neobytes/src/serialize.h

1384 lines
46 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
2013-10-20 21:25:06 +02:00
// Copyright (c) 2009-2013 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SERIALIZE_H
#define BITCOIN_SERIALIZE_H
#include "allocators.h"
#include <algorithm>
#include <assert.h>
#include <limits>
#include <ios>
#include <map>
#include <set>
#include <stdint.h>
#include <string>
#include <string.h>
#include <utility>
#include <vector>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits/is_fundamental.hpp>
class CAutoFile;
class CDataStream;
class CScript;
static const unsigned int MAX_SIZE = 0x02000000;
// Used to bypass the rule against non-const reference to temporary
// where it makes sense with wrappers such as CFlatData or CTxDB
template<typename T>
inline T& REF(const T& val)
{
return const_cast<T&>(val);
}
// Used to acquire a non-const pointer "this" to generate bodies
// of const serialization operations from a template
template<typename T>
inline T* NCONST_PTR(const T* val)
{
return const_cast<T*>(val);
}
/** Get begin pointer of vector (non-const version).
* @note These functions avoid the undefined case of indexing into an empty
* vector, as well as that of indexing after the end of the vector.
*/
template <class T, class TAl>
inline T* begin_ptr(std::vector<T,TAl>& v)
{
return v.empty() ? NULL : &v[0];
}
/** Get begin pointer of vector (const version) */
template <class T, class TAl>
inline const T* begin_ptr(const std::vector<T,TAl>& v)
{
return v.empty() ? NULL : &v[0];
}
/** Get end pointer of vector (non-const version) */
template <class T, class TAl>
inline T* end_ptr(std::vector<T,TAl>& v)
{
return v.empty() ? NULL : (&v[0] + v.size());
}
/** Get end pointer of vector (const version) */
template <class T, class TAl>
inline const T* end_ptr(const std::vector<T,TAl>& v)
{
return v.empty() ? NULL : (&v[0] + v.size());
}
/////////////////////////////////////////////////////////////////
//
// Templates for serializing to anything that looks like a stream,
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
//
enum
{
// primary actions
SER_NETWORK = (1 << 0),
SER_DISK = (1 << 1),
SER_GETHASH = (1 << 2),
};
#define READWRITE(obj) (::SerReadWrite(s, (obj), nType, nVersion, ser_action))
/* Implement three methods for serializable objects. These are actually wrappers over
* "SerializationOp" template, which implements the body of each class' serialization
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
* added as members. */
#define ADD_SERIALIZE_METHODS \
size_t GetSerializeSize(int nType, int nVersion) const { \
CSizeComputer s(nType, nVersion); \
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
return s.size(); \
} \
template<typename Stream> \
void Serialize(Stream& s, int nType, int nVersion) const { \
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
} \
template<typename Stream> \
void Unserialize(Stream& s, int nType, int nVersion) { \
SerializationOp(s, CSerActionUnserialize(), nType, nVersion); \
}
//
// Basic types
//
#define WRITEDATA(s, obj) s.write((char*)&(obj), sizeof(obj))
#define READDATA(s, obj) s.read((char*)&(obj), sizeof(obj))
inline unsigned int GetSerializeSize(char a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(signed char a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(unsigned char a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(signed short a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(unsigned short a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(signed int a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(unsigned int a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(signed long a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(unsigned long a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(signed long long a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(unsigned long long a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(float a, int, int=0) { return sizeof(a); }
inline unsigned int GetSerializeSize(double a, int, int=0) { return sizeof(a); }
template<typename Stream> inline void Serialize(Stream& s, char a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, signed char a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, unsigned char a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, signed short a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, unsigned short a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, signed int a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, unsigned int a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, signed long a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, unsigned long a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, signed long long a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, unsigned long long a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, float a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Serialize(Stream& s, double a, int, int=0) { WRITEDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, char& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, signed char& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, unsigned char& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, signed short& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, unsigned short& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, signed int& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, unsigned int& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, signed long& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, unsigned long& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, signed long long& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, unsigned long long& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, float& a, int, int=0) { READDATA(s, a); }
template<typename Stream> inline void Unserialize(Stream& s, double& a, int, int=0) { READDATA(s, a); }
inline unsigned int GetSerializeSize(bool a, int, int=0) { return sizeof(char); }
template<typename Stream> inline void Serialize(Stream& s, bool a, int, int=0) { char f=a; WRITEDATA(s, f); }
template<typename Stream> inline void Unserialize(Stream& s, bool& a, int, int=0) { char f; READDATA(s, f); a=f; }
//
// Compact size
// size < 253 -- 1 byte
// size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
// size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
// size > UINT_MAX -- 9 bytes (255 + 8 bytes)
//
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
{
if (nSize < 253) return sizeof(unsigned char);
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
else return sizeof(unsigned char) + sizeof(uint64_t);
}
template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
if (nSize < 253)
{
unsigned char chSize = nSize;
WRITEDATA(os, chSize);
}
else if (nSize <= std::numeric_limits<unsigned short>::max())
{
unsigned char chSize = 253;
unsigned short xSize = nSize;
WRITEDATA(os, chSize);
WRITEDATA(os, xSize);
}
else if (nSize <= std::numeric_limits<unsigned int>::max())
{
unsigned char chSize = 254;
unsigned int xSize = nSize;
WRITEDATA(os, chSize);
WRITEDATA(os, xSize);
}
else
{
unsigned char chSize = 255;
uint64_t xSize = nSize;
WRITEDATA(os, chSize);
WRITEDATA(os, xSize);
}
return;
}
template<typename Stream>
uint64_t ReadCompactSize(Stream& is)
{
unsigned char chSize;
READDATA(is, chSize);
uint64_t nSizeRet = 0;
if (chSize < 253)
{
nSizeRet = chSize;
}
else if (chSize == 253)
{
unsigned short xSize;
READDATA(is, xSize);
nSizeRet = xSize;
if (nSizeRet < 253)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else if (chSize == 254)
{
unsigned int xSize;
READDATA(is, xSize);
nSizeRet = xSize;
if (nSizeRet < 0x10000u)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else
{
uint64_t xSize;
READDATA(is, xSize);
nSizeRet = xSize;
if (nSizeRet < 0x100000000LLu)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
if (nSizeRet > (uint64_t)MAX_SIZE)
throw std::ios_base::failure("ReadCompactSize() : size too large");
return nSizeRet;
}
// Variable-length integers: bytes are a MSB base-128 encoding of the number.
// The high bit in each byte signifies whether another digit follows. To make
// the encoding is one-to-one, one is subtracted from all but the last digit.
// Thus, the byte sequence a[] with length len, where all but the last byte
// has bit 128 set, encodes the number:
//
// (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
//
// Properties:
// * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
// * Every integer has exactly one encoding
// * Encoding does not depend on size of original integer type
// * No redundancy: every (infinite) byte sequence corresponds to a list
// of encoded integers.
//
// 0: [0x00] 256: [0x81 0x00]
// 1: [0x01] 16383: [0xFE 0x7F]
// 127: [0x7F] 16384: [0xFF 0x00]
// 128: [0x80 0x00] 16511: [0x80 0xFF 0x7F]
// 255: [0x80 0x7F] 65535: [0x82 0xFD 0x7F]
// 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
template<typename I>
inline unsigned int GetSizeOfVarInt(I n)
{
int nRet = 0;
while(true) {
nRet++;
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
}
return nRet;
}
template<typename Stream, typename I>
void WriteVarInt(Stream& os, I n)
{
unsigned char tmp[(sizeof(n)*8+6)/7];
int len=0;
while(true) {
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
len++;
}
do {
WRITEDATA(os, tmp[len]);
} while(len--);
}
template<typename Stream, typename I>
I ReadVarInt(Stream& is)
{
I n = 0;
while(true) {
unsigned char chData;
READDATA(is, chData);
n = (n << 7) | (chData & 0x7F);
if (chData & 0x80)
n++;
else
return n;
}
}
#define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj)))
#define VARINT(obj) REF(WrapVarInt(REF(obj)))
#define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj)))
2012-03-26 16:48:23 +02:00
/** Wrapper for serializing arrays and POD.
*/
class CFlatData
{
protected:
char* pbegin;
char* pend;
public:
CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { }
template <class T, class TAl>
explicit CFlatData(std::vector<T,TAl> &v)
{
pbegin = (char*)begin_ptr(v);
pend = (char*)end_ptr(v);
}
char* begin() { return pbegin; }
const char* begin() const { return pbegin; }
char* end() { return pend; }
const char* end() const { return pend; }
unsigned int GetSerializeSize(int, int=0) const
{
return pend - pbegin;
}
template<typename Stream>
void Serialize(Stream& s, int, int=0) const
{
s.write(pbegin, pend - pbegin);
}
template<typename Stream>
void Unserialize(Stream& s, int, int=0)
{
s.read(pbegin, pend - pbegin);
}
};
template<typename I>
class CVarInt
{
protected:
I &n;
public:
CVarInt(I& nIn) : n(nIn) { }
unsigned int GetSerializeSize(int, int) const {
return GetSizeOfVarInt<I>(n);
}
template<typename Stream>
void Serialize(Stream &s, int, int) const {
WriteVarInt<Stream,I>(s, n);
}
template<typename Stream>
void Unserialize(Stream& s, int, int) {
n = ReadVarInt<Stream,I>(s);
}
};
template<size_t Limit>
class LimitedString
{
protected:
std::string& string;
public:
LimitedString(std::string& string) : string(string) {}
template<typename Stream>
void Unserialize(Stream& s, int, int=0)
{
size_t size = ReadCompactSize(s);
if (size > Limit) {
throw std::ios_base::failure("String length limit exceeded");
}
string.resize(size);
if (size != 0)
s.read((char*)&string[0], size);
}
template<typename Stream>
void Serialize(Stream& s, int, int=0) const
{
WriteCompactSize(s, string.size());
if (!string.empty())
s.write((char*)&string[0], string.size());
}
unsigned int GetSerializeSize(int, int=0) const
{
return GetSizeOfCompactSize(string.size()) + string.size();
}
};
template<typename I>
CVarInt<I> WrapVarInt(I& n) { return CVarInt<I>(n); }
//
// Forward declarations
//
// string
template<typename C> unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int=0);
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str, int, int=0);
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str, int, int=0);
// vector
template<typename T, typename A> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const boost::true_type&);
template<typename T, typename A> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const boost::false_type&);
template<typename T, typename A> inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion);
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const boost::true_type&);
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const boost::false_type&);
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion);
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const boost::true_type&);
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const boost::false_type&);
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion);
// others derived from vector
extern inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion);
template<typename Stream> void Serialize(Stream& os, const CScript& v, int nType, int nVersion);
template<typename Stream> void Unserialize(Stream& is, CScript& v, int nType, int nVersion);
// pair
template<typename K, typename T> unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion);
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion);
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion);
// 3 tuple
template<typename T0, typename T1, typename T2> unsigned int GetSerializeSize(const boost::tuple<T0, T1, T2>& item, int nType, int nVersion);
template<typename Stream, typename T0, typename T1, typename T2> void Serialize(Stream& os, const boost::tuple<T0, T1, T2>& item, int nType, int nVersion);
template<typename Stream, typename T0, typename T1, typename T2> void Unserialize(Stream& is, boost::tuple<T0, T1, T2>& item, int nType, int nVersion);
// 4 tuple
template<typename T0, typename T1, typename T2, typename T3> unsigned int GetSerializeSize(const boost::tuple<T0, T1, T2, T3>& item, int nType, int nVersion);
template<typename Stream, typename T0, typename T1, typename T2, typename T3> void Serialize(Stream& os, const boost::tuple<T0, T1, T2, T3>& item, int nType, int nVersion);
template<typename Stream, typename T0, typename T1, typename T2, typename T3> void Unserialize(Stream& is, boost::tuple<T0, T1, T2, T3>& item, int nType, int nVersion);
// map
template<typename K, typename T, typename Pred, typename A> unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion);
// set
template<typename K, typename Pred, typename A> unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion);
//
// If none of the specialized versions above matched, default to calling member function.
// "int nType" is changed to "long nType" to keep from getting an ambiguous overload error.
// The compiler will only cast int to long if none of the other templates matched.
// Thanks to Boost serialization for this idea.
//
template<typename T>
inline unsigned int GetSerializeSize(const T& a, long nType, int nVersion)
{
return a.GetSerializeSize((int)nType, nVersion);
}
template<typename Stream, typename T>
inline void Serialize(Stream& os, const T& a, long nType, int nVersion)
{
a.Serialize(os, (int)nType, nVersion);
}
template<typename Stream, typename T>
inline void Unserialize(Stream& is, T& a, long nType, int nVersion)
{
a.Unserialize(is, (int)nType, nVersion);
}
//
// string
//
template<typename C>
unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int)
{
return GetSizeOfCompactSize(str.size()) + str.size() * sizeof(str[0]);
}
template<typename Stream, typename C>
void Serialize(Stream& os, const std::basic_string<C>& str, int, int)
{
WriteCompactSize(os, str.size());
if (!str.empty())
os.write((char*)&str[0], str.size() * sizeof(str[0]));
}
template<typename Stream, typename C>
void Unserialize(Stream& is, std::basic_string<C>& str, int, int)
{
unsigned int nSize = ReadCompactSize(is);
str.resize(nSize);
if (nSize != 0)
is.read((char*)&str[0], nSize * sizeof(str[0]));
}
//
// vector
//
template<typename T, typename A>
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const boost::true_type&)
{
return (GetSizeOfCompactSize(v.size()) + v.size() * sizeof(T));
}
template<typename T, typename A>
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const boost::false_type&)
{
unsigned int nSize = GetSizeOfCompactSize(v.size());
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
nSize += GetSerializeSize((*vi), nType, nVersion);
return nSize;
}
template<typename T, typename A>
inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion)
{
return GetSerializeSize_impl(v, nType, nVersion, boost::is_fundamental<T>());
}
template<typename Stream, typename T, typename A>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const boost::true_type&)
{
WriteCompactSize(os, v.size());
if (!v.empty())
os.write((char*)&v[0], v.size() * sizeof(T));
}
template<typename Stream, typename T, typename A>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const boost::false_type&)
{
WriteCompactSize(os, v.size());
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
::Serialize(os, (*vi), nType, nVersion);
}
template<typename Stream, typename T, typename A>
inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion)
{
Serialize_impl(os, v, nType, nVersion, boost::is_fundamental<T>());
}
template<typename Stream, typename T, typename A>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const boost::true_type&)
{
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize)
{
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read((char*)&v[i], blk * sizeof(T));
i += blk;
}
}
template<typename Stream, typename T, typename A>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const boost::false_type&)
{
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
unsigned int nMid = 0;
while (nMid < nSize)
{
nMid += 5000000 / sizeof(T);
if (nMid > nSize)
nMid = nSize;
v.resize(nMid);
for (; i < nMid; i++)
Unserialize(is, v[i], nType, nVersion);
}
}
template<typename Stream, typename T, typename A>
inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion)
{
Unserialize_impl(is, v, nType, nVersion, boost::is_fundamental<T>());
}
//
// others derived from vector
//
inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion)
{
return GetSerializeSize((const std::vector<unsigned char>&)v, nType, nVersion);
}
template<typename Stream>
void Serialize(Stream& os, const CScript& v, int nType, int nVersion)
{
Serialize(os, (const std::vector<unsigned char>&)v, nType, nVersion);
}
template<typename Stream>
void Unserialize(Stream& is, CScript& v, int nType, int nVersion)
{
Unserialize(is, (std::vector<unsigned char>&)v, nType, nVersion);
}
//
// pair
//
template<typename K, typename T>
unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion)
{
return GetSerializeSize(item.first, nType, nVersion) + GetSerializeSize(item.second, nType, nVersion);
}
template<typename Stream, typename K, typename T>
void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion)
{
Serialize(os, item.first, nType, nVersion);
Serialize(os, item.second, nType, nVersion);
}
template<typename Stream, typename K, typename T>
void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion)
{
Unserialize(is, item.first, nType, nVersion);
Unserialize(is, item.second, nType, nVersion);
}
//
// 3 tuple
//
template<typename T0, typename T1, typename T2>
unsigned int GetSerializeSize(const boost::tuple<T0, T1, T2>& item, int nType, int nVersion)
{
unsigned int nSize = 0;
nSize += GetSerializeSize(boost::get<0>(item), nType, nVersion);
nSize += GetSerializeSize(boost::get<1>(item), nType, nVersion);
nSize += GetSerializeSize(boost::get<2>(item), nType, nVersion);
return nSize;
}
template<typename Stream, typename T0, typename T1, typename T2>
void Serialize(Stream& os, const boost::tuple<T0, T1, T2>& item, int nType, int nVersion)
{
Serialize(os, boost::get<0>(item), nType, nVersion);
Serialize(os, boost::get<1>(item), nType, nVersion);
Serialize(os, boost::get<2>(item), nType, nVersion);
}
template<typename Stream, typename T0, typename T1, typename T2>
void Unserialize(Stream& is, boost::tuple<T0, T1, T2>& item, int nType, int nVersion)
{
Unserialize(is, boost::get<0>(item), nType, nVersion);
Unserialize(is, boost::get<1>(item), nType, nVersion);
Unserialize(is, boost::get<2>(item), nType, nVersion);
}
//
// 4 tuple
//
template<typename T0, typename T1, typename T2, typename T3>
unsigned int GetSerializeSize(const boost::tuple<T0, T1, T2, T3>& item, int nType, int nVersion)
{
unsigned int nSize = 0;
nSize += GetSerializeSize(boost::get<0>(item), nType, nVersion);
nSize += GetSerializeSize(boost::get<1>(item), nType, nVersion);
nSize += GetSerializeSize(boost::get<2>(item), nType, nVersion);
nSize += GetSerializeSize(boost::get<3>(item), nType, nVersion);
return nSize;
}
template<typename Stream, typename T0, typename T1, typename T2, typename T3>
void Serialize(Stream& os, const boost::tuple<T0, T1, T2, T3>& item, int nType, int nVersion)
{
Serialize(os, boost::get<0>(item), nType, nVersion);
Serialize(os, boost::get<1>(item), nType, nVersion);
Serialize(os, boost::get<2>(item), nType, nVersion);
Serialize(os, boost::get<3>(item), nType, nVersion);
}
template<typename Stream, typename T0, typename T1, typename T2, typename T3>
void Unserialize(Stream& is, boost::tuple<T0, T1, T2, T3>& item, int nType, int nVersion)
{
Unserialize(is, boost::get<0>(item), nType, nVersion);
Unserialize(is, boost::get<1>(item), nType, nVersion);
Unserialize(is, boost::get<2>(item), nType, nVersion);
Unserialize(is, boost::get<3>(item), nType, nVersion);
}
//
// map
//
template<typename K, typename T, typename Pred, typename A>
unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion)
{
unsigned int nSize = GetSizeOfCompactSize(m.size());
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
nSize += GetSerializeSize((*mi), nType, nVersion);
return nSize;
}
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion)
{
WriteCompactSize(os, m.size());
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
Serialize(os, (*mi), nType, nVersion);
}
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
std::pair<K, T> item;
Unserialize(is, item, nType, nVersion);
mi = m.insert(mi, item);
}
}
//
// set
//
template<typename K, typename Pred, typename A>
unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion)
{
unsigned int nSize = GetSizeOfCompactSize(m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
nSize += GetSerializeSize((*it), nType, nVersion);
return nSize;
}
template<typename Stream, typename K, typename Pred, typename A>
void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion)
{
WriteCompactSize(os, m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
Serialize(os, (*it), nType, nVersion);
}
template<typename Stream, typename K, typename Pred, typename A>
void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::set<K, Pred, A>::iterator it = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
K key;
Unserialize(is, key, nType, nVersion);
it = m.insert(it, key);
}
}
//
// Support for ADD_SERIALIZE_METHODS and READWRITE macro
//
struct CSerActionSerialize
{
bool ForRead() const { return false; }
};
struct CSerActionUnserialize
{
bool ForRead() const { return true; }
};
template<typename Stream, typename T>
inline void SerReadWrite(Stream& s, const T& obj, int nType, int nVersion, CSerActionSerialize ser_action)
{
::Serialize(s, obj, nType, nVersion);
}
template<typename Stream, typename T>
inline void SerReadWrite(Stream& s, T& obj, int nType, int nVersion, CSerActionUnserialize ser_action)
{
::Unserialize(s, obj, nType, nVersion);
}
typedef std::vector<char, zero_after_free_allocator<char> > CSerializeData;
class CSizeComputer
{
protected:
size_t nSize;
public:
int nType;
int nVersion;
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
CSizeComputer& write(const char *psz, size_t nSize)
{
this->nSize += nSize;
return *this;
}
template<typename T>
CSizeComputer& operator<<(const T& obj)
{
::Serialize(*this, obj, nType, nVersion);
return (*this);
}
size_t size() const {
return nSize;
}
};
2012-03-26 16:48:23 +02:00
/** Double ended buffer combining vector and stream-like interfaces.
*
* >> and << read and write unformatted data using the above serialization templates.
* Fills with data in linear time; some stringstream implementations take N^2 time.
*/
class CDataStream
{
protected:
typedef CSerializeData vector_type;
vector_type vch;
unsigned int nReadPos;
public:
int nType;
int nVersion;
typedef vector_type::allocator_type allocator_type;
typedef vector_type::size_type size_type;
typedef vector_type::difference_type difference_type;
typedef vector_type::reference reference;
typedef vector_type::const_reference const_reference;
typedef vector_type::value_type value_type;
typedef vector_type::iterator iterator;
typedef vector_type::const_iterator const_iterator;
typedef vector_type::reverse_iterator reverse_iterator;
explicit CDataStream(int nTypeIn, int nVersionIn)
{
Init(nTypeIn, nVersionIn);
}
CDataStream(const_iterator pbegin, const_iterator pend, int nTypeIn, int nVersionIn) : vch(pbegin, pend)
{
Init(nTypeIn, nVersionIn);
}
#if !defined(_MSC_VER) || _MSC_VER >= 1300
CDataStream(const char* pbegin, const char* pend, int nTypeIn, int nVersionIn) : vch(pbegin, pend)
{
Init(nTypeIn, nVersionIn);
}
#endif
CDataStream(const vector_type& vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end())
{
Init(nTypeIn, nVersionIn);
}
CDataStream(const std::vector<char>& vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end())
{
Init(nTypeIn, nVersionIn);
}
CDataStream(const std::vector<unsigned char>& vchIn, int nTypeIn, int nVersionIn) : vch((char*)&vchIn.begin()[0], (char*)&vchIn.end()[0])
{
Init(nTypeIn, nVersionIn);
}
void Init(int nTypeIn, int nVersionIn)
{
nReadPos = 0;
nType = nTypeIn;
nVersion = nVersionIn;
}
CDataStream& operator+=(const CDataStream& b)
{
vch.insert(vch.end(), b.begin(), b.end());
return *this;
}
friend CDataStream operator+(const CDataStream& a, const CDataStream& b)
{
CDataStream ret = a;
ret += b;
return (ret);
}
std::string str() const
{
return (std::string(begin(), end()));
}
//
// Vector subset
//
const_iterator begin() const { return vch.begin() + nReadPos; }
iterator begin() { return vch.begin() + nReadPos; }
const_iterator end() const { return vch.end(); }
iterator end() { return vch.end(); }
size_type size() const { return vch.size() - nReadPos; }
bool empty() const { return vch.size() == nReadPos; }
void resize(size_type n, value_type c=0) { vch.resize(n + nReadPos, c); }
void reserve(size_type n) { vch.reserve(n + nReadPos); }
const_reference operator[](size_type pos) const { return vch[pos + nReadPos]; }
reference operator[](size_type pos) { return vch[pos + nReadPos]; }
void clear() { vch.clear(); nReadPos = 0; }
iterator insert(iterator it, const char& x=char()) { return vch.insert(it, x); }
void insert(iterator it, size_type n, const char& x) { vch.insert(it, n, x); }
void insert(iterator it, std::vector<char>::const_iterator first, std::vector<char>::const_iterator last)
{
assert(last - first >= 0);
if (it == vch.begin() + nReadPos && (unsigned int)(last - first) <= nReadPos)
{
// special case for inserting at the front when there's room
nReadPos -= (last - first);
memcpy(&vch[nReadPos], &first[0], last - first);
}
else
vch.insert(it, first, last);
}
#if !defined(_MSC_VER) || _MSC_VER >= 1300
void insert(iterator it, const char* first, const char* last)
{
assert(last - first >= 0);
if (it == vch.begin() + nReadPos && (unsigned int)(last - first) <= nReadPos)
{
// special case for inserting at the front when there's room
nReadPos -= (last - first);
memcpy(&vch[nReadPos], &first[0], last - first);
}
else
vch.insert(it, first, last);
}
#endif
iterator erase(iterator it)
{
if (it == vch.begin() + nReadPos)
{
// special case for erasing from the front
if (++nReadPos >= vch.size())
{
// whenever we reach the end, we take the opportunity to clear the buffer
nReadPos = 0;
return vch.erase(vch.begin(), vch.end());
}
return vch.begin() + nReadPos;
}
else
return vch.erase(it);
}
iterator erase(iterator first, iterator last)
{
if (first == vch.begin() + nReadPos)
{
// special case for erasing from the front
if (last == vch.end())
{
nReadPos = 0;
return vch.erase(vch.begin(), vch.end());
}
else
{
nReadPos = (last - vch.begin());
return last;
}
}
else
return vch.erase(first, last);
}
inline void Compact()
{
vch.erase(vch.begin(), vch.begin() + nReadPos);
nReadPos = 0;
}
bool Rewind(size_type n)
{
// Rewind by n characters if the buffer hasn't been compacted yet
if (n > nReadPos)
return false;
nReadPos -= n;
return true;
}
//
// Stream subset
//
bool eof() const { return size() == 0; }
CDataStream* rdbuf() { return this; }
int in_avail() { return size(); }
void SetType(int n) { nType = n; }
int GetType() { return nType; }
void SetVersion(int n) { nVersion = n; }
int GetVersion() { return nVersion; }
void ReadVersion() { *this >> nVersion; }
void WriteVersion() { *this << nVersion; }
CDataStream& read(char* pch, size_t nSize)
{
// Read from the beginning of the buffer
unsigned int nReadPosNext = nReadPos + nSize;
if (nReadPosNext >= vch.size())
{
if (nReadPosNext > vch.size())
{
throw std::ios_base::failure("CDataStream::read() : end of data");
}
memcpy(pch, &vch[nReadPos], nSize);
nReadPos = 0;
vch.clear();
return (*this);
}
memcpy(pch, &vch[nReadPos], nSize);
nReadPos = nReadPosNext;
return (*this);
}
CDataStream& ignore(int nSize)
{
// Ignore from the beginning of the buffer
assert(nSize >= 0);
unsigned int nReadPosNext = nReadPos + nSize;
if (nReadPosNext >= vch.size())
{
if (nReadPosNext > vch.size())
throw std::ios_base::failure("CDataStream::ignore() : end of data");
nReadPos = 0;
vch.clear();
return (*this);
}
nReadPos = nReadPosNext;
return (*this);
}
CDataStream& write(const char* pch, size_t nSize)
{
// Write to the end of the buffer
vch.insert(vch.end(), pch, pch + nSize);
return (*this);
}
template<typename Stream>
void Serialize(Stream& s, int nType, int nVersion) const
{
// Special case: stream << stream concatenates like stream += stream
if (!vch.empty())
s.write((char*)&vch[0], vch.size() * sizeof(vch[0]));
}
template<typename T>
unsigned int GetSerializeSize(const T& obj)
{
// Tells the size of the object if serialized to this stream
return ::GetSerializeSize(obj, nType, nVersion);
}
template<typename T>
CDataStream& operator<<(const T& obj)
{
// Serialize to this stream
::Serialize(*this, obj, nType, nVersion);
return (*this);
}
template<typename T>
CDataStream& operator>>(T& obj)
{
// Unserialize from this stream
::Unserialize(*this, obj, nType, nVersion);
return (*this);
}
void GetAndClear(CSerializeData &data) {
data.insert(data.end(), begin(), end());
clear();
}
};
2012-03-26 16:48:23 +02:00
/** RAII wrapper for FILE*.
*
* Will automatically close the file when it goes out of scope if not null.
* If you're returning the file pointer, return file.release().
* If you need to close the file early, use file.fclose() instead of fclose(file).
*/
class CAutoFile
{
protected:
FILE* file;
public:
int nType;
int nVersion;
CAutoFile(FILE* filenew, int nTypeIn, int nVersionIn)
{
file = filenew;
nType = nTypeIn;
nVersion = nVersionIn;
}
~CAutoFile()
{
fclose();
}
void fclose()
{
if (file != NULL && file != stdin && file != stdout && file != stderr)
::fclose(file);
file = NULL;
}
FILE* release() { FILE* ret = file; file = NULL; return ret; }
operator FILE*() { return file; }
FILE* operator->() { return file; }
FILE& operator*() { return *file; }
FILE** operator&() { return &file; }
FILE* operator=(FILE* pnew) { return file = pnew; }
bool operator!() { return (file == NULL); }
//
// Stream subset
//
void SetType(int n) { nType = n; }
int GetType() { return nType; }
void SetVersion(int n) { nVersion = n; }
int GetVersion() { return nVersion; }
void ReadVersion() { *this >> nVersion; }
void WriteVersion() { *this << nVersion; }
CAutoFile& read(char* pch, size_t nSize)
{
if (!file)
throw std::ios_base::failure("CAutoFile::read : file handle is NULL");
if (fread(pch, 1, nSize, file) != nSize)
throw std::ios_base::failure(feof(file) ? "CAutoFile::read : end of file" : "CAutoFile::read : fread failed");
return (*this);
}
CAutoFile& write(const char* pch, size_t nSize)
{
if (!file)
throw std::ios_base::failure("CAutoFile::write : file handle is NULL");
if (fwrite(pch, 1, nSize, file) != nSize)
throw std::ios_base::failure("CAutoFile::write : write failed");
return (*this);
}
template<typename T>
unsigned int GetSerializeSize(const T& obj)
{
// Tells the size of the object if serialized to this stream
return ::GetSerializeSize(obj, nType, nVersion);
}
template<typename T>
CAutoFile& operator<<(const T& obj)
{
// Serialize to this stream
if (!file)
throw std::ios_base::failure("CAutoFile::operator<< : file handle is NULL");
::Serialize(*this, obj, nType, nVersion);
return (*this);
}
template<typename T>
CAutoFile& operator>>(T& obj)
{
// Unserialize from this stream
if (!file)
throw std::ios_base::failure("CAutoFile::operator>> : file handle is NULL");
::Unserialize(*this, obj, nType, nVersion);
return (*this);
}
};
2012-10-27 21:01:57 +02:00
/** Wrapper around a FILE* that implements a ring buffer to
* deserialize from. It guarantees the ability to rewind
* a given number of bytes. */
class CBufferedFile
{
private:
FILE *src; // source file
uint64_t nSrcPos; // how many bytes have been read from source
uint64_t nReadPos; // how many bytes have been read from this
uint64_t nReadLimit; // up to which position we're allowed to read
uint64_t nRewind; // how many bytes we guarantee to rewind
2012-10-27 21:01:57 +02:00
std::vector<char> vchBuf; // the buffer
protected:
// read data from the source to fill the buffer
bool Fill() {
unsigned int pos = nSrcPos % vchBuf.size();
unsigned int readNow = vchBuf.size() - pos;
unsigned int nAvail = vchBuf.size() - (nSrcPos - nReadPos) - nRewind;
if (nAvail < readNow)
readNow = nAvail;
if (readNow == 0)
return false;
size_t read = fread((void*)&vchBuf[pos], 1, readNow, src);
if (read == 0) {
throw std::ios_base::failure(feof(src) ? "CBufferedFile::Fill : end of file" : "CBufferedFile::Fill : fread failed");
2012-10-27 21:01:57 +02:00
} else {
nSrcPos += read;
return true;
}
}
public:
int nType;
int nVersion;
CBufferedFile(FILE *fileIn, uint64_t nBufSize, uint64_t nRewindIn, int nTypeIn, int nVersionIn) :
src(fileIn), nSrcPos(0), nReadPos(0), nReadLimit((uint64_t)(-1)), nRewind(nRewindIn), vchBuf(nBufSize, 0),
nType(nTypeIn), nVersion(nVersionIn) {
2012-10-27 21:01:57 +02:00
}
// check whether we're at the end of the source file
bool eof() const {
return nReadPos == nSrcPos && feof(src);
}
// read a number of bytes
CBufferedFile& read(char *pch, size_t nSize) {
if (nSize + nReadPos > nReadLimit)
throw std::ios_base::failure("Read attempted past buffer limit");
if (nSize + nRewind > vchBuf.size())
throw std::ios_base::failure("Read larger than buffer size");
while (nSize > 0) {
if (nReadPos == nSrcPos)
Fill();
unsigned int pos = nReadPos % vchBuf.size();
size_t nNow = nSize;
if (nNow + pos > vchBuf.size())
nNow = vchBuf.size() - pos;
if (nNow + nReadPos > nSrcPos)
nNow = nSrcPos - nReadPos;
memcpy(pch, &vchBuf[pos], nNow);
nReadPos += nNow;
pch += nNow;
nSize -= nNow;
}
return (*this);
}
// return the current reading position
uint64_t GetPos() {
2012-10-27 21:01:57 +02:00
return nReadPos;
}
// rewind to a given reading position
bool SetPos(uint64_t nPos) {
2012-10-27 21:01:57 +02:00
nReadPos = nPos;
if (nReadPos + nRewind < nSrcPos) {
nReadPos = nSrcPos - nRewind;
return false;
} else if (nReadPos > nSrcPos) {
nReadPos = nSrcPos;
return false;
} else {
return true;
}
}
bool Seek(uint64_t nPos) {
2012-10-27 21:01:57 +02:00
long nLongPos = nPos;
if (nPos != (uint64_t)nLongPos)
2012-10-27 21:01:57 +02:00
return false;
if (fseek(src, nLongPos, SEEK_SET))
return false;
nLongPos = ftell(src);
nSrcPos = nLongPos;
nReadPos = nLongPos;
return true;
}
// prevent reading beyond a certain position
// no argument removes the limit
bool SetLimit(uint64_t nPos = (uint64_t)(-1)) {
2012-10-27 21:01:57 +02:00
if (nPos < nReadPos)
return false;
nReadLimit = nPos;
return true;
}
template<typename T>
CBufferedFile& operator>>(T& obj) {
// Unserialize from this stream
::Unserialize(*this, obj, nType, nVersion);
return (*this);
}
// search for a given byte in the stream, and remain positioned on it
void FindByte(char ch) {
while (true) {
if (nReadPos == nSrcPos)
Fill();
if (vchBuf[nReadPos % vchBuf.size()] == ch)
break;
nReadPos++;
}
}
};
#endif // BITCOIN_SERIALIZE_H