neobytes/src/uint256.h

605 lines
16 KiB
C
Raw Normal View History

2010-07-14 17:54:31 +02:00
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
2010-07-14 17:54:31 +02:00
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H
#include <assert.h>
#include <stdexcept>
#include <stdint.h>
#include <stdio.h>
2010-07-14 17:54:31 +02:00
#include <string>
#include <string.h>
#include <vector>
extern const signed char p_util_hexdigit[256]; // defined in util.cpp
inline signed char HexDigit(char c)
{
return p_util_hexdigit[(unsigned char)c];
}
2010-07-14 17:54:31 +02:00
class uint_error : public std::runtime_error {
public:
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
};
/** Template base class for unsigned big integers. */
2010-07-14 17:54:31 +02:00
template<unsigned int BITS>
class base_uint
{
private:
2010-07-14 17:54:31 +02:00
enum { WIDTH=BITS/32 };
uint32_t pn[WIDTH];
2010-07-14 17:54:31 +02:00
public:
base_uint()
{
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
}
base_uint(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
}
base_uint& operator=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
return *this;
}
base_uint(uint64_t b)
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
}
explicit base_uint(const std::string& str)
{
SetHex(str);
}
explicit base_uint(const std::vector<unsigned char>& vch)
{
if (vch.size() != sizeof(pn))
throw uint_error("Converting vector of wrong size to base_uint");
memcpy(pn, &vch[0], sizeof(pn));
}
2010-07-14 17:54:31 +02:00
bool operator!() const
{
for (int i = 0; i < WIDTH; i++)
if (pn[i] != 0)
return false;
return true;
}
const base_uint operator~() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
return ret;
}
const base_uint operator-() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
ret++;
return ret;
}
double getdouble() const
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
2010-07-14 17:54:31 +02:00
base_uint& operator=(uint64_t b)
2010-07-14 17:54:31 +02:00
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
return *this;
}
base_uint& operator^=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] ^= b.pn[i];
return *this;
}
base_uint& operator&=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] &= b.pn[i];
return *this;
}
base_uint& operator|=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] |= b.pn[i];
return *this;
}
base_uint& operator^=(uint64_t b)
2010-07-14 17:54:31 +02:00
{
pn[0] ^= (unsigned int)b;
pn[1] ^= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator|=(uint64_t b)
2010-07-14 17:54:31 +02:00
{
pn[0] |= (unsigned int)b;
pn[1] |= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator<<=(unsigned int shift)
{
base_uint a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++)
{
if (i+k+1 < WIDTH && shift != 0)
pn[i+k+1] |= (a.pn[i] >> (32-shift));
if (i+k < WIDTH)
pn[i+k] |= (a.pn[i] << shift);
}
return *this;
}
base_uint& operator>>=(unsigned int shift)
{
base_uint a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++)
{
if (i-k-1 >= 0 && shift != 0)
pn[i-k-1] |= (a.pn[i] << (32-shift));
if (i-k >= 0)
pn[i-k] |= (a.pn[i] >> shift);
}
return *this;
}
base_uint& operator+=(const base_uint& b)
{
uint64_t carry = 0;
2010-07-14 17:54:31 +02:00
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + pn[i] + b.pn[i];
2010-07-14 17:54:31 +02:00
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator-=(const base_uint& b)
{
*this += -b;
return *this;
}
base_uint& operator+=(uint64_t b64)
2010-07-14 17:54:31 +02:00
{
base_uint b;
b = b64;
*this += b;
return *this;
}
base_uint& operator-=(uint64_t b64)
2010-07-14 17:54:31 +02:00
{
base_uint b;
b = b64;
*this += -b;
return *this;
}
base_uint& operator*=(uint32_t b32)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator*=(const base_uint& b)
{
base_uint a = *this;
*this = 0;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
return *this;
}
base_uint& operator/=(const base_uint& b)
{
base_uint div = b; // make a copy, so we can shift.
base_uint num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and nun align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
2010-07-14 17:54:31 +02:00
base_uint& operator++()
{
// prefix operator
int i = 0;
while (++pn[i] == 0 && i < WIDTH-1)
i++;
return *this;
}
const base_uint operator++(int)
{
// postfix operator
const base_uint ret = *this;
++(*this);
return ret;
}
base_uint& operator--()
{
// prefix operator
int i = 0;
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
2010-07-14 17:54:31 +02:00
i++;
return *this;
}
const base_uint operator--(int)
{
// postfix operator
const base_uint ret = *this;
--(*this);
return ret;
}
friend inline bool operator<(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] < b.pn[i])
return true;
else if (a.pn[i] > b.pn[i])
return false;
}
return false;
}
friend inline bool operator<=(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] < b.pn[i])
return true;
else if (a.pn[i] > b.pn[i])
return false;
}
return true;
}
friend inline bool operator>(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] > b.pn[i])
return true;
else if (a.pn[i] < b.pn[i])
return false;
}
return false;
}
friend inline bool operator>=(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] > b.pn[i])
return true;
else if (a.pn[i] < b.pn[i])
return false;
}
return true;
}
friend inline bool operator==(const base_uint& a, const base_uint& b)
{
for (int i = 0; i < base_uint::WIDTH; i++)
if (a.pn[i] != b.pn[i])
return false;
return true;
}
friend inline bool operator==(const base_uint& a, uint64_t b)
2010-07-14 17:54:31 +02:00
{
if (a.pn[0] != (unsigned int)b)
return false;
if (a.pn[1] != (unsigned int)(b >> 32))
return false;
for (int i = 2; i < base_uint::WIDTH; i++)
if (a.pn[i] != 0)
return false;
return true;
}
friend inline bool operator!=(const base_uint& a, const base_uint& b)
{
return (!(a == b));
}
friend inline bool operator!=(const base_uint& a, uint64_t b)
2010-07-14 17:54:31 +02:00
{
return (!(a == b));
}
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
2010-07-14 17:54:31 +02:00
std::string GetHex() const
{
char psz[sizeof(pn)*2 + 1];
for (unsigned int i = 0; i < sizeof(pn); i++)
2010-07-14 17:54:31 +02:00
sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]);
return std::string(psz, psz + sizeof(pn)*2);
2010-07-14 17:54:31 +02:00
}
void SetHex(const char* psz)
{
memset(pn,0,sizeof(pn));
2010-07-14 17:54:31 +02:00
// skip leading spaces
while (isspace(*psz))
psz++;
// skip 0x
if (psz[0] == '0' && tolower(psz[1]) == 'x')
psz += 2;
// hex string to uint
const char* pbegin = psz;
while (::HexDigit(*psz) != -1)
2010-07-14 17:54:31 +02:00
psz++;
psz--;
unsigned char* p1 = (unsigned char*)pn;
unsigned char* pend = p1 + WIDTH * 4;
while (psz >= pbegin && p1 < pend)
{
*p1 = ::HexDigit(*psz--);
2010-07-14 17:54:31 +02:00
if (psz >= pbegin)
{
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
2010-07-14 17:54:31 +02:00
p1++;
}
}
}
void SetHex(const std::string& str)
{
SetHex(str.c_str());
}
std::string ToString() const
{
return (GetHex());
}
unsigned char* begin()
{
return (unsigned char*)&pn[0];
}
unsigned char* end()
{
return (unsigned char*)&pn[WIDTH];
}
const unsigned char* begin() const
{
return (unsigned char*)&pn[0];
}
const unsigned char* end() const
{
return (unsigned char*)&pn[WIDTH];
}
unsigned int size() const
2010-07-14 17:54:31 +02:00
{
return sizeof(pn);
}
// Returns the position of the highest bit set plus one, or zero if the
// value is zero.
unsigned int bits() const
{
for (int pos = WIDTH-1; pos >= 0; pos--) {
if (pn[pos]) {
for (int bits = 31; bits > 0; bits--) {
if (pn[pos] & 1<<bits)
return 32*pos + bits + 1;
}
return 32*pos + 1;
}
}
return 0;
}
uint64_t GetLow64() const
{
assert(WIDTH >= 2);
return pn[0] | (uint64_t)pn[1] << 32;
}
2010-07-14 17:54:31 +02:00
unsigned int GetSerializeSize(int nType, int nVersion) const
2010-07-14 17:54:31 +02:00
{
return sizeof(pn);
}
template<typename Stream>
void Serialize(Stream& s, int nType, int nVersion) const
2010-07-14 17:54:31 +02:00
{
s.write((char*)pn, sizeof(pn));
}
template<typename Stream>
void Unserialize(Stream& s, int nType, int nVersion)
2010-07-14 17:54:31 +02:00
{
s.read((char*)pn, sizeof(pn));
}
};
/** 160-bit unsigned big integer. */
class uint160 : public base_uint<160> {
2010-07-14 17:54:31 +02:00
public:
uint160() {}
uint160(const base_uint<160>& b) : base_uint<160>(b) {}
uint160(uint64_t b) : base_uint<160>(b) {}
explicit uint160(const std::string& str) : base_uint<160>(str) {}
explicit uint160(const std::vector<unsigned char>& vch) : base_uint<160>(vch) {}
2010-07-14 17:54:31 +02:00
};
/** 256-bit unsigned big integer. */
class uint256 : public base_uint<256> {
2010-07-14 17:54:31 +02:00
public:
uint256() {}
uint256(const base_uint<256>& b) : base_uint<256>(b) {}
uint256(uint64_t b) : base_uint<256>(b) {}
explicit uint256(const std::string& str) : base_uint<256>(str) {}
explicit uint256(const std::vector<unsigned char>& vch) : base_uint<256>(vch) {}
// The "compact" format is a representation of a whole
// number N using an unsigned 32bit number similar to a
// floating point format.
// The most significant 8 bits are the unsigned exponent of base 256.
// This exponent can be thought of as "number of bytes of N".
// The lower 23 bits are the mantissa.
// Bit number 24 (0x800000) represents the sign of N.
// N = (-1^sign) * mantissa * 256^(exponent-3)
//
// Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
// MPI uses the most significant bit of the first byte as sign.
// Thus 0x1234560000 is compact (0x05123456)
// and 0xc0de000000 is compact (0x0600c0de)
// (0x05c0de00) would be -0x40de000000
//
// Bitcoin only uses this "compact" format for encoding difficulty
// targets, which are unsigned 256bit quantities. Thus, all the
// complexities of the sign bit and using base 256 are probably an
// implementation accident.
//
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3)
{
nWord >>= 8*(3-nSize);
*this = nWord;
}
else
{
*this = nWord;
*this <<= 8*(nSize-3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t GetCompact(bool fNegative = false) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3)
nCompact = GetLow64() << 8*(3-nSize);
else
{
uint256 bn = *this >> 8*(nSize-3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000)
{
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
2010-07-14 17:54:31 +02:00
};
#endif