neobytes/src/uint256.cpp

336 lines
9.9 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "uint256.h"
#include "util.h"
#include <stdio.h>
#include <string.h>
template<unsigned int BITS>
base_uint<BITS>::base_uint(const std::string& str)
{
SetHex(str);
}
template<unsigned int BITS>
base_uint<BITS>::base_uint(const std::vector<unsigned char>& vch)
{
if (vch.size() != sizeof(pn))
throw uint_error("Converting vector of wrong size to base_uint");
memcpy(pn, &vch[0], sizeof(pn));
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i+k+1 < WIDTH && shift != 0)
pn[i+k+1] |= (a.pn[i] >> (32-shift));
if (i+k < WIDTH)
pn[i+k] |= (a.pn[i] << shift);
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i-k-1 >= 0 && shift != 0)
pn[i-k-1] |= (a.pn[i] << (32-shift));
if (i-k >= 0)
pn[i-k] |= (a.pn[i] >> shift);
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++) {
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
{
base_uint<BITS> a = *this;
*this = 0;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
{
base_uint<BITS> div = b; // make a copy, so we can shift.
base_uint<BITS> num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and nun align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
template<unsigned int BITS>
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const {
for (int i = WIDTH-1; i >= 0; i--) {
if (pn[i] < b.pn[i])
return -1;
if (pn[i] > b.pn[i])
return 1;
}
return 0;
}
template<unsigned int BITS>
bool base_uint<BITS>::EqualTo(uint64_t b) const {
for (int i = WIDTH-1; i >= 2; i--) {
if (pn[i])
return false;
}
if (pn[1] != (b >> 32))
return false;
if (pn[0] != (b & 0xfffffffful))
return false;
return true;
}
template<unsigned int BITS>
double base_uint<BITS>::getdouble() const
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
template<unsigned int BITS>
std::string base_uint<BITS>::GetHex() const
{
char psz[sizeof(pn)*2 + 1];
for (unsigned int i = 0; i < sizeof(pn); i++)
sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]);
return std::string(psz, psz + sizeof(pn)*2);
}
template<unsigned int BITS>
void base_uint<BITS>::SetHex(const char* psz)
{
memset(pn,0,sizeof(pn));
// skip leading spaces
while (isspace(*psz))
psz++;
// skip 0x
if (psz[0] == '0' && tolower(psz[1]) == 'x')
psz += 2;
// hex string to uint
const char* pbegin = psz;
while (::HexDigit(*psz) != -1)
psz++;
psz--;
unsigned char* p1 = (unsigned char*)pn;
unsigned char* pend = p1 + WIDTH * 4;
while (psz >= pbegin && p1 < pend) {
*p1 = ::HexDigit(*psz--);
if (psz >= pbegin) {
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
p1++;
}
}
}
template<unsigned int BITS>
void base_uint<BITS>::SetHex(const std::string& str)
{
SetHex(str.c_str());
}
template<unsigned int BITS>
std::string base_uint<BITS>::ToString() const
{
return (GetHex());
}
template<unsigned int BITS>
unsigned int base_uint<BITS>::bits() const
{
for (int pos = WIDTH-1; pos >= 0; pos--) {
if (pn[pos]) {
for (int bits = 31; bits > 0; bits--) {
if (pn[pos] & 1<<bits)
return 32*pos + bits + 1;
}
return 32*pos + 1;
}
}
return 0;
}
// Explicit instantiations for base_uint<160>
template base_uint<160>::base_uint(const std::string&);
template base_uint<160>::base_uint(const std::vector<unsigned char>&);
template base_uint<160>& base_uint<160>::operator<<=(unsigned int);
template base_uint<160>& base_uint<160>::operator>>=(unsigned int);
template base_uint<160>& base_uint<160>::operator*=(uint32_t b32);
template base_uint<160>& base_uint<160>::operator*=(const base_uint<160>& b);
template base_uint<160>& base_uint<160>::operator/=(const base_uint<160>& b);
template int base_uint<160>::CompareTo(const base_uint<160>&) const;
template bool base_uint<160>::EqualTo(uint64_t) const;
template double base_uint<160>::getdouble() const;
template std::string base_uint<160>::GetHex() const;
template std::string base_uint<160>::ToString() const;
template void base_uint<160>::SetHex(const char*);
template void base_uint<160>::SetHex(const std::string&);
template unsigned int base_uint<160>::bits() const;
// Explicit instantiations for base_uint<256>
template base_uint<256>::base_uint(const std::string&);
template base_uint<256>::base_uint(const std::vector<unsigned char>&);
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
template bool base_uint<256>::EqualTo(uint64_t) const;
template double base_uint<256>::getdouble() const;
template std::string base_uint<256>::GetHex() const;
template std::string base_uint<256>::ToString() const;
template void base_uint<256>::SetHex(const char*);
template void base_uint<256>::SetHex(const std::string&);
template unsigned int base_uint<256>::bits() const;
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
uint256& uint256::SetCompact(uint32_t nCompact, bool *pfNegative, bool *pfOverflow)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3) {
nWord >>= 8*(3-nSize);
*this = nWord;
} else {
*this = nWord;
*this <<= 8*(nSize-3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t uint256::GetCompact(bool fNegative) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3) {
nCompact = GetLow64() << 8*(3-nSize);
} else {
uint256 bn = *this >> 8*(nSize-3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000) {
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
static void inline HashMix(uint32_t& a, uint32_t& b, uint32_t& c)
{
// Taken from lookup3, by Bob Jenkins.
a -= c; a ^= ((c << 4) | (c >> 28)); c += b;
b -= a; b ^= ((a << 6) | (a >> 26)); a += c;
c -= b; c ^= ((b << 8) | (b >> 24)); b += a;
a -= c; a ^= ((c << 16) | (c >> 16)); c += b;
b -= a; b ^= ((a << 19) | (a >> 13)); a += c;
c -= b; c ^= ((b << 4) | (b >> 28)); b += a;
}
static void inline HashFinal(uint32_t& a, uint32_t& b, uint32_t& c)
{
// Taken from lookup3, by Bob Jenkins.
c ^= b; c -= ((b << 14) | (b >> 18));
a ^= c; a -= ((c << 11) | (c >> 21));
b ^= a; b -= ((a << 25) | (a >> 7));
c ^= b; c -= ((b << 16) | (b >> 16));
a ^= c; a -= ((c << 4) | (c >> 28));
b ^= a; b -= ((a << 14) | (a >> 18));
c ^= b; c -= ((b << 24) | (b >> 8));
}
uint64_t uint256::GetHash(const uint256 &salt) const
{
uint32_t a, b, c;
a = b = c = 0xdeadbeef + (WIDTH << 2);
a += pn[0] ^ salt.pn[0];
b += pn[1] ^ salt.pn[1];
c += pn[2] ^ salt.pn[2];
HashMix(a, b, c);
a += pn[3] ^ salt.pn[3];
b += pn[4] ^ salt.pn[4];
c += pn[5] ^ salt.pn[5];
HashMix(a, b, c);
a += pn[6] ^ salt.pn[6];
b += pn[7] ^ salt.pn[7];
HashFinal(a, b, c);
return ((((uint64_t)b) << 32) | c);
}