return nTotalBytesRecv ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CConnman : : GetTotalBytesSent ( )
2013-08-22 18:09:32 +02:00
{
LOCK ( cs_totalBytesSent ) ;
return nTotalBytesSent ;
}
2013-10-28 07:28:00 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
ServiceFlags CConnman : : GetLocalServices ( ) const
{
return nLocalServices ;
}
void CConnman : : SetBestHeight ( int height )
{
nBestHeight . store ( height , std : : memory_order_release ) ;
}
int CConnman : : GetBestHeight ( ) const
{
return nBestHeight . load ( std : : memory_order_acquire ) ;
}
unsigned int CConnman : : GetReceiveFloodSize ( ) const { return nReceiveFloodSize ; }
unsigned int CConnman : : GetSendBufferSize ( ) const { return nSendBufferMaxSize ; }
2013-11-29 16:33:34 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode : : CNode ( NodeId idIn , ServiceFlags nLocalServicesIn , int nMyStartingHeightIn , SOCKET hSocketIn , const CAddress & addrIn , const std : : string & addrNameIn , bool fInboundIn , bool fNetworkNodeIn ) :
2015-07-19 21:43:34 +02:00
addrKnown ( 5000 , 0.001 ) ,
2017-07-27 16:28:05 +02:00
filterInventoryKnown ( 50000 , 0.000001 ) ,
nSendVersion ( 0 )
2014-08-21 05:17:21 +02:00
{
2017-07-05 05:45:23 +02:00
nServices = NODE_NONE ;
nServicesExpected = NODE_NONE ;
2014-08-21 05:17:21 +02:00
hSocket = hSocketIn ;
nRecvVersion = INIT_PROTO_VERSION ;
nLastSend = 0 ;
nLastRecv = 0 ;
nSendBytes = 0 ;
nRecvBytes = 0 ;
2017-08-24 01:38:29 +02:00
nTimeConnected = GetSystemTimeInSeconds ( ) ;
2014-12-15 11:06:15 +01:00
nTimeOffset = 0 ;
2014-08-21 05:17:21 +02:00
addr = addrIn ;
addrName = addrNameIn = = " " ? addr . ToStringIPPort ( ) : addrNameIn ;
nVersion = 0 ;
2017-01-19 20:06:32 +01:00
nNumWarningsSkipped = 0 ;
nLastWarningTime = 0 ;
2014-08-21 05:17:21 +02:00
strSubVer = " " ;
fWhitelisted = false ;
fOneShot = false ;
fClient = false ; // set by version message
2017-07-17 12:39:12 +02:00
fFeeler = false ;
2014-08-21 05:17:21 +02:00
fInbound = fInboundIn ;
2016-07-30 13:05:41 +02:00
fNetworkNode = fNetworkNodeIn ;
2014-08-21 05:17:21 +02:00
fSuccessfullyConnected = false ;
fDisconnect = false ;
nRefCount = 0 ;
nSendSize = 0 ;
nSendOffset = 0 ;
2014-12-15 09:11:16 +01:00
hashContinue = uint256 ( ) ;
2014-08-21 05:17:21 +02:00
nStartingHeight = - 1 ;
2015-11-26 06:25:30 +01:00
filterInventoryKnown . reset ( ) ;
2014-08-21 05:17:21 +02:00
fGetAddr = false ;
2015-04-08 20:20:00 +02:00
nNextLocalAddrSend = 0 ;
nNextAddrSend = 0 ;
nNextInvSend = 0 ;
2014-08-21 05:17:21 +02:00
fRelayTxes = false ;
pfilter = new CBloomFilter ( ) ;
2017-07-12 13:13:38 +02:00
nLastBlockTime = 0 ;
nLastTXTime = 0 ;
2014-08-21 05:17:21 +02:00
nPingNonceSent = 0 ;
nPingUsecStart = 0 ;
nPingUsecTime = 0 ;
fPingQueued = false ;
2016-07-30 13:05:41 +02:00
fMasternode = false ;
2015-09-04 15:43:21 +02:00
nMinPingUsecTime = std : : numeric_limits < int64_t > : : max ( ) ;
2017-03-13 07:29:16 +01:00
vchKeyedNetGroup = CalculateKeyedNetGroup ( addr ) ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
id = idIn ;
nLocalServices = nLocalServicesIn ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
fPauseRecv = false ;
fPauseSend = false ;
nProcessQueueSize = 0 ;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
GetRandBytes ( ( unsigned char * ) & nLocalHostNonce , sizeof ( nLocalHostNonce ) ) ;
nMyStartingHeight = nMyStartingHeightIn ;
2017-06-29 03:51:10 +02:00
BOOST_FOREACH ( const std : : string & msg , getAllNetMessageTypes ( ) )
mapRecvBytesPerMsgCmd [ msg ] = 0 ;
mapRecvBytesPerMsgCmd [ NET_MESSAGE_COMMAND_OTHER ] = 0 ;
2014-08-21 05:17:21 +02:00
2016-07-30 13:05:41 +02:00
if ( fNetworkNode | | fInbound )
AddRef ( ) ;
2014-08-21 05:17:21 +02:00
if ( fLogIPs )
LogPrint ( " net " , " Added connection to %s peer=%d \n " , addrName , id ) ;
else
LogPrint ( " net " , " Added connection peer=%d \n " , id ) ;
}
CNode : : ~ CNode ( )
{
CloseSocket ( hSocket ) ;
if ( pfilter )
delete pfilter ;
}
void CNode : : AskFor ( const CInv & inv )
{
2017-01-18 16:23:49 +01:00
if ( mapAskFor . size ( ) > MAPASKFOR_MAX_SZ | | setAskFor . size ( ) > SETASKFOR_MAX_SZ ) {
2017-01-19 20:06:32 +01:00
int64_t nNow = GetTime ( ) ;
if ( nNow - nLastWarningTime > WARNING_INTERVAL ) {
LogPrintf ( " CNode::AskFor -- WARNING: inventory message dropped: mapAskFor.size = %d, setAskFor.size = %d, MAPASKFOR_MAX_SZ = %d, SETASKFOR_MAX_SZ = %d, nSkipped = %d, peer=%d \n " ,
mapAskFor . size ( ) , setAskFor . size ( ) , MAPASKFOR_MAX_SZ , SETASKFOR_MAX_SZ , nNumWarningsSkipped , id ) ;
nLastWarningTime = nNow ;
nNumWarningsSkipped = 0 ;
}
else {
+ + nNumWarningsSkipped ;
}
2014-09-09 09:18:05 +02:00
return ;
2017-01-18 16:23:49 +01:00
}
2015-11-23 02:54:23 +01:00
// a peer may not have multiple non-responded queue positions for a single inv item
2014-07-16 23:31:41 +02:00
if ( ! setAskFor . insert ( inv . hash ) . second )
return ;
2014-08-21 05:17:21 +02:00
// We're using mapAskFor as a priority queue,
// the key is the earliest time the request can be sent
int64_t nRequestTime ;
2016-04-11 18:52:29 +02:00
limitedmap < uint256 , int64_t > : : const_iterator it = mapAlreadyAskedFor . find ( inv . hash ) ;
2014-08-21 05:17:21 +02:00
if ( it ! = mapAlreadyAskedFor . end ( ) )
nRequestTime = it - > second ;
else
nRequestTime = 0 ;
2016-06-08 08:57:16 +02:00
2014-09-08 12:25:52 +02:00
LogPrint ( " net " , " askfor %s %d (%s) peer=%d \n " , inv . ToString ( ) , nRequestTime , DateTimeStrFormat ( " %H:%M:%S " , nRequestTime / 1000000 ) , id ) ;
2014-08-21 05:17:21 +02:00
// Make sure not to reuse time indexes to keep things in the same order
int64_t nNow = GetTimeMicros ( ) - 1000000 ;
static int64_t nLastTime ;
+ + nLastTime ;
nNow = std : : max ( nNow , nLastTime ) ;
nLastTime = nNow ;
// Each retry is 2 minutes after the last
nRequestTime = std : : max ( nRequestTime + 2 * 60 * 1000000 , nNow ) ;
if ( it ! = mapAlreadyAskedFor . end ( ) )
mapAlreadyAskedFor . update ( it , nRequestTime ) ;
else
2016-04-11 18:52:29 +02:00
mapAlreadyAskedFor . insert ( std : : make_pair ( inv . hash , nRequestTime ) ) ;
2014-08-21 05:17:21 +02:00
mapAskFor . insert ( std : : make_pair ( nRequestTime , inv ) ) ;
}
2017-08-17 20:37:22 +02:00
bool CConnman : : NodeFullyConnected ( const CNode * pnode )
{
return pnode & & pnode - > fSuccessfullyConnected & & ! pnode - > fDisconnect ;
}
2017-03-13 07:29:16 +01:00
std : : vector < unsigned char > CNode : : CalculateKeyedNetGroup ( CAddress & address )
{
if ( vchSecretKey . size ( ) = = 0 ) {
vchSecretKey . resize ( 32 , 0 ) ;
GetRandBytes ( vchSecretKey . data ( ) , vchSecretKey . size ( ) ) ;
}
std : : vector < unsigned char > vchGroup ;
CSHA256 hash ;
std : : vector < unsigned char > vch ( 32 ) ;
vchGroup = address . GetGroup ( ) ;
hash . Write ( begin_ptr ( vchGroup ) , vchGroup . size ( ) ) ;
hash . Write ( begin_ptr ( vchSecretKey ) , vchSecretKey . size ( ) ) ;
hash . Finalize ( begin_ptr ( vch ) ) ;
return vch ;
}
2017-07-27 16:28:05 +02:00
CDataStream CConnman : : BeginMessage ( CNode * pnode , int nVersion , int flags , const std : : string & sCommand )
{
return { SER_NETWORK , ( nVersion ? nVersion : pnode - > GetSendVersion ( ) ) | flags , CMessageHeader ( Params ( ) . MessageStart ( ) , sCommand . c_str ( ) , 0 ) } ;
}
void CConnman : : EndMessage ( CDataStream & strm )
{
// Set the size
assert ( strm . size ( ) > = CMessageHeader : : HEADER_SIZE ) ;
unsigned int nSize = strm . size ( ) - CMessageHeader : : HEADER_SIZE ;
WriteLE32 ( ( uint8_t * ) & strm [ CMessageHeader : : MESSAGE_SIZE_OFFSET ] , nSize ) ;
// Set the checksum
uint256 hash = Hash ( strm . begin ( ) + CMessageHeader : : HEADER_SIZE , strm . end ( ) ) ;
memcpy ( ( char * ) & strm [ CMessageHeader : : CHECKSUM_OFFSET ] , hash . begin ( ) , CMessageHeader : : CHECKSUM_SIZE ) ;
}
void CConnman : : PushMessage ( CNode * pnode , CDataStream & strm , const std : : string & sCommand )
{
if ( strm . empty ( ) )
return ;
unsigned int nSize = strm . size ( ) - CMessageHeader : : HEADER_SIZE ;
LogPrint ( " net " , " sending %s (%d bytes) peer=%d \n " , SanitizeString ( sCommand . c_str ( ) ) , nSize , pnode - > id ) ;
size_t nBytesSent = 0 ;
{
LOCK ( pnode - > cs_vSend ) ;
if ( pnode - > hSocket = = INVALID_SOCKET ) {
return ;
}
bool optimisticSend ( pnode - > vSendMsg . empty ( ) ) ;
pnode - > vSendMsg . emplace_back ( strm . begin ( ) , strm . end ( ) ) ;
//log total amount of bytes per command
pnode - > mapSendBytesPerMsgCmd [ sCommand ] + = strm . size ( ) ;
pnode - > nSendSize + = strm . size ( ) ;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586)
* net: fix typo causing the wrong receive buffer size
Surprisingly this hasn't been causing me any issues while testing, probably
because it requires lots of large blocks to be flying around.
Send/Recv corks need tests!
* net: make vRecvMsg a list so that we can use splice()
* net: make GetReceiveFloodSize public
This will be needed so that the message processor can cork incoming messages
* net: only disconnect if fDisconnect has been set
These conditions are problematic to check without locking, and we shouldn't be
relying on the refcount to disconnect.
* net: wait until the node is destroyed to delete its recv buffer
when vRecvMsg becomes a private buffer, it won't make sense to allow other
threads to mess with it anymore.
* net: set message deserialization version when it's actually time to deserialize
We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway.
* net: handle message accounting in ReceiveMsgBytes
This allows locking to be pushed down to only where it's needed
Also reuse the current time rather than checking multiple times.
* net: record bytes written before notifying the message processor
* net: Add a simple function for waking the message handler
This may be used publicly in the future
* net: remove useless comments
* net: remove redundant max sendbuffer size check
This is left-over from before there was proper accounting. Hitting 2x the
sendbuffer size should not be possible.
* net: rework the way that the messagehandler sleeps
In order to sleep accurately, the message handler needs to know if _any_ node
has more processing that it should do before the entire thread sleeps.
Rather than returning a value that represents whether ProcessMessages
encountered a message that should trigger a disconnnect, interpret the return
value as whether or not that node has more work to do.
Also, use a global fProcessWake value that can be set by other threads,
which takes precedence (for one cycle) over the messagehandler's decision.
Note that the previous behavior was to only process one message per loop
(except in the case of a bad checksum or invalid header). That was changed in
PR #3180.
The only change here in that regard is that the current node now falls to the
back of the processing queue for the bad checksum/invalid header cases.
* net: add a new message queue for the message processor
This separates the storage of messages from the net and queued messages for
processing, allowing the locks to be split.
* net: add a flag to indicate when a node's process queue is full
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.
* net: add a flag to indicate when a node's send buffer is full
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
* net: remove cs_vRecvMsg
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
if ( pnode - > nSendSize > nSendBufferMaxSize )
pnode - > fPauseSend = true ;
2017-07-27 16:28:05 +02:00
// If write queue empty, attempt "optimistic write"
if ( optimisticSend = = true )
nBytesSent = SocketSendData ( pnode ) ;
}
if ( nBytesSent )
RecordBytesSent ( nBytesSent ) ;
}
2017-08-17 20:37:22 +02:00
bool CConnman : : ForNode ( const CService & addr , std : : function < bool ( const CNode * pnode ) > cond , std : : function < bool ( CNode * pnode ) > func )
2015-06-19 15:27:37 +02:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * found = nullptr ;
LOCK ( cs_vNodes ) ;
for ( auto & & pnode : vNodes ) {
if ( ( CService ) pnode - > addr = = addr ) {
found = pnode ;
break ;
}
2015-06-19 15:27:37 +02:00
}
2017-08-17 20:37:22 +02:00
return found ! = nullptr & & cond ( found ) & & func ( found ) ;
2015-06-19 15:27:37 +02:00
}
2017-08-17 20:37:22 +02:00
bool CConnman : : ForNode ( NodeId id , std : : function < bool ( const CNode * pnode ) > cond , std : : function < bool ( CNode * pnode ) > func )
2015-06-19 15:27:37 +02:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CNode * found = nullptr ;
LOCK ( cs_vNodes ) ;
for ( auto & & pnode : vNodes ) {
if ( pnode - > id = = id ) {
found = pnode ;
break ;
}
2015-06-19 15:27:37 +02:00
}
2017-08-17 20:37:22 +02:00
return found ! = nullptr & & cond ( found ) & & func ( found ) ;
2015-06-19 15:27:37 +02:00
}
2015-04-08 20:20:00 +02:00
int64_t PoissonNextSend ( int64_t nNow , int average_interval_seconds ) {
return nNow + ( int64_t ) ( log1p ( GetRand ( 1ULL < < 48 ) * - 0.0000000000000035527136788 /* -1/2^48 */ ) * average_interval_seconds * - 1000000.0 + 0.5 ) ;
}
2017-03-05 20:16:12 +01:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
std : : vector < CNode * > CConnman : : CopyNodeVector ( )
2017-03-05 20:16:12 +01:00
{
std : : vector < CNode * > vecNodesCopy ;
LOCK ( cs_vNodes ) ;
for ( size_t i = 0 ; i < vNodes . size ( ) ; + + i ) {
CNode * pnode = vNodes [ i ] ;
pnode - > AddRef ( ) ;
vecNodesCopy . push_back ( pnode ) ;
}
return vecNodesCopy ;
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void CConnman : : ReleaseNodeVector ( const std : : vector < CNode * > & vecNodes )
2017-03-05 20:16:12 +01:00
{
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537)
* net: move CBanDB and CAddrDB out of net.h/cpp
This will eventually solve a circular dependency
* net: Create CConnman to encapsulate p2p connections
* net: Move socket binding into CConnman
* net: move OpenNetworkConnection into CConnman
* net: move ban and addrman functions into CConnman
* net: Add oneshot functions to CConnman
* net: move added node functions to CConnman
* net: Add most functions needed for vNodes to CConnman
* net: handle nodesignals in CConnman
* net: Pass CConnection to wallet rather than using the global
* net: Add rpc error for missing/disabled p2p functionality
* net: Pass CConnman around as needed
* gui: add NodeID to the peer table
* net: create generic functor accessors and move vNodes to CConnman
* net: move whitelist functions into CConnman
* net: move nLastNodeId to CConnman
* net: move nLocalHostNonce to CConnman
This behavior seems to have been quite racy and broken.
Move nLocalHostNonce into CNode, and check received nonces against all
non-fully-connected nodes. If there's a match, assume we've connected
to ourself.
* net: move messageHandlerCondition to CConnman
* net: move send/recv statistics to CConnman
* net: move SendBufferSize/ReceiveFloodSize to CConnman
* net: move nLocalServices/nRelevantServices to CConnman
These are in-turn passed to CNode at connection time. This allows us to offer
different services to different peers (or test the effects of doing so).
* net: move semOutbound and semMasternodeOutbound to CConnman
* net: SocketSendData returns written size
* net: move max/max-outbound to CConnman
* net: Pass best block known height into CConnman
CConnman then passes the current best height into CNode at creation time.
This way CConnman/CNode have no dependency on main for height, and the signals
only move in one direction.
This also helps to prevent identity leakage a tiny bit. Before this change, an
attacker could theoretically make 2 connections on different interfaces. They
would connect fully on one, and only establish the initial connection on the
other. Once they receive a new block, they would relay it to your first
connection, and immediately commence the version handshake on the second. Since
the new block height is reflected immediately, they could attempt to learn
whether the two connections were correlated.
This is, of course, incredibly unlikely to work due to the small timings
involved and receipt from other senders. But it doesn't hurt to lock-in
nBestHeight at the time of connection, rather than letting the remote choose
the time.
* net: pass CClientUIInterface into CConnman
* net: Drop StartNode/StopNode and use CConnman directly
* net: Introduce CConnection::Options to avoid passing so many params
* net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options
* net: move vNodesDisconnected into CConnman
* Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting
* Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead
* net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
LOCK ( cs_vNodes ) ;
2017-03-05 20:16:12 +01:00
for ( size_t i = 0 ; i < vecNodes . size ( ) ; + + i ) {
CNode * pnode = vecNodes [ i ] ;
pnode - > Release ( ) ;
}
}