Merge pull request #1699 from laanwj/2012_08_securealloc
Handle locked pages more robustly (Fixes issue #1462)
This commit is contained in:
commit
af1c6b93b7
165
src/allocators.h
165
src/allocators.h
@ -7,6 +7,8 @@
|
||||
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <map>
|
||||
|
||||
#ifdef WIN32
|
||||
#ifdef _WIN32_WINNT
|
||||
@ -22,23 +24,156 @@
|
||||
// Note that VirtualLock does not provide this as a guarantee on Windows,
|
||||
// but, in practice, memory that has been VirtualLock'd almost never gets written to
|
||||
// the pagefile except in rare circumstances where memory is extremely low.
|
||||
#define mlock(p, n) VirtualLock((p), (n));
|
||||
#define munlock(p, n) VirtualUnlock((p), (n));
|
||||
#else
|
||||
#include <sys/mman.h>
|
||||
#include <limits.h>
|
||||
/* This comes from limits.h if it's not defined there set a sane default */
|
||||
#ifndef PAGESIZE
|
||||
#include <unistd.h>
|
||||
#define PAGESIZE sysconf(_SC_PAGESIZE)
|
||||
#include <limits.h> // for PAGESIZE
|
||||
#include <unistd.h> // for sysconf
|
||||
#endif
|
||||
#define mlock(a,b) \
|
||||
mlock(((void *)(((size_t)(a)) & (~((PAGESIZE)-1)))),\
|
||||
(((((size_t)(a)) + (b) - 1) | ((PAGESIZE) - 1)) + 1) - (((size_t)(a)) & (~((PAGESIZE) - 1))))
|
||||
#define munlock(a,b) \
|
||||
munlock(((void *)(((size_t)(a)) & (~((PAGESIZE)-1)))),\
|
||||
(((((size_t)(a)) + (b) - 1) | ((PAGESIZE) - 1)) + 1) - (((size_t)(a)) & (~((PAGESIZE) - 1))))
|
||||
|
||||
/**
|
||||
* Thread-safe class to keep track of locked (ie, non-swappable) memory pages.
|
||||
*
|
||||
* Memory locks do not stack, that is, pages which have been locked several times by calls to mlock()
|
||||
* will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when
|
||||
* those functions are used naively. This class simulates stacking memory locks by keeping a counter per page.
|
||||
*
|
||||
* @note By using a map from each page base address to lock count, this class is optimized for
|
||||
* small objects that span up to a few pages, mostly smaller than a page. To support large allocations,
|
||||
* something like an interval tree would be the preferred data structure.
|
||||
*/
|
||||
template <class Locker> class LockedPageManagerBase
|
||||
{
|
||||
public:
|
||||
LockedPageManagerBase(size_t page_size):
|
||||
page_size(page_size)
|
||||
{
|
||||
// Determine bitmask for extracting page from address
|
||||
assert(!(page_size & (page_size-1))); // size must be power of two
|
||||
page_mask = ~(page_size - 1);
|
||||
}
|
||||
|
||||
// For all pages in affected range, increase lock count
|
||||
void LockRange(void *p, size_t size)
|
||||
{
|
||||
boost::mutex::scoped_lock lock(mutex);
|
||||
if(!size) return;
|
||||
const size_t base_addr = reinterpret_cast<size_t>(p);
|
||||
const size_t start_page = base_addr & page_mask;
|
||||
const size_t end_page = (base_addr + size - 1) & page_mask;
|
||||
for(size_t page = start_page; page <= end_page; page += page_size)
|
||||
{
|
||||
Histogram::iterator it = histogram.find(page);
|
||||
if(it == histogram.end()) // Newly locked page
|
||||
{
|
||||
locker.Lock(reinterpret_cast<void*>(page), page_size);
|
||||
histogram.insert(std::make_pair(page, 1));
|
||||
}
|
||||
else // Page was already locked; increase counter
|
||||
{
|
||||
it->second += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For all pages in affected range, decrease lock count
|
||||
void UnlockRange(void *p, size_t size)
|
||||
{
|
||||
boost::mutex::scoped_lock lock(mutex);
|
||||
if(!size) return;
|
||||
const size_t base_addr = reinterpret_cast<size_t>(p);
|
||||
const size_t start_page = base_addr & page_mask;
|
||||
const size_t end_page = (base_addr + size - 1) & page_mask;
|
||||
for(size_t page = start_page; page <= end_page; page += page_size)
|
||||
{
|
||||
Histogram::iterator it = histogram.find(page);
|
||||
assert(it != histogram.end()); // Cannot unlock an area that was not locked
|
||||
// Decrease counter for page, when it is zero, the page will be unlocked
|
||||
it->second -= 1;
|
||||
if(it->second == 0) // Nothing on the page anymore that keeps it locked
|
||||
{
|
||||
// Unlock page and remove the count from histogram
|
||||
locker.Unlock(reinterpret_cast<void*>(page), page_size);
|
||||
histogram.erase(it);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Get number of locked pages for diagnostics
|
||||
int GetLockedPageCount()
|
||||
{
|
||||
boost::mutex::scoped_lock lock(mutex);
|
||||
return histogram.size();
|
||||
}
|
||||
|
||||
private:
|
||||
Locker locker;
|
||||
boost::mutex mutex;
|
||||
size_t page_size, page_mask;
|
||||
// map of page base address to lock count
|
||||
typedef std::map<size_t,int> Histogram;
|
||||
Histogram histogram;
|
||||
};
|
||||
|
||||
/** Determine system page size in bytes */
|
||||
static inline size_t GetSystemPageSize()
|
||||
{
|
||||
size_t page_size;
|
||||
#if defined(WIN32)
|
||||
SYSTEM_INFO sSysInfo;
|
||||
GetSystemInfo(&sSysInfo);
|
||||
page_size = sSysInfo.dwPageSize;
|
||||
#elif defined(PAGESIZE) // defined in limits.h
|
||||
page_size = PAGESIZE;
|
||||
#else // assume some POSIX OS
|
||||
page_size = sysconf(_SC_PAGESIZE);
|
||||
#endif
|
||||
return page_size;
|
||||
}
|
||||
|
||||
/**
|
||||
* OS-dependent memory page locking/unlocking.
|
||||
* Defined as policy class to make stubbing for test possible.
|
||||
*/
|
||||
class MemoryPageLocker
|
||||
{
|
||||
public:
|
||||
/** Lock memory pages.
|
||||
* addr and len must be a multiple of the system page size
|
||||
*/
|
||||
bool Lock(const void *addr, size_t len)
|
||||
{
|
||||
#ifdef WIN32
|
||||
return VirtualLock(const_cast<void*>(addr), len);
|
||||
#else
|
||||
return mlock(addr, len) == 0;
|
||||
#endif
|
||||
}
|
||||
/** Unlock memory pages.
|
||||
* addr and len must be a multiple of the system page size
|
||||
*/
|
||||
bool Unlock(const void *addr, size_t len)
|
||||
{
|
||||
#ifdef WIN32
|
||||
return VirtualUnlock(const_cast<void*>(addr), len);
|
||||
#else
|
||||
return munlock(addr, len) == 0;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in
|
||||
* std::allocator templates.
|
||||
*/
|
||||
class LockedPageManager: public LockedPageManagerBase<MemoryPageLocker>
|
||||
{
|
||||
public:
|
||||
static LockedPageManager instance; // instantiated in util.cpp
|
||||
private:
|
||||
LockedPageManager():
|
||||
LockedPageManagerBase<MemoryPageLocker>(GetSystemPageSize())
|
||||
{}
|
||||
};
|
||||
|
||||
//
|
||||
// Allocator that locks its contents from being paged
|
||||
@ -69,7 +204,7 @@ struct secure_allocator : public std::allocator<T>
|
||||
T *p;
|
||||
p = std::allocator<T>::allocate(n, hint);
|
||||
if (p != NULL)
|
||||
mlock(p, sizeof(T) * n);
|
||||
LockedPageManager::instance.LockRange(p, sizeof(T) * n);
|
||||
return p;
|
||||
}
|
||||
|
||||
@ -78,7 +213,7 @@ struct secure_allocator : public std::allocator<T>
|
||||
if (p != NULL)
|
||||
{
|
||||
memset(p, 0, sizeof(T) * n);
|
||||
munlock(p, sizeof(T) * n);
|
||||
LockedPageManager::instance.UnlockRange(p, sizeof(T) * n);
|
||||
}
|
||||
std::allocator<T>::deallocate(p, n);
|
||||
}
|
||||
|
@ -17,12 +17,6 @@ bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::v
|
||||
if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE)
|
||||
return false;
|
||||
|
||||
// Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
|
||||
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
|
||||
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
|
||||
mlock(&chKey[0], sizeof chKey);
|
||||
mlock(&chIV[0], sizeof chIV);
|
||||
|
||||
int i = 0;
|
||||
if (nDerivationMethod == 0)
|
||||
i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0],
|
||||
@ -44,12 +38,6 @@ bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigne
|
||||
if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_KEY_SIZE)
|
||||
return false;
|
||||
|
||||
// Try to keep the key data out of swap
|
||||
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
|
||||
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
|
||||
mlock(&chKey[0], sizeof chKey);
|
||||
mlock(&chIV[0], sizeof chIV);
|
||||
|
||||
memcpy(&chKey[0], &chNewKey[0], sizeof chKey);
|
||||
memcpy(&chIV[0], &chNewIV[0], sizeof chIV);
|
||||
|
||||
|
@ -78,19 +78,26 @@ public:
|
||||
{
|
||||
memset(&chKey, 0, sizeof chKey);
|
||||
memset(&chIV, 0, sizeof chIV);
|
||||
munlock(&chKey, sizeof chKey);
|
||||
munlock(&chIV, sizeof chIV);
|
||||
fKeySet = false;
|
||||
}
|
||||
|
||||
CCrypter()
|
||||
{
|
||||
fKeySet = false;
|
||||
|
||||
// Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
|
||||
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
|
||||
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
|
||||
LockedPageManager::instance.LockRange(&chKey[0], sizeof chKey);
|
||||
LockedPageManager::instance.LockRange(&chIV[0], sizeof chIV);
|
||||
}
|
||||
|
||||
~CCrypter()
|
||||
{
|
||||
CleanKey();
|
||||
|
||||
LockedPageManager::instance.UnlockRange(&chKey[0], sizeof chKey);
|
||||
LockedPageManager::instance.UnlockRange(&chIV[0], sizeof chIV);
|
||||
}
|
||||
};
|
||||
|
||||
|
115
src/test/allocator_tests.cpp
Normal file
115
src/test/allocator_tests.cpp
Normal file
@ -0,0 +1,115 @@
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include "init.h"
|
||||
#include "main.h"
|
||||
#include "util.h"
|
||||
|
||||
BOOST_AUTO_TEST_SUITE(allocator_tests)
|
||||
|
||||
// Dummy memory page locker for platform independent tests
|
||||
static const void *last_lock_addr, *last_unlock_addr;
|
||||
static size_t last_lock_len, last_unlock_len;
|
||||
class TestLocker
|
||||
{
|
||||
public:
|
||||
bool Lock(const void *addr, size_t len)
|
||||
{
|
||||
last_lock_addr = addr;
|
||||
last_lock_len = len;
|
||||
return true;
|
||||
}
|
||||
bool Unlock(const void *addr, size_t len)
|
||||
{
|
||||
last_unlock_addr = addr;
|
||||
last_unlock_len = len;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_AUTO_TEST_CASE(test_LockedPageManagerBase)
|
||||
{
|
||||
const size_t test_page_size = 4096;
|
||||
LockedPageManagerBase<TestLocker> lpm(test_page_size);
|
||||
size_t addr;
|
||||
last_lock_addr = last_unlock_addr = 0;
|
||||
last_lock_len = last_unlock_len = 0;
|
||||
|
||||
/* Try large number of small objects */
|
||||
addr = 0;
|
||||
for(int i=0; i<1000; ++i)
|
||||
{
|
||||
lpm.LockRange(reinterpret_cast<void*>(addr), 33);
|
||||
addr += 33;
|
||||
}
|
||||
/* Try small number of page-sized objects, straddling two pages */
|
||||
addr = test_page_size*100 + 53;
|
||||
for(int i=0; i<100; ++i)
|
||||
{
|
||||
lpm.LockRange(reinterpret_cast<void*>(addr), test_page_size);
|
||||
addr += test_page_size;
|
||||
}
|
||||
/* Try small number of page-sized objects aligned to exactly one page */
|
||||
addr = test_page_size*300;
|
||||
for(int i=0; i<100; ++i)
|
||||
{
|
||||
lpm.LockRange(reinterpret_cast<void*>(addr), test_page_size);
|
||||
addr += test_page_size;
|
||||
}
|
||||
/* one very large object, straddling pages */
|
||||
lpm.LockRange(reinterpret_cast<void*>(test_page_size*600+1), test_page_size*500);
|
||||
BOOST_CHECK(last_lock_addr == reinterpret_cast<void*>(test_page_size*(600+500)));
|
||||
/* one very large object, page aligned */
|
||||
lpm.LockRange(reinterpret_cast<void*>(test_page_size*1200), test_page_size*500-1);
|
||||
BOOST_CHECK(last_lock_addr == reinterpret_cast<void*>(test_page_size*(1200+500-1)));
|
||||
|
||||
BOOST_CHECK(lpm.GetLockedPageCount() == (
|
||||
(1000*33+test_page_size-1)/test_page_size + // small objects
|
||||
101 + 100 + // page-sized objects
|
||||
501 + 500)); // large objects
|
||||
BOOST_CHECK((last_lock_len & (test_page_size-1)) == 0); // always lock entire pages
|
||||
BOOST_CHECK(last_unlock_len == 0); // nothing unlocked yet
|
||||
|
||||
/* And unlock again */
|
||||
addr = 0;
|
||||
for(int i=0; i<1000; ++i)
|
||||
{
|
||||
lpm.UnlockRange(reinterpret_cast<void*>(addr), 33);
|
||||
addr += 33;
|
||||
}
|
||||
addr = test_page_size*100 + 53;
|
||||
for(int i=0; i<100; ++i)
|
||||
{
|
||||
lpm.UnlockRange(reinterpret_cast<void*>(addr), test_page_size);
|
||||
addr += test_page_size;
|
||||
}
|
||||
addr = test_page_size*300;
|
||||
for(int i=0; i<100; ++i)
|
||||
{
|
||||
lpm.UnlockRange(reinterpret_cast<void*>(addr), test_page_size);
|
||||
addr += test_page_size;
|
||||
}
|
||||
lpm.UnlockRange(reinterpret_cast<void*>(test_page_size*600+1), test_page_size*500);
|
||||
lpm.UnlockRange(reinterpret_cast<void*>(test_page_size*1200), test_page_size*500-1);
|
||||
|
||||
/* Check that everything is released */
|
||||
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
|
||||
|
||||
/* A few and unlocks of size zero (should have no effect) */
|
||||
addr = 0;
|
||||
for(int i=0; i<1000; ++i)
|
||||
{
|
||||
lpm.LockRange(reinterpret_cast<void*>(addr), 0);
|
||||
addr += 1;
|
||||
}
|
||||
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
|
||||
addr = 0;
|
||||
for(int i=0; i<1000; ++i)
|
||||
{
|
||||
lpm.UnlockRange(reinterpret_cast<void*>(addr), 0);
|
||||
addr += 1;
|
||||
}
|
||||
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
|
||||
BOOST_CHECK((last_unlock_len & (test_page_size-1)) == 0); // always unlock entire pages
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
@ -86,6 +86,8 @@ void locking_callback(int mode, int i, const char* file, int line)
|
||||
}
|
||||
}
|
||||
|
||||
LockedPageManager LockedPageManager::instance;
|
||||
|
||||
// Init
|
||||
class CInit
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user