neobytes/src/rpcmining.cpp

708 lines
28 KiB
C++
Raw Normal View History

// Copyright (c) 2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "amount.h"
#include "chainparams.h"
#include "core_io.h"
#include "init.h"
#include "net.h"
#include "main.h"
#include "miner.h"
#include "pow.h"
#include "rpcserver.h"
#include "util.h"
#ifdef ENABLE_WALLET
#include "db.h"
#include "wallet.h"
#endif
#include <stdint.h>
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 13:19:54 +01:00
#include <boost/assign/list_of.hpp>
#include "json/json_spirit_utils.h"
#include "json/json_spirit_value.h"
using namespace json_spirit;
using namespace std;
/**
* Return average network hashes per second based on the last 'lookup' blocks,
* or from the last difficulty change if 'lookup' is nonpositive.
* If 'height' is nonnegative, compute the estimate at the time when a given block was found.
*/
Value GetNetworkHashPS(int lookup, int height) {
CBlockIndex *pb = chainActive.Tip();
if (height >= 0 && height < chainActive.Height())
pb = chainActive[height];
if (pb == NULL || !pb->nHeight)
return 0;
// If lookup is -1, then use blocks since last difficulty change.
if (lookup <= 0)
lookup = pb->nHeight % Params().DifficultyAdjustmentInterval() + 1;
// If lookup is larger than chain, then set it to chain length.
if (lookup > pb->nHeight)
lookup = pb->nHeight;
CBlockIndex *pb0 = pb;
int64_t minTime = pb0->GetBlockTime();
int64_t maxTime = minTime;
for (int i = 0; i < lookup; i++) {
pb0 = pb0->pprev;
int64_t time = pb0->GetBlockTime();
minTime = std::min(time, minTime);
maxTime = std::max(time, maxTime);
}
// In case there's a situation where minTime == maxTime, we don't want a divide by zero exception.
if (minTime == maxTime)
return 0;
arith_uint256 workDiff = pb->nChainWork - pb0->nChainWork;
int64_t timeDiff = maxTime - minTime;
return (int64_t)(workDiff.getdouble() / timeDiff);
}
Value getnetworkhashps(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 2)
throw runtime_error(
"getnetworkhashps ( blocks height )\n"
"\nReturns the estimated network hashes per second based on the last n blocks.\n"
"Pass in [blocks] to override # of blocks, -1 specifies since last difficulty change.\n"
"Pass in [height] to estimate the network speed at the time when a certain block was found.\n"
"\nArguments:\n"
"1. blocks (numeric, optional, default=120) The number of blocks, or -1 for blocks since last difficulty change.\n"
"2. height (numeric, optional, default=-1) To estimate at the time of the given height.\n"
"\nResult:\n"
"x (numeric) Hashes per second estimated\n"
"\nExamples:\n"
+ HelpExampleCli("getnetworkhashps", "")
+ HelpExampleRpc("getnetworkhashps", "")
);
LOCK(cs_main);
return GetNetworkHashPS(params.size() > 0 ? params[0].get_int() : 120, params.size() > 1 ? params[1].get_int() : -1);
}
#ifdef ENABLE_WALLET
Value getgenerate(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getgenerate\n"
"\nReturn if the server is set to generate coins or not. The default is false.\n"
"It is set with the command line argument -gen (or bitcoin.conf setting gen)\n"
"It can also be set with the setgenerate call.\n"
"\nResult\n"
"true|false (boolean) If the server is set to generate coins or not\n"
"\nExamples:\n"
+ HelpExampleCli("getgenerate", "")
+ HelpExampleRpc("getgenerate", "")
);
LOCK(cs_main);
return GetBoolArg("-gen", false);
}
Value setgenerate(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"setgenerate generate ( genproclimit )\n"
"\nSet 'generate' true or false to turn generation on or off.\n"
"Generation is limited to 'genproclimit' processors, -1 is unlimited.\n"
"See the getgenerate call for the current setting.\n"
"\nArguments:\n"
"1. generate (boolean, required) Set to true to turn on generation, off to turn off.\n"
"2. genproclimit (numeric, optional) Set the processor limit for when generation is on. Can be -1 for unlimited.\n"
" Note: in -regtest mode, genproclimit controls how many blocks are generated immediately.\n"
"\nResult\n"
"[ blockhashes ] (array, -regtest only) hashes of blocks generated\n"
"\nExamples:\n"
"\nSet the generation on with a limit of one processor\n"
+ HelpExampleCli("setgenerate", "true 1") +
"\nCheck the setting\n"
+ HelpExampleCli("getgenerate", "") +
"\nTurn off generation\n"
+ HelpExampleCli("setgenerate", "false") +
"\nUsing json rpc\n"
+ HelpExampleRpc("setgenerate", "true, 1")
);
if (pwalletMain == NULL)
throw JSONRPCError(RPC_METHOD_NOT_FOUND, "Method not found (disabled)");
bool fGenerate = true;
if (params.size() > 0)
fGenerate = params[0].get_bool();
int nGenProcLimit = -1;
if (params.size() > 1)
{
nGenProcLimit = params[1].get_int();
if (nGenProcLimit == 0)
fGenerate = false;
}
// -regtest mode: don't return until nGenProcLimit blocks are generated
2014-03-09 21:36:55 +01:00
if (fGenerate && Params().MineBlocksOnDemand())
{
int nHeightStart = 0;
int nHeightEnd = 0;
int nHeight = 0;
int nGenerate = (nGenProcLimit > 0 ? nGenProcLimit : 1);
CReserveKey reservekey(pwalletMain);
{ // Don't keep cs_main locked
LOCK(cs_main);
nHeightStart = chainActive.Height();
nHeight = nHeightStart;
nHeightEnd = nHeightStart+nGenerate;
}
unsigned int nExtraNonce = 0;
Array blockHashes;
while (nHeight < nHeightEnd)
{
auto_ptr<CBlockTemplate> pblocktemplate(CreateNewBlockWithKey(reservekey));
if (!pblocktemplate.get())
throw JSONRPCError(RPC_INTERNAL_ERROR, "Wallet keypool empty");
CBlock *pblock = &pblocktemplate->block;
{
LOCK(cs_main);
IncrementExtraNonce(pblock, chainActive.Tip(), nExtraNonce);
}
while (!CheckProofOfWork(pblock->GetHash(), pblock->nBits)) {
// Yes, there is a chance every nonce could fail to satisfy the -regtest
// target -- 1 in 2^(2^32). That ain't gonna happen.
++pblock->nNonce;
}
CValidationState state;
if (!ProcessNewBlock(state, NULL, pblock))
throw JSONRPCError(RPC_INTERNAL_ERROR, "ProcessNewBlock, block not accepted");
++nHeight;
blockHashes.push_back(pblock->GetHash().GetHex());
}
return blockHashes;
}
else // Not -regtest: start generate thread, return immediately
{
mapArgs["-gen"] = (fGenerate ? "1" : "0");
mapArgs ["-genproclimit"] = itostr(nGenProcLimit);
GenerateBitcoins(fGenerate, pwalletMain, nGenProcLimit);
}
return Value::null;
}
#endif
Value getmininginfo(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getmininginfo\n"
"\nReturns a json object containing mining-related information."
"\nResult:\n"
"{\n"
" \"blocks\": nnn, (numeric) The current block\n"
" \"currentblocksize\": nnn, (numeric) The last block size\n"
" \"currentblocktx\": nnn, (numeric) The last block transaction\n"
" \"difficulty\": xxx.xxxxx (numeric) The current difficulty\n"
" \"errors\": \"...\" (string) Current errors\n"
" \"generate\": true|false (boolean) If the generation is on or off (see getgenerate or setgenerate calls)\n"
" \"genproclimit\": n (numeric) The processor limit for generation. -1 if no generation. (see getgenerate or setgenerate calls)\n"
" \"pooledtx\": n (numeric) The size of the mem pool\n"
" \"testnet\": true|false (boolean) If using testnet or not\n"
" \"chain\": \"xxxx\", (string) current network name as defined in BIP70 (main, test, regtest)\n"
"}\n"
"\nExamples:\n"
+ HelpExampleCli("getmininginfo", "")
+ HelpExampleRpc("getmininginfo", "")
);
LOCK(cs_main);
Object obj;
obj.push_back(Pair("blocks", (int)chainActive.Height()));
obj.push_back(Pair("currentblocksize", (uint64_t)nLastBlockSize));
obj.push_back(Pair("currentblocktx", (uint64_t)nLastBlockTx));
obj.push_back(Pair("difficulty", (double)GetDifficulty()));
obj.push_back(Pair("errors", GetWarnings("statusbar")));
obj.push_back(Pair("genproclimit", (int)GetArg("-genproclimit", -1)));
obj.push_back(Pair("networkhashps", getnetworkhashps(params, false)));
obj.push_back(Pair("pooledtx", (uint64_t)mempool.size()));
obj.push_back(Pair("testnet", Params().TestnetToBeDeprecatedFieldRPC()));
obj.push_back(Pair("chain", Params().NetworkIDString()));
#ifdef ENABLE_WALLET
obj.push_back(Pair("generate", getgenerate(params, false)));
#endif
return obj;
}
// NOTE: Unlike wallet RPC (which use BTC values), mining RPCs follow GBT (BIP 22) in using satoshi amounts
Value prioritisetransaction(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 3)
throw runtime_error(
"prioritisetransaction <txid> <priority delta> <fee delta>\n"
"Accepts the transaction into mined blocks at a higher (or lower) priority\n"
"\nArguments:\n"
"1. \"txid\" (string, required) The transaction id.\n"
"2. priority delta (numeric, required) The priority to add or subtract.\n"
" The transaction selection algorithm considers the tx as it would have a higher priority.\n"
" (priority of a transaction is calculated: coinage * value_in_satoshis / txsize) \n"
"3. fee delta (numeric, required) The fee value (in satoshis) to add (or subtract, if negative).\n"
" The fee is not actually paid, only the algorithm for selecting transactions into a block\n"
" considers the transaction as it would have paid a higher (or lower) fee.\n"
"\nResult\n"
"true (boolean) Returns true\n"
"\nExamples:\n"
+ HelpExampleCli("prioritisetransaction", "\"txid\" 0.0 10000")
+ HelpExampleRpc("prioritisetransaction", "\"txid\", 0.0, 10000")
);
LOCK(cs_main);
uint256 hash = ParseHashStr(params[0].get_str(), "txid");
CAmount nAmount = params[2].get_int64();
mempool.PrioritiseTransaction(hash, params[0].get_str(), params[1].get_real(), nAmount);
return true;
}
// NOTE: Assumes a conclusive result; if result is inconclusive, it must be handled by caller
static Value BIP22ValidationResult(const CValidationState& state)
{
if (state.IsValid())
return Value::null;
std::string strRejectReason = state.GetRejectReason();
if (state.IsError())
throw JSONRPCError(RPC_VERIFY_ERROR, strRejectReason);
if (state.IsInvalid())
{
if (strRejectReason.empty())
return "rejected";
return strRejectReason;
}
// Should be impossible
return "valid?";
}
Value getblocktemplate(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"getblocktemplate ( \"jsonrequestobject\" )\n"
"\nIf the request parameters include a 'mode' key, that is used to explicitly select between the default 'template' request or a 'proposal'.\n"
"It returns data needed to construct a block to work on.\n"
"See https://en.bitcoin.it/wiki/BIP_0022 for full specification.\n"
"\nArguments:\n"
"1. \"jsonrequestobject\" (string, optional) A json object in the following spec\n"
" {\n"
" \"mode\":\"template\" (string, optional) This must be set to \"template\" or omitted\n"
" \"capabilities\":[ (array, optional) A list of strings\n"
" \"support\" (string) client side supported feature, 'longpoll', 'coinbasetxn', 'coinbasevalue', 'proposal', 'serverlist', 'workid'\n"
" ,...\n"
" ]\n"
" }\n"
"\n"
"\nResult:\n"
"{\n"
" \"version\" : n, (numeric) The block version\n"
" \"previousblockhash\" : \"xxxx\", (string) The hash of current highest block\n"
" \"transactions\" : [ (array) contents of non-coinbase transactions that should be included in the next block\n"
" {\n"
" \"data\" : \"xxxx\", (string) transaction data encoded in hexadecimal (byte-for-byte)\n"
" \"hash\" : \"xxxx\", (string) hash/id encoded in little-endian hexadecimal\n"
" \"depends\" : [ (array) array of numbers \n"
" n (numeric) transactions before this one (by 1-based index in 'transactions' list) that must be present in the final block if this one is\n"
" ,...\n"
" ],\n"
" \"fee\": n, (numeric) difference in value between transaction inputs and outputs (in Satoshis); for coinbase transactions, this is a negative Number of the total collected block fees (ie, not including the block subsidy); if key is not present, fee is unknown and clients MUST NOT assume there isn't one\n"
" \"sigops\" : n, (numeric) total number of SigOps, as counted for purposes of block limits; if key is not present, sigop count is unknown and clients MUST NOT assume there aren't any\n"
" \"required\" : true|false (boolean) if provided and true, this transaction must be in the final block\n"
" }\n"
" ,...\n"
" ],\n"
" \"coinbaseaux\" : { (json object) data that should be included in the coinbase's scriptSig content\n"
" \"flags\" : \"flags\" (string) \n"
" },\n"
" \"coinbasevalue\" : n, (numeric) maximum allowable input to coinbase transaction, including the generation award and transaction fees (in Satoshis)\n"
" \"coinbasetxn\" : { ... }, (json object) information for coinbase transaction\n"
" \"target\" : \"xxxx\", (string) The hash target\n"
" \"mintime\" : xxx, (numeric) The minimum timestamp appropriate for next block time in seconds since epoch (Jan 1 1970 GMT)\n"
" \"mutable\" : [ (array of string) list of ways the block template may be changed \n"
" \"value\" (string) A way the block template may be changed, e.g. 'time', 'transactions', 'prevblock'\n"
" ,...\n"
" ],\n"
" \"noncerange\" : \"00000000ffffffff\", (string) A range of valid nonces\n"
" \"sigoplimit\" : n, (numeric) limit of sigops in blocks\n"
" \"sizelimit\" : n, (numeric) limit of block size\n"
" \"curtime\" : ttt, (numeric) current timestamp in seconds since epoch (Jan 1 1970 GMT)\n"
" \"bits\" : \"xxx\", (string) compressed target of next block\n"
" \"height\" : n (numeric) The height of the next block\n"
"}\n"
"\nExamples:\n"
+ HelpExampleCli("getblocktemplate", "")
+ HelpExampleRpc("getblocktemplate", "")
);
LOCK(cs_main);
std::string strMode = "template";
2012-05-13 06:43:24 +02:00
Value lpval = Value::null;
if (params.size() > 0)
{
const Object& oparam = params[0].get_obj();
const Value& modeval = find_value(oparam, "mode");
if (modeval.type() == str_type)
strMode = modeval.get_str();
else if (modeval.type() == null_type)
{
/* Do nothing */
}
else
throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid mode");
2012-05-13 06:43:24 +02:00
lpval = find_value(oparam, "longpollid");
2012-09-10 04:55:03 +02:00
if (strMode == "proposal")
{
const Value& dataval = find_value(oparam, "data");
if (dataval.type() != str_type)
throw JSONRPCError(RPC_TYPE_ERROR, "Missing data String key for proposal");
CBlock block;
if (!DecodeHexBlk(block, dataval.get_str()))
throw JSONRPCError(RPC_DESERIALIZATION_ERROR, "Block decode failed");
uint256 hash = block.GetHash();
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end()) {
CBlockIndex *pindex = mi->second;
if (pindex->IsValid(BLOCK_VALID_SCRIPTS))
return "duplicate";
if (pindex->nStatus & BLOCK_FAILED_MASK)
return "duplicate-invalid";
return "duplicate-inconclusive";
}
CBlockIndex* const pindexPrev = chainActive.Tip();
// TestBlockValidity only supports blocks built on the current Tip
if (block.hashPrevBlock != pindexPrev->GetBlockHash())
return "inconclusive-not-best-prevblk";
CValidationState state;
TestBlockValidity(state, block, pindexPrev, false, true);
return BIP22ValidationResult(state);
}
}
if (strMode != "template")
throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid mode");
if (vNodes.empty())
throw JSONRPCError(RPC_CLIENT_NOT_CONNECTED, "Bitcoin is not connected!");
if (IsInitialBlockDownload())
throw JSONRPCError(RPC_CLIENT_IN_INITIAL_DOWNLOAD, "Bitcoin is downloading blocks...");
static unsigned int nTransactionsUpdatedLast;
2012-05-13 06:43:24 +02:00
if (lpval.type() != null_type)
{
// Wait to respond until either the best block changes, OR a minute has passed and there are more transactions
uint256 hashWatchedChain;
boost::system_time checktxtime;
unsigned int nTransactionsUpdatedLastLP;
if (lpval.type() == str_type)
{
// Format: <hashBestChain><nTransactionsUpdatedLast>
std::string lpstr = lpval.get_str();
hashWatchedChain.SetHex(lpstr.substr(0, 64));
nTransactionsUpdatedLastLP = atoi64(lpstr.substr(64));
}
else
{
// NOTE: Spec does not specify behaviour for non-string longpollid, but this makes testing easier
hashWatchedChain = chainActive.Tip()->GetBlockHash();
nTransactionsUpdatedLastLP = nTransactionsUpdatedLast;
}
// Release the wallet and main lock while waiting
LEAVE_CRITICAL_SECTION(cs_main);
{
checktxtime = boost::get_system_time() + boost::posix_time::minutes(1);
boost::unique_lock<boost::mutex> lock(csBestBlock);
while (chainActive.Tip()->GetBlockHash() == hashWatchedChain && IsRPCRunning())
{
if (!cvBlockChange.timed_wait(lock, checktxtime))
{
// Timeout: Check transactions for update
if (mempool.GetTransactionsUpdated() != nTransactionsUpdatedLastLP)
break;
checktxtime += boost::posix_time::seconds(10);
}
}
}
ENTER_CRITICAL_SECTION(cs_main);
if (!IsRPCRunning())
throw JSONRPCError(RPC_CLIENT_NOT_CONNECTED, "Shutting down");
// TODO: Maybe recheck connections/IBD and (if something wrong) send an expires-immediately template to stop miners?
}
// Update block
static CBlockIndex* pindexPrev;
static int64_t nStart;
static CBlockTemplate* pblocktemplate;
if (pindexPrev != chainActive.Tip() ||
(mempool.GetTransactionsUpdated() != nTransactionsUpdatedLast && GetTime() - nStart > 5))
{
// Clear pindexPrev so future calls make a new block, despite any failures from here on
pindexPrev = NULL;
// Store the pindexBest used before CreateNewBlock, to avoid races
nTransactionsUpdatedLast = mempool.GetTransactionsUpdated();
CBlockIndex* pindexPrevNew = chainActive.Tip();
nStart = GetTime();
// Create new block
if(pblocktemplate)
{
delete pblocktemplate;
pblocktemplate = NULL;
}
CScript scriptDummy = CScript() << OP_TRUE;
pblocktemplate = CreateNewBlock(scriptDummy);
if (!pblocktemplate)
throw JSONRPCError(RPC_OUT_OF_MEMORY, "Out of memory");
// Need to update only after we know CreateNewBlock succeeded
pindexPrev = pindexPrevNew;
}
CBlock* pblock = &pblocktemplate->block; // pointer for convenience
// Update nTime
2014-06-28 14:03:06 +02:00
UpdateTime(pblock, pindexPrev);
pblock->nNonce = 0;
2012-09-10 04:55:03 +02:00
static const Array aCaps = boost::assign::list_of("proposal");
Array transactions;
map<uint256, int64_t> setTxIndex;
int i = 0;
BOOST_FOREACH (CTransaction& tx, pblock->vtx)
{
uint256 txHash = tx.GetHash();
setTxIndex[txHash] = i++;
if (tx.IsCoinBase())
continue;
Object entry;
entry.push_back(Pair("data", EncodeHexTx(tx)));
entry.push_back(Pair("hash", txHash.GetHex()));
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
Array deps;
BOOST_FOREACH (const CTxIn &in, tx.vin)
{
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (setTxIndex.count(in.prevout.hash))
deps.push_back(setTxIndex[in.prevout.hash]);
}
entry.push_back(Pair("depends", deps));
int index_in_template = i - 1;
entry.push_back(Pair("fee", pblocktemplate->vTxFees[index_in_template]));
entry.push_back(Pair("sigops", pblocktemplate->vTxSigOps[index_in_template]));
transactions.push_back(entry);
}
Object aux;
aux.push_back(Pair("flags", HexStr(COINBASE_FLAGS.begin(), COINBASE_FLAGS.end())));
arith_uint256 hashTarget = arith_uint256().SetCompact(pblock->nBits);
static Array aMutable;
if (aMutable.empty())
{
aMutable.push_back("time");
aMutable.push_back("transactions");
aMutable.push_back("prevblock");
}
Object result;
2012-09-10 04:55:03 +02:00
result.push_back(Pair("capabilities", aCaps));
result.push_back(Pair("version", pblock->nVersion));
result.push_back(Pair("previousblockhash", pblock->hashPrevBlock.GetHex()));
result.push_back(Pair("transactions", transactions));
result.push_back(Pair("coinbaseaux", aux));
result.push_back(Pair("coinbasevalue", (int64_t)pblock->vtx[0].vout[0].nValue));
2012-05-13 06:43:24 +02:00
result.push_back(Pair("longpollid", chainActive.Tip()->GetBlockHash().GetHex() + i64tostr(nTransactionsUpdatedLast)));
result.push_back(Pair("target", hashTarget.GetHex()));
result.push_back(Pair("mintime", (int64_t)pindexPrev->GetMedianTimePast()+1));
result.push_back(Pair("mutable", aMutable));
result.push_back(Pair("noncerange", "00000000ffffffff"));
result.push_back(Pair("sigoplimit", (int64_t)MAX_BLOCK_SIGOPS));
result.push_back(Pair("sizelimit", (int64_t)MAX_BLOCK_SIZE));
2014-06-28 23:36:06 +02:00
result.push_back(Pair("curtime", pblock->GetBlockTime()));
2014-06-27 13:28:08 +02:00
result.push_back(Pair("bits", strprintf("%08x", pblock->nBits)));
result.push_back(Pair("height", (int64_t)(pindexPrev->nHeight+1)));
return result;
}
class submitblock_StateCatcher : public CValidationInterface
{
public:
uint256 hash;
bool found;
CValidationState state;
submitblock_StateCatcher(const uint256 &hashIn) : hash(hashIn), found(false), state() {};
protected:
virtual void BlockChecked(const CBlock& block, const CValidationState& stateIn) {
if (block.GetHash() != hash)
return;
found = true;
state = stateIn;
};
};
Value submitblock(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"submitblock \"hexdata\" ( \"jsonparametersobject\" )\n"
"\nAttempts to submit new block to network.\n"
"The 'jsonparametersobject' parameter is currently ignored.\n"
"See https://en.bitcoin.it/wiki/BIP_0022 for full specification.\n"
"\nArguments\n"
"1. \"hexdata\" (string, required) the hex-encoded block data to submit\n"
"2. \"jsonparametersobject\" (string, optional) object of optional parameters\n"
" {\n"
" \"workid\" : \"id\" (string, optional) if the server provided a workid, it MUST be included with submissions\n"
" }\n"
"\nResult:\n"
"\nExamples:\n"
+ HelpExampleCli("submitblock", "\"mydata\"")
+ HelpExampleRpc("submitblock", "\"mydata\"")
);
CBlock block;
if (!DecodeHexBlk(block, params[0].get_str()))
throw JSONRPCError(RPC_DESERIALIZATION_ERROR, "Block decode failed");
uint256 hash = block.GetHash();
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end()) {
CBlockIndex *pindex = mi->second;
if (pindex->IsValid(BLOCK_VALID_SCRIPTS))
return "duplicate";
if (pindex->nStatus & BLOCK_FAILED_MASK)
return "duplicate-invalid";
// Otherwise, we might only have the header - process the block before returning
}
2013-01-27 00:14:11 +01:00
CValidationState state;
submitblock_StateCatcher sc(block.GetHash());
RegisterValidationInterface(&sc);
bool fAccepted = ProcessNewBlock(state, NULL, &block);
UnregisterValidationInterface(&sc);
if (mi != mapBlockIndex.end())
{
if (fAccepted && !sc.found)
return "duplicate-inconclusive";
return "duplicate";
}
if (fAccepted)
{
if (!sc.found)
return "inconclusive";
state = sc.state;
}
return BIP22ValidationResult(state);
}
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 13:19:54 +01:00
Value estimatefee(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"estimatefee nblocks\n"
"\nEstimates the approximate fee per kilobyte\n"
"needed for a transaction to begin confirmation\n"
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 13:19:54 +01:00
"within nblocks blocks.\n"
"\nArguments:\n"
"1. nblocks (numeric)\n"
"\nResult:\n"
"n : (numeric) estimated fee-per-kilobyte\n"
"\n"
"-1.0 is returned if not enough transactions and\n"
"blocks have been observed to make an estimate.\n"
"\nExample:\n"
+ HelpExampleCli("estimatefee", "6")
);
RPCTypeCheck(params, boost::assign::list_of(int_type));
int nBlocks = params[0].get_int();
if (nBlocks < 1)
nBlocks = 1;
CFeeRate feeRate = mempool.estimateFee(nBlocks);
if (feeRate == CFeeRate(0))
return -1.0;
return ValueFromAmount(feeRate.GetFeePerK());
}
Value estimatepriority(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 1)
throw runtime_error(
"estimatepriority nblocks\n"
"\nEstimates the approximate priority\n"
"a zero-fee transaction needs to begin confirmation\n"
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 13:19:54 +01:00
"within nblocks blocks.\n"
"\nArguments:\n"
"1. nblocks (numeric)\n"
"\nResult:\n"
"n : (numeric) estimated priority\n"
"\n"
"-1.0 is returned if not enough transactions and\n"
"blocks have been observed to make an estimate.\n"
"\nExample:\n"
+ HelpExampleCli("estimatepriority", "6")
);
RPCTypeCheck(params, boost::assign::list_of(int_type));
int nBlocks = params[0].get_int();
if (nBlocks < 1)
nBlocks = 1;
return mempool.estimatePriority(nBlocks);
}