Merge #8753: Locked memory manager

444c673 bench: Add benchmark for lockedpool allocation/deallocation (Wladimir J. van der Laan)
6567999 rpc: Add `getmemoryinfo` call (Wladimir J. van der Laan)
4536148 support: Add LockedPool (Wladimir J. van der Laan)
f4d1fc2 wallet: Get rid of LockObject and UnlockObject calls in key.h (Wladimir J. van der Laan)
999e4c9 wallet: Change CCrypter to use vectors with secure allocator (Wladimir J. van der Laan)
This commit is contained in:
Wladimir J. van der Laan 2016-11-02 11:16:19 +01:00 committed by Alexander Block
parent 88f9dc2f16
commit bc3b9294e8
15 changed files with 966 additions and 410 deletions

View File

@ -164,7 +164,7 @@ BITCOIN_CORE_H = \
support/allocators/secure.h \
support/allocators/zeroafterfree.h \
support/cleanse.h \
support/pagelocker.h \
support/lockedpool.h \
sync.h \
threadsafety.h \
threadinterrupt.h \
@ -399,7 +399,7 @@ libbitcoin_common_a_SOURCES = \
libbitcoin_util_a_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_INCLUDES)
libbitcoin_util_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
libbitcoin_util_a_SOURCES = \
support/pagelocker.cpp \
support/lockedpool.cpp \
chainparamsbase.cpp \
clientversion.cpp \
compat/glibc_sanity.cpp \

View File

@ -17,7 +17,8 @@ bench_bench_dash_SOURCES = \
bench/crypto_hash.cpp \
bench/ccoins_caching.cpp \
bench/mempool_eviction.cpp \
bench/base58.cpp
bench/base58.cpp \
bench/lockedpool.cpp
bench_bench_dash_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_INCLUDES) $(EVENT_CLFAGS) $(EVENT_PTHREADS_CFLAGS) -I$(builddir)/bench/
bench_bench_dash_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)

47
src/bench/lockedpool.cpp Normal file
View File

@ -0,0 +1,47 @@
// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "bench.h"
#include "support/lockedpool.h"
#include <iostream>
#include <vector>
#define ASIZE 2048
#define BITER 5000
#define MSIZE 2048
static void LockedPool(benchmark::State& state)
{
void *synth_base = reinterpret_cast<void*>(0x08000000);
const size_t synth_size = 1024*1024;
Arena b(synth_base, synth_size, 16);
std::vector<void*> addr;
for (int x=0; x<ASIZE; ++x)
addr.push_back(0);
uint32_t s = 0x12345678;
while (state.KeepRunning()) {
for (int x=0; x<BITER; ++x) {
int idx = s & (addr.size()-1);
if (s & 0x80000000) {
b.free(addr[idx]);
addr[idx] = 0;
} else if(!addr[idx]) {
addr[idx] = b.alloc((s >> 16) & (MSIZE-1));
}
bool lsb = s & 1;
s >>= 1;
if (lsb)
s ^= 0xf00f00f0; // LFSR period 0xf7ffffe0
}
}
for (void *ptr: addr)
b.free(ptr);
addr.clear();
}
BENCHMARK(LockedPool);

View File

@ -125,8 +125,8 @@ bool CKey::Check(const unsigned char *vch) {
void CKey::MakeNewKey(bool fCompressedIn) {
do {
GetStrongRandBytes(vch, sizeof(vch));
} while (!Check(vch));
GetStrongRandBytes(keydata.data(), keydata.size());
} while (!Check(keydata.data()));
fValid = true;
fCompressed = fCompressedIn;
}
@ -224,20 +224,18 @@ bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
assert(IsValid());
assert(IsCompressed());
unsigned char out[64];
LockObject(out);
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
if ((nChild >> 31) == 0) {
CPubKey pubkey = GetPubKey();
assert(pubkey.begin() + 33 == pubkey.end());
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
} else {
assert(begin() + 32 == end());
BIP32Hash(cc, nChild, 0, begin(), out);
BIP32Hash(cc, nChild, 0, begin(), vout.data());
}
memcpy(ccChild.begin(), out+32, 32);
memcpy(ccChild.begin(), vout.data()+32, 32);
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), out);
UnlockObject(out);
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
keyChild.fCompressed = true;
keyChild.fValid = ret;
return ret;
@ -253,12 +251,10 @@ bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
unsigned char out[64];
LockObject(out);
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
key.Set(&out[0], &out[32], true);
memcpy(chaincode.begin(), &out[32], 32);
UnlockObject(out);
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(vout.data());
key.Set(&vout[0], &vout[32], true);
memcpy(chaincode.begin(), &vout[32], 32);
nDepth = 0;
nChild = 0;
memset(vchFingerprint, 0, sizeof(vchFingerprint));
@ -308,12 +304,10 @@ void ECC_Start() {
{
// Pass in a random blinding seed to the secp256k1 context.
unsigned char seed[32];
LockObject(seed);
GetRandBytes(seed, 32);
bool ret = secp256k1_context_randomize(ctx, seed);
std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
GetRandBytes(vseed.data(), 32);
bool ret = secp256k1_context_randomize(ctx, vseed.data());
assert(ret);
UnlockObject(seed);
}
secp256k1_context_sign = ctx;

View File

@ -43,9 +43,7 @@ private:
bool fCompressed;
//! The actual byte data
unsigned char vch[32];
static_assert(sizeof(vch) == 32, "vch must be 32 bytes in length to not break serialization");
std::vector<unsigned char, secure_allocator<unsigned char> > keydata;
//! Check whether the 32-byte array pointed to be vch is valid keydata.
bool static Check(const unsigned char* vch);
@ -54,37 +52,30 @@ public:
//! Construct an invalid private key.
CKey() : fValid(false), fCompressed(false)
{
LockObject(vch);
}
//! Copy constructor. This is necessary because of memlocking.
CKey(const CKey& secret) : fValid(secret.fValid), fCompressed(secret.fCompressed)
{
LockObject(vch);
memcpy(vch, secret.vch, sizeof(vch));
// Important: vch must be 32 bytes in length to not break serialization
keydata.resize(32);
}
//! Destructor (again necessary because of memlocking).
~CKey()
{
UnlockObject(vch);
}
friend bool operator==(const CKey& a, const CKey& b)
{
return a.fCompressed == b.fCompressed &&
a.size() == b.size() &&
memcmp(&a.vch[0], &b.vch[0], a.size()) == 0;
memcmp(a.keydata.data(), b.keydata.data(), a.size()) == 0;
}
//! Initialize using begin and end iterators to byte data.
template <typename T>
void Set(const T pbegin, const T pend, bool fCompressedIn)
{
if (pend - pbegin != sizeof(vch)) {
if (size_t(pend - pbegin) != keydata.size()) {
fValid = false;
} else if (Check(&pbegin[0])) {
memcpy(vch, (unsigned char*)&pbegin[0], sizeof(vch));
memcpy(keydata.data(), (unsigned char*)&pbegin[0], keydata.size());
fValid = true;
fCompressed = fCompressedIn;
} else {
@ -93,9 +84,9 @@ public:
}
//! Simple read-only vector-like interface.
unsigned int size() const { return (fValid ? sizeof(vch) : 0); }
const unsigned char* begin() const { return vch; }
const unsigned char* end() const { return vch + size(); }
unsigned int size() const { return (fValid ? keydata.size() : 0); }
const unsigned char* begin() const { return keydata.data(); }
const unsigned char* end() const { return keydata.data() + size(); }
//! Check whether this private key is valid.
bool IsValid() const { return fValid; }

View File

@ -1043,11 +1043,54 @@ UniValue getspentinfo(const JSONRPCRequest& request)
return obj;
}
static UniValue RPCLockedMemoryInfo()
{
LockedPool::Stats stats = LockedPoolManager::Instance().stats();
UniValue obj(UniValue::VOBJ);
obj.push_back(Pair("used", uint64_t(stats.used)));
obj.push_back(Pair("free", uint64_t(stats.free)));
obj.push_back(Pair("total", uint64_t(stats.total)));
obj.push_back(Pair("locked", uint64_t(stats.locked)));
obj.push_back(Pair("chunks_used", uint64_t(stats.chunks_used)));
obj.push_back(Pair("chunks_free", uint64_t(stats.chunks_free)));
return obj;
}
UniValue getmemoryinfo(const JSONRPCRequest& request)
{
/* Please, avoid using the word "pool" here in the RPC interface or help,
* as users will undoubtedly confuse it with the other "memory pool"
*/
if (request.fHelp || request.params.size() != 0)
throw runtime_error(
"getmemoryinfo\n"
"Returns an object containing information about memory usage.\n"
"\nResult:\n"
"{\n"
" \"locked\": { (json object) Information about locked memory manager\n"
" \"used\": xxxxx, (numeric) Number of bytes used\n"
" \"free\": xxxxx, (numeric) Number of bytes available in current arenas\n"
" \"total\": xxxxxxx, (numeric) Total number of bytes managed\n"
" \"locked\": xxxxxx, (numeric) Amount of bytes that succeeded locking. If this number is smaller than total, locking pages failed at some point and key data could be swapped to disk.\n"
" \"chunks_used\": xxxxx, (numeric) Number allocated chunks\n"
" \"chunks_free\": xxxxx, (numeric) Number unused chunks\n"
" }\n"
"}\n"
"\nExamples:\n"
+ HelpExampleCli("getmemoryinfo", "")
+ HelpExampleRpc("getmemoryinfo", "")
);
UniValue obj(UniValue::VOBJ);
obj.push_back(Pair("locked", RPCLockedMemoryInfo()));
return obj;
}
static const CRPCCommand commands[] =
{ // category name actor (function) okSafeMode
// --------------------- ------------------------ ----------------------- ----------
{ "control", "debug", &debug, true },
{ "control", "getinfo", &getinfo, true }, /* uses wallet if enabled */
{ "control", "getmemoryinfo", &getmemoryinfo, true },
{ "util", "validateaddress", &validateaddress, true }, /* uses wallet if enabled */
{ "util", "createmultisig", &createmultisig, true },
{ "util", "verifymessage", &verifymessage, true },

View File

@ -6,7 +6,8 @@
#ifndef BITCOIN_SUPPORT_ALLOCATORS_SECURE_H
#define BITCOIN_SUPPORT_ALLOCATORS_SECURE_H
#include "support/pagelocker.h"
#include "support/lockedpool.h"
#include "support/cleanse.h"
#include <string>
#include <vector>
@ -40,20 +41,15 @@ struct secure_allocator : public std::allocator<T> {
T* allocate(std::size_t n, const void* hint = 0)
{
T* p;
p = std::allocator<T>::allocate(n, hint);
if (p != NULL)
LockedPageManager::Instance().LockRange(p, sizeof(T) * n);
return p;
return static_cast<T*>(LockedPoolManager::Instance().alloc(sizeof(T) * n));
}
void deallocate(T* p, std::size_t n)
{
if (p != NULL) {
memory_cleanse(p, sizeof(T) * n);
LockedPageManager::Instance().UnlockRange(p, sizeof(T) * n);
}
std::allocator<T>::deallocate(p, n);
LockedPoolManager::Instance().free(p);
}
};

383
src/support/lockedpool.cpp Normal file
View File

@ -0,0 +1,383 @@
// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "support/lockedpool.h"
#include "support/cleanse.h"
#if defined(HAVE_CONFIG_H)
#include "config/dash-config.h"
#endif
#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#else
#include <sys/mman.h> // for mmap
#include <sys/resource.h> // for getrlimit
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif
LockedPoolManager* LockedPoolManager::_instance = NULL;
std::once_flag LockedPoolManager::init_flag;
/*******************************************************************************/
// Utilities
//
/** Align up to power of 2 */
static inline size_t align_up(size_t x, size_t align)
{
return (x + align - 1) & ~(align - 1);
}
/*******************************************************************************/
// Implementation: Arena
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
{
// Start with one free chunk that covers the entire arena
chunks.emplace(base, Chunk(size_in, false));
}
Arena::~Arena()
{
}
void* Arena::alloc(size_t size)
{
// Round to next multiple of alignment
size = align_up(size, alignment);
// Don't handle zero-sized chunks, or those bigger than MAX_SIZE
if (size == 0 || size >= Chunk::MAX_SIZE) {
return nullptr;
}
for (auto& chunk: chunks) {
if (!chunk.second.isInUse() && size <= chunk.second.getSize()) {
char* base = chunk.first;
size_t leftover = chunk.second.getSize() - size;
if (leftover > 0) { // Split chunk
chunks.emplace(base + size, Chunk(leftover, false));
chunk.second.setSize(size);
}
chunk.second.setInUse(true);
return reinterpret_cast<void*>(base);
}
}
return nullptr;
}
void Arena::free(void *ptr)
{
// Freeing the NULL pointer is OK.
if (ptr == nullptr) {
return;
}
auto i = chunks.find(static_cast<char*>(ptr));
if (i == chunks.end() || !i->second.isInUse()) {
throw std::runtime_error("Arena: invalid or double free");
}
i->second.setInUse(false);
if (i != chunks.begin()) { // Absorb into previous chunk if exists and free
auto prev = i;
--prev;
if (!prev->second.isInUse()) {
// Absorb current chunk size into previous chunk.
prev->second.setSize(prev->second.getSize() + i->second.getSize());
// Erase current chunk. Erasing does not invalidate current
// iterators for a map, except for that pointing to the object
// itself, which will be overwritten in the next statement.
chunks.erase(i);
// From here on, the previous chunk is our current chunk.
i = prev;
}
}
auto next = i;
++next;
if (next != chunks.end()) { // Absorb next chunk if exists and free
if (!next->second.isInUse()) {
// Absurb next chunk size into current chunk
i->second.setSize(i->second.getSize() + next->second.getSize());
// Erase next chunk.
chunks.erase(next);
}
}
}
Arena::Stats Arena::stats() const
{
Arena::Stats r;
r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
for (const auto& chunk: chunks) {
if (chunk.second.isInUse()) {
r.used += chunk.second.getSize();
r.chunks_used += 1;
} else {
r.free += chunk.second.getSize();
r.chunks_free += 1;
}
r.total += chunk.second.getSize();
}
return r;
}
#ifdef ARENA_DEBUG
void Arena::walk() const
{
for (const auto& chunk: chunks) {
std::cout <<
"0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.first <<
" 0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.second.getSize() <<
" 0x" << chunk.second.isInUse() << std::endl;
}
std::cout << std::endl;
}
#endif
/*******************************************************************************/
// Implementation: Win32LockedPageAllocator
#ifdef WIN32
/** LockedPageAllocator specialized for Windows.
*/
class Win32LockedPageAllocator: public LockedPageAllocator
{
public:
Win32LockedPageAllocator();
void* AllocateLocked(size_t len, bool *lockingSuccess);
void FreeLocked(void* addr, size_t len);
size_t GetLimit();
private:
size_t page_size;
};
Win32LockedPageAllocator::Win32LockedPageAllocator()
{
// Determine system page size in bytes
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
page_size = sSysInfo.dwPageSize;
}
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
len = align_up(len, page_size);
void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (addr) {
// VirtualLock is used to attempt to keep keying material out of swap. Note
// that it does not provide this as a guarantee, but, in practice, memory
// that has been VirtualLock'd almost never gets written to the pagefile
// except in rare circumstances where memory is extremely low.
*lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
}
return addr;
}
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
{
len = align_up(len, page_size);
memory_cleanse(addr, len);
VirtualUnlock(const_cast<void*>(addr), len);
}
size_t Win32LockedPageAllocator::GetLimit()
{
// TODO is there a limit on windows, how to get it?
return std::numeric_limits<size_t>::max();
}
#endif
/*******************************************************************************/
// Implementation: PosixLockedPageAllocator
#ifndef WIN32
/** LockedPageAllocator specialized for OSes that don't try to be
* special snowflakes.
*/
class PosixLockedPageAllocator: public LockedPageAllocator
{
public:
PosixLockedPageAllocator();
void* AllocateLocked(size_t len, bool *lockingSuccess);
void FreeLocked(void* addr, size_t len);
size_t GetLimit();
private:
size_t page_size;
};
PosixLockedPageAllocator::PosixLockedPageAllocator()
{
// Determine system page size in bytes
#if defined(PAGESIZE) // defined in limits.h
page_size = PAGESIZE;
#else // assume some POSIX OS
page_size = sysconf(_SC_PAGESIZE);
#endif
}
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
void *addr;
len = align_up(len, page_size);
addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (addr) {
*lockingSuccess = mlock(addr, len) == 0;
}
return addr;
}
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
{
len = align_up(len, page_size);
memory_cleanse(addr, len);
munlock(addr, len);
munmap(addr, len);
}
size_t PosixLockedPageAllocator::GetLimit()
{
#ifdef RLIMIT_MEMLOCK
struct rlimit rlim;
if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
if (rlim.rlim_cur != RLIM_INFINITY) {
return rlim.rlim_cur;
}
}
#endif
return std::numeric_limits<size_t>::max();
}
#endif
/*******************************************************************************/
// Implementation: LockedPool
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
{
}
LockedPool::~LockedPool()
{
}
void* LockedPool::alloc(size_t size)
{
std::lock_guard<std::mutex> lock(mutex);
// Try allocating from each current arena
for (auto &arena: arenas) {
void *addr = arena.alloc(size);
if (addr) {
return addr;
}
}
// If that fails, create a new one
if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
return arenas.back().alloc(size);
}
return nullptr;
}
void LockedPool::free(void *ptr)
{
std::lock_guard<std::mutex> lock(mutex);
// TODO we can do better than this linear search by keeping a map of arena
// extents to arena, and looking up the address.
for (auto &arena: arenas) {
if (arena.addressInArena(ptr)) {
arena.free(ptr);
return;
}
}
throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
}
LockedPool::Stats LockedPool::stats() const
{
std::lock_guard<std::mutex> lock(mutex);
LockedPool::Stats r;
r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
r.locked = cumulative_bytes_locked;
for (const auto &arena: arenas) {
Arena::Stats i = arena.stats();
r.used += i.used;
r.free += i.free;
r.total += i.total;
r.chunks_used += i.chunks_used;
r.chunks_free += i.chunks_free;
}
return r;
}
bool LockedPool::new_arena(size_t size, size_t align)
{
bool locked;
// If this is the first arena, handle this specially: Cap the upper size
// by the process limit. This makes sure that the first arena will at least
// be locked. An exception to this is if the process limit is 0:
// in this case no memory can be locked at all so we'll skip past this logic.
if (arenas.empty()) {
size_t limit = allocator->GetLimit();
if (limit > 0) {
size = std::min(size, limit);
}
}
void *addr = allocator->AllocateLocked(size, &locked);
if (!addr) {
return false;
}
if (locked) {
cumulative_bytes_locked += size;
} else if (lf_cb) { // Call the locking-failed callback if locking failed
if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
allocator->FreeLocked(addr, size);
return false;
}
}
arenas.emplace_back(allocator.get(), addr, size, align);
return true;
}
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
{
}
LockedPool::LockedPageArena::~LockedPageArena()
{
allocator->FreeLocked(base, size);
}
/*******************************************************************************/
// Implementation: LockedPoolManager
//
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator):
LockedPool(std::move(allocator), &LockedPoolManager::LockingFailed)
{
}
bool LockedPoolManager::LockingFailed()
{
// TODO: log something but how? without including util.h
return true;
}
void LockedPoolManager::CreateInstance()
{
// Using a local static instance guarantees that the object is initialized
// when it's first needed and also deinitialized after all objects that use
// it are done with it. I can think of one unlikely scenario where we may
// have a static deinitialization order/problem, but the check in
// LockedPoolManagerBase's destructor helps us detect if that ever happens.
#ifdef WIN32
std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
#else
std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
#endif
static LockedPoolManager instance(std::move(allocator));
LockedPoolManager::_instance = &instance;
}

251
src/support/lockedpool.h Normal file
View File

@ -0,0 +1,251 @@
// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SUPPORT_LOCKEDPOOL_H
#define BITCOIN_SUPPORT_LOCKEDPOOL_H
#include <stdint.h>
#include <list>
#include <map>
#include <mutex>
#include <memory>
/**
* OS-dependent allocation and deallocation of locked/pinned memory pages.
* Abstract base class.
*/
class LockedPageAllocator
{
public:
virtual ~LockedPageAllocator() {}
/** Allocate and lock memory pages.
* If len is not a multiple of the system page size, it is rounded up.
* Returns 0 in case of allocation failure.
*
* If locking the memory pages could not be accomplished it will still
* return the memory, however the lockingSuccess flag will be false.
* lockingSuccess is undefined if the allocation fails.
*/
virtual void* AllocateLocked(size_t len, bool *lockingSuccess) = 0;
/** Unlock and free memory pages.
* Clear the memory before unlocking.
*/
virtual void FreeLocked(void* addr, size_t len) = 0;
/** Get the total limit on the amount of memory that may be locked by this
* process, in bytes. Return size_t max if there is no limit or the limit
* is unknown. Return 0 if no memory can be locked at all.
*/
virtual size_t GetLimit() = 0;
};
/* An arena manages a contiguous region of memory by dividing it into
* chunks.
*/
class Arena
{
public:
Arena(void *base, size_t size, size_t alignment);
virtual ~Arena();
/** A chunk of memory.
*/
struct Chunk
{
/** Most significant bit of size_t. This is used to mark
* in-usedness of chunk.
*/
const static size_t SIZE_MSB = 1LLU << ((sizeof(size_t)*8)-1);
/** Maximum size of a chunk */
const static size_t MAX_SIZE = SIZE_MSB - 1;
Chunk(size_t size_in, bool used_in):
size(size_in | (used_in ? SIZE_MSB : 0)) {}
bool isInUse() const { return size & SIZE_MSB; }
void setInUse(bool used_in) { size = (size & ~SIZE_MSB) | (used_in ? SIZE_MSB : 0); }
size_t getSize() const { return size & ~SIZE_MSB; }
void setSize(size_t size_in) { size = (size & SIZE_MSB) | size_in; }
private:
size_t size;
};
/** Memory statistics. */
struct Stats
{
size_t used;
size_t free;
size_t total;
size_t chunks_used;
size_t chunks_free;
};
/** Allocate size bytes from this arena.
* Returns pointer on success, or 0 if memory is full or
* the application tried to allocate 0 bytes.
*/
void* alloc(size_t size);
/** Free a previously allocated chunk of memory.
* Freeing the zero pointer has no effect.
* Raises std::runtime_error in case of error.
*/
void free(void *ptr);
/** Get arena usage statistics */
Stats stats() const;
#ifdef ARENA_DEBUG
void walk() const;
#endif
/** Return whether a pointer points inside this arena.
* This returns base <= ptr < (base+size) so only use it for (inclusive)
* chunk starting addresses.
*/
bool addressInArena(void *ptr) const { return ptr >= base && ptr < end; }
private:
Arena(const Arena& other) = delete; // non construction-copyable
Arena& operator=(const Arena&) = delete; // non copyable
/** Map of chunk address to chunk information. This class makes use of the
* sorted order to merge previous and next chunks during deallocation.
*/
std::map<char*, Chunk> chunks;
/** Base address of arena */
char* base;
/** End address of arena */
char* end;
/** Minimum chunk alignment */
size_t alignment;
};
/** Pool for locked memory chunks.
*
* To avoid sensitive key data from being swapped to disk, the memory in this pool
* is locked/pinned.
*
* An arena manages a contiguous region of memory. The pool starts out with one arena
* but can grow to multiple arenas if the need arises.
*
* Unlike a normal C heap, the administrative structures are seperate from the managed
* memory. This has been done as the sizes and bases of objects are not in themselves sensitive
* information, as to conserve precious locked memory. In some operating systems
* the amount of memory that can be locked is small.
*/
class LockedPool
{
public:
/** Size of one arena of locked memory. This is a compromise.
* Do not set this too low, as managing many arenas will increase
* allocation and deallocation overhead. Setting it too high allocates
* more locked memory from the OS than strictly necessary.
*/
static const size_t ARENA_SIZE = 256*1024;
/** Chunk alignment. Another compromise. Setting this too high will waste
* memory, setting it too low will facilitate fragmentation.
*/
static const size_t ARENA_ALIGN = 16;
/** Callback when allocation succeeds but locking fails.
*/
typedef bool (*LockingFailed_Callback)();
/** Memory statistics. */
struct Stats
{
size_t used;
size_t free;
size_t total;
size_t locked;
size_t chunks_used;
size_t chunks_free;
};
/** Create a new LockedPool. This takes ownership of the MemoryPageLocker,
* you can only instantiate this with LockedPool(std::move(...)).
*
* The second argument is an optional callback when locking a newly allocated arena failed.
* If this callback is provided and returns false, the allocation fails (hard fail), if
* it returns true the allocation proceeds, but it could warn.
*/
LockedPool(std::unique_ptr<LockedPageAllocator> allocator, LockingFailed_Callback lf_cb_in = 0);
~LockedPool();
/** Allocate size bytes from this arena.
* Returns pointer on success, or 0 if memory is full or
* the application tried to allocate 0 bytes.
*/
void* alloc(size_t size);
/** Free a previously allocated chunk of memory.
* Freeing the zero pointer has no effect.
* Raises std::runtime_error in case of error.
*/
void free(void *ptr);
/** Get pool usage statistics */
Stats stats() const;
private:
LockedPool(const LockedPool& other) = delete; // non construction-copyable
LockedPool& operator=(const LockedPool&) = delete; // non copyable
std::unique_ptr<LockedPageAllocator> allocator;
/** Create an arena from locked pages */
class LockedPageArena: public Arena
{
public:
LockedPageArena(LockedPageAllocator *alloc_in, void *base_in, size_t size, size_t align);
~LockedPageArena();
private:
void *base;
size_t size;
LockedPageAllocator *allocator;
};
bool new_arena(size_t size, size_t align);
std::list<LockedPageArena> arenas;
LockingFailed_Callback lf_cb;
size_t cumulative_bytes_locked;
/** Mutex protects access to this pool's data structures, including arenas.
*/
mutable std::mutex mutex;
};
/**
* Singleton class to keep track of locked (ie, non-swappable) memory, for use in
* std::allocator templates.
*
* Some implementations of the STL allocate memory in some constructors (i.e., see
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.)
* Due to the unpredictable order of static initializers, we have to make sure the
* LockedPoolManager instance exists before any other STL-based objects that use
* secure_allocator are created. So instead of having LockedPoolManager also be
* static-initialized, it is created on demand.
*/
class LockedPoolManager : public LockedPool
{
public:
/** Return the current instance, or create it once */
static LockedPoolManager& Instance()
{
std::call_once(LockedPoolManager::init_flag, LockedPoolManager::CreateInstance);
return *LockedPoolManager::_instance;
}
private:
LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator);
/** Create a new LockedPoolManager specialized to the OS */
static void CreateInstance();
/** Called when locking fails, warn the user here */
static bool LockingFailed();
static LockedPoolManager* _instance;
static std::once_flag init_flag;
};
#endif // BITCOIN_SUPPORT_LOCKEDPOOL_H

View File

@ -1,70 +0,0 @@
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "support/pagelocker.h"
#if defined(HAVE_CONFIG_H)
#include "config/dash-config.h"
#endif
#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
// This is used to attempt to keep keying material out of swap
// Note that VirtualLock does not provide this as a guarantee on Windows,
// but, in practice, memory that has been VirtualLock'd almost never gets written to
// the pagefile except in rare circumstances where memory is extremely low.
#else
#include <sys/mman.h>
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif
LockedPageManager* LockedPageManager::_instance = NULL;
boost::once_flag LockedPageManager::init_flag = BOOST_ONCE_INIT;
/** Determine system page size in bytes */
static inline size_t GetSystemPageSize()
{
size_t page_size;
#if defined(WIN32)
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
page_size = sSysInfo.dwPageSize;
#elif defined(PAGESIZE) // defined in limits.h
page_size = PAGESIZE;
#else // assume some POSIX OS
page_size = sysconf(_SC_PAGESIZE);
#endif
return page_size;
}
bool MemoryPageLocker::Lock(const void* addr, size_t len)
{
#ifdef WIN32
return VirtualLock(const_cast<void*>(addr), len) != 0;
#else
return mlock(addr, len) == 0;
#endif
}
bool MemoryPageLocker::Unlock(const void* addr, size_t len)
{
#ifdef WIN32
return VirtualUnlock(const_cast<void*>(addr), len) != 0;
#else
return munlock(addr, len) == 0;
#endif
}
LockedPageManager::LockedPageManager() : LockedPageManagerBase<MemoryPageLocker>(GetSystemPageSize())
{
}

View File

@ -1,177 +0,0 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SUPPORT_PAGELOCKER_H
#define BITCOIN_SUPPORT_PAGELOCKER_H
#include "support/cleanse.h"
#include <map>
#include <boost/thread/mutex.hpp>
#include <boost/thread/once.hpp>
/**
* Thread-safe class to keep track of locked (ie, non-swappable) memory pages.
*
* Memory locks do not stack, that is, pages which have been locked several times by calls to mlock()
* will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when
* those functions are used naively. This class simulates stacking memory locks by keeping a counter per page.
*
* @note By using a map from each page base address to lock count, this class is optimized for
* small objects that span up to a few pages, mostly smaller than a page. To support large allocations,
* something like an interval tree would be the preferred data structure.
*/
template <class Locker>
class LockedPageManagerBase
{
public:
LockedPageManagerBase(size_t _page_size) : page_size(_page_size)
{
// Determine bitmask for extracting page from address
assert(!(_page_size & (_page_size - 1))); // size must be power of two
page_mask = ~(_page_size - 1);
}
~LockedPageManagerBase()
{
}
// For all pages in affected range, increase lock count
void LockRange(void* p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if (!size)
return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for (size_t page = start_page; page <= end_page; page += page_size) {
Histogram::iterator it = histogram.find(page);
if (it == histogram.end()) // Newly locked page
{
locker.Lock(reinterpret_cast<void*>(page), page_size);
histogram.insert(std::make_pair(page, 1));
} else // Page was already locked; increase counter
{
it->second += 1;
}
}
}
// For all pages in affected range, decrease lock count
void UnlockRange(void* p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if (!size)
return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for (size_t page = start_page; page <= end_page; page += page_size) {
Histogram::iterator it = histogram.find(page);
assert(it != histogram.end()); // Cannot unlock an area that was not locked
// Decrease counter for page, when it is zero, the page will be unlocked
it->second -= 1;
if (it->second == 0) // Nothing on the page anymore that keeps it locked
{
// Unlock page and remove the count from histogram
locker.Unlock(reinterpret_cast<void*>(page), page_size);
histogram.erase(it);
}
}
}
// Get number of locked pages for diagnostics
int GetLockedPageCount()
{
boost::mutex::scoped_lock lock(mutex);
return histogram.size();
}
private:
Locker locker;
boost::mutex mutex;
size_t page_size, page_mask;
// map of page base address to lock count
typedef std::map<size_t, int> Histogram;
Histogram histogram;
};
/**
* OS-dependent memory page locking/unlocking.
* Defined as policy class to make stubbing for test possible.
*/
class MemoryPageLocker
{
public:
/** Lock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Lock(const void* addr, size_t len);
/** Unlock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Unlock(const void* addr, size_t len);
};
/**
* Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in
* std::allocator templates.
*
* Some implementations of the STL allocate memory in some constructors (i.e., see
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.)
* Due to the unpredictable order of static initializers, we have to make sure the
* LockedPageManager instance exists before any other STL-based objects that use
* secure_allocator are created. So instead of having LockedPageManager also be
* static-initialized, it is created on demand.
*/
class LockedPageManager : public LockedPageManagerBase<MemoryPageLocker>
{
public:
static LockedPageManager& Instance()
{
boost::call_once(LockedPageManager::CreateInstance, LockedPageManager::init_flag);
return *LockedPageManager::_instance;
}
private:
LockedPageManager();
static void CreateInstance()
{
// Using a local static instance guarantees that the object is initialized
// when it's first needed and also deinitialized after all objects that use
// it are done with it. I can think of one unlikely scenario where we may
// have a static deinitialization order/problem, but the check in
// LockedPageManagerBase's destructor helps us detect if that ever happens.
static LockedPageManager instance;
LockedPageManager::_instance = &instance;
}
static LockedPageManager* _instance;
static boost::once_flag init_flag;
};
//
// Functions for directly locking/unlocking memory objects.
// Intended for non-dynamically allocated structures.
//
template <typename T>
void LockObject(const T& t)
{
LockedPageManager::Instance().LockRange((void*)(&t), sizeof(T));
}
template <typename T>
void UnlockObject(const T& t)
{
memory_cleanse((void*)(&t), sizeof(T));
LockedPageManager::Instance().UnlockRange((void*)(&t), sizeof(T));
}
#endif // BITCOIN_SUPPORT_PAGELOCKER_H

View File

@ -11,110 +11,214 @@
BOOST_FIXTURE_TEST_SUITE(allocator_tests, BasicTestingSetup)
// Dummy memory page locker for platform independent tests
static const void *last_lock_addr, *last_unlock_addr;
static size_t last_lock_len, last_unlock_len;
class TestLocker
BOOST_AUTO_TEST_CASE(arena_tests)
{
// Fake memory base address for testing
// without actually using memory.
void *synth_base = reinterpret_cast<void*>(0x08000000);
const size_t synth_size = 1024*1024;
Arena b(synth_base, synth_size, 16);
void *chunk = b.alloc(1000);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(chunk != nullptr);
BOOST_CHECK(b.stats().used == 1008); // Aligned to 16
BOOST_CHECK(b.stats().total == synth_size); // Nothing has disappeared?
b.free(chunk);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 0);
BOOST_CHECK(b.stats().free == synth_size);
try { // Test exception on double-free
b.free(chunk);
BOOST_CHECK(0);
} catch(std::runtime_error &)
{
}
void *a0 = b.alloc(128);
BOOST_CHECK(a0 == synth_base); // first allocation must start at beginning
void *a1 = b.alloc(256);
void *a2 = b.alloc(512);
BOOST_CHECK(b.stats().used == 896);
BOOST_CHECK(b.stats().total == synth_size);
#ifdef ARENA_DEBUG
b.walk();
#endif
b.free(a0);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 768);
b.free(a1);
BOOST_CHECK(b.stats().used == 512);
void *a3 = b.alloc(128);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 640);
b.free(a2);
BOOST_CHECK(b.stats().used == 128);
b.free(a3);
BOOST_CHECK(b.stats().used == 0);
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
std::vector<void*> addr;
BOOST_CHECK(b.alloc(0) == nullptr); // allocating 0 always returns nullptr
#ifdef ARENA_DEBUG
b.walk();
#endif
// Sweeping allocate all memory
for (int x=0; x<1024; ++x)
addr.push_back(b.alloc(1024));
BOOST_CHECK(addr[0] == synth_base); // first allocation must start at beginning
BOOST_CHECK(b.stats().free == 0);
BOOST_CHECK(b.alloc(1024) == nullptr); // memory is full, this must return nullptr
BOOST_CHECK(b.alloc(0) == nullptr);
for (int x=0; x<1024; ++x)
b.free(addr[x]);
addr.clear();
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
// Now in the other direction...
for (int x=0; x<1024; ++x)
addr.push_back(b.alloc(1024));
for (int x=0; x<1024; ++x)
b.free(addr[1023-x]);
addr.clear();
// Now allocate in smaller unequal chunks, then deallocate haphazardly
// Not all the chunks will succeed allocating, but freeing nullptr is
// allowed so that is no problem.
for (int x=0; x<2048; ++x)
addr.push_back(b.alloc(x+1));
for (int x=0; x<2048; ++x)
b.free(addr[((x*23)%2048)^242]);
addr.clear();
// Go entirely wild: free and alloc interleaved,
// generate targets and sizes using pseudo-randomness.
for (int x=0; x<2048; ++x)
addr.push_back(0);
uint32_t s = 0x12345678;
for (int x=0; x<5000; ++x) {
int idx = s & (addr.size()-1);
if (s & 0x80000000) {
b.free(addr[idx]);
addr[idx] = 0;
} else if(!addr[idx]) {
addr[idx] = b.alloc((s >> 16) & 2047);
}
bool lsb = s & 1;
s >>= 1;
if (lsb)
s ^= 0xf00f00f0; // LFSR period 0xf7ffffe0
}
for (void *ptr: addr)
b.free(ptr);
addr.clear();
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
}
/** Mock LockedPageAllocator for testing */
class TestLockedPageAllocator: public LockedPageAllocator
{
public:
bool Lock(const void *addr, size_t len)
TestLockedPageAllocator(int count_in, int lockedcount_in): count(count_in), lockedcount(lockedcount_in) {}
void* AllocateLocked(size_t len, bool *lockingSuccess)
{
last_lock_addr = addr;
last_lock_len = len;
return true;
*lockingSuccess = false;
if (count > 0) {
--count;
if (lockedcount > 0) {
--lockedcount;
*lockingSuccess = true;
}
return reinterpret_cast<void*>(0x08000000 + (count<<24)); // Fake address, do not actually use this memory
}
return 0;
}
bool Unlock(const void *addr, size_t len)
void FreeLocked(void* addr, size_t len)
{
last_unlock_addr = addr;
last_unlock_len = len;
return true;
}
size_t GetLimit()
{
return std::numeric_limits<size_t>::max();
}
private:
int count;
int lockedcount;
};
BOOST_AUTO_TEST_CASE(test_LockedPageManagerBase)
BOOST_AUTO_TEST_CASE(lockedpool_tests_mock)
{
const size_t test_page_size = 4096;
LockedPageManagerBase<TestLocker> lpm(test_page_size);
size_t addr;
last_lock_addr = last_unlock_addr = 0;
last_lock_len = last_unlock_len = 0;
// Test over three virtual arenas, of which one will succeed being locked
std::unique_ptr<LockedPageAllocator> x(new TestLockedPageAllocator(3, 1));
LockedPool pool(std::move(x));
BOOST_CHECK(pool.stats().total == 0);
BOOST_CHECK(pool.stats().locked == 0);
/* Try large number of small objects */
addr = 0;
for(int i=0; i<1000; ++i)
{
lpm.LockRange(reinterpret_cast<void*>(addr), 33);
addr += 33;
}
/* Try small number of page-sized objects, straddling two pages */
addr = test_page_size*100 + 53;
for(int i=0; i<100; ++i)
{
lpm.LockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
/* Try small number of page-sized objects aligned to exactly one page */
addr = test_page_size*300;
for(int i=0; i<100; ++i)
{
lpm.LockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
/* one very large object, straddling pages */
lpm.LockRange(reinterpret_cast<void*>(test_page_size*600+1), test_page_size*500);
BOOST_CHECK(last_lock_addr == reinterpret_cast<void*>(test_page_size*(600+500)));
/* one very large object, page aligned */
lpm.LockRange(reinterpret_cast<void*>(test_page_size*1200), test_page_size*500-1);
BOOST_CHECK(last_lock_addr == reinterpret_cast<void*>(test_page_size*(1200+500-1)));
void *a0 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a0);
BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE);
void *a1 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a1);
void *a2 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a2);
void *a3 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a3);
void *a4 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a4);
void *a5 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a5);
// We've passed a count of three arenas, so this allocation should fail
void *a6 = pool.alloc(16);
BOOST_CHECK(!a6);
BOOST_CHECK(lpm.GetLockedPageCount() == (
(1000*33+test_page_size-1)/test_page_size + // small objects
101 + 100 + // page-sized objects
501 + 500)); // large objects
BOOST_CHECK((last_lock_len & (test_page_size-1)) == 0); // always lock entire pages
BOOST_CHECK(last_unlock_len == 0); // nothing unlocked yet
pool.free(a0);
pool.free(a2);
pool.free(a4);
pool.free(a1);
pool.free(a3);
pool.free(a5);
BOOST_CHECK(pool.stats().total == 3*LockedPool::ARENA_SIZE);
BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE);
BOOST_CHECK(pool.stats().used == 0);
}
/* And unlock again */
addr = 0;
for(int i=0; i<1000; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), 33);
addr += 33;
}
addr = test_page_size*100 + 53;
for(int i=0; i<100; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
addr = test_page_size*300;
for(int i=0; i<100; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
lpm.UnlockRange(reinterpret_cast<void*>(test_page_size*600+1), test_page_size*500);
lpm.UnlockRange(reinterpret_cast<void*>(test_page_size*1200), test_page_size*500-1);
// These tests used the live LockedPoolManager object, this is also used
// by other tests so the conditions are somewhat less controllable and thus the
// tests are somewhat more error-prone.
BOOST_AUTO_TEST_CASE(lockedpool_tests_live)
{
LockedPoolManager &pool = LockedPoolManager::Instance();
LockedPool::Stats initial = pool.stats();
/* Check that everything is released */
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
void *a0 = pool.alloc(16);
BOOST_CHECK(a0);
// Test reading and writing the allocated memory
*((uint32_t*)a0) = 0x1234;
BOOST_CHECK(*((uint32_t*)a0) == 0x1234);
/* A few and unlocks of size zero (should have no effect) */
addr = 0;
for(int i=0; i<1000; ++i)
pool.free(a0);
try { // Test exception on double-free
pool.free(a0);
BOOST_CHECK(0);
} catch(std::runtime_error &)
{
lpm.LockRange(reinterpret_cast<void*>(addr), 0);
addr += 1;
}
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
addr = 0;
for(int i=0; i<1000; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), 0);
addr += 1;
}
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
BOOST_CHECK((last_unlock_len & (test_page_size-1)) == 0); // always unlock entire pages
// If more than one new arena was allocated for the above tests, something is wrong
BOOST_CHECK(pool.stats().total <= (initial.total + LockedPool::ARENA_SIZE));
// Usage must be back to where it started
BOOST_CHECK(pool.stats().used == initial.used);
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -48,12 +48,12 @@ bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::v
int i = 0;
if (nDerivationMethod == 0)
i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, chKey, chIV);
i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, vchKey.data(), vchIV.data());
if (i != (int)WALLET_CRYPTO_KEY_SIZE)
{
memory_cleanse(chKey, sizeof(chKey));
memory_cleanse(chIV, sizeof(chIV));
memory_cleanse(vchKey.data(), vchKey.size());
memory_cleanse(vchIV.data(), vchIV.size());
return false;
}
@ -66,8 +66,8 @@ bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigne
if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_IV_SIZE)
return false;
memcpy(&chKey[0], &chNewKey[0], sizeof chKey);
memcpy(&chIV[0], &chNewIV[0], sizeof chIV);
memcpy(vchKey.data(), chNewKey.data(), chNewKey.size());
memcpy(vchIV.data(), chNewIV.data(), chNewIV.size());
fKeySet = true;
return true;
@ -82,7 +82,7 @@ bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned
// n + AES_BLOCKSIZE bytes
vchCiphertext.resize(vchPlaintext.size() + AES_BLOCKSIZE);
AES256CBCEncrypt enc(chKey, chIV, true);
AES256CBCEncrypt enc(vchKey.data(), vchIV.data(), true);
size_t nLen = enc.Encrypt(&vchPlaintext[0], vchPlaintext.size(), &vchCiphertext[0]);
if(nLen < vchPlaintext.size())
return false;
@ -101,7 +101,7 @@ bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingM
vchPlaintext.resize(nLen);
AES256CBCDecrypt dec(chKey, chIV, true);
AES256CBCDecrypt dec(vchKey.data(), vchIV.data(), true);
nLen = dec.Decrypt(&vchCiphertext[0], vchCiphertext.size(), &vchPlaintext[0]);
if(nLen == 0)
return false;

View File

@ -77,8 +77,8 @@ class CCrypter
{
friend class wallet_crypto::TestCrypter; // for test access to chKey/chIV
private:
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
unsigned char chIV[WALLET_CRYPTO_IV_SIZE];
std::vector<unsigned char, secure_allocator<unsigned char>> vchKey;
std::vector<unsigned char, secure_allocator<unsigned char>> vchIV;
bool fKeySet;
int BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const;
@ -91,28 +91,21 @@ public:
void CleanKey()
{
memory_cleanse(chKey, sizeof(chKey));
memory_cleanse(chIV, sizeof(chIV));
memory_cleanse(vchKey.data(), vchKey.size());
memory_cleanse(vchIV.data(), vchIV.size());
fKeySet = false;
}
CCrypter()
{
fKeySet = false;
// Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
LockedPageManager::Instance().LockRange(&chKey[0], sizeof chKey);
LockedPageManager::Instance().LockRange(&chIV[0], sizeof chIV);
vchKey.resize(WALLET_CRYPTO_KEY_SIZE);
vchIV.resize(WALLET_CRYPTO_IV_SIZE);
}
~CCrypter()
{
CleanKey();
LockedPageManager::Instance().UnlockRange(&chKey[0], sizeof chKey);
LockedPageManager::Instance().UnlockRange(&chIV[0], sizeof chIV);
}
};

View File

@ -191,10 +191,10 @@ static void TestPassphraseSingle(const std::vector<unsigned char>& vchSalt, cons
OldSetKeyFromPassphrase(passphrase, vchSalt, rounds, 0, chKey, chIV);
BOOST_CHECK_MESSAGE(memcmp(chKey, crypt.chKey, sizeof(chKey)) == 0, \
HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(crypt.chKey, crypt.chKey + (sizeof crypt.chKey)));
BOOST_CHECK_MESSAGE(memcmp(chIV, crypt.chIV, sizeof(chIV)) == 0, \
HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(crypt.chIV, crypt.chIV + (sizeof crypt.chIV)));
BOOST_CHECK_MESSAGE(memcmp(chKey, crypt.vchKey.data(), crypt.vchKey.size()) == 0, \
HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(crypt.vchKey));
BOOST_CHECK_MESSAGE(memcmp(chIV, crypt.vchIV.data(), crypt.vchIV.size()) == 0, \
HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(crypt.vchIV));
if(!correctKey.empty())
BOOST_CHECK_MESSAGE(memcmp(chKey, &correctKey[0], sizeof(chKey)) == 0, \
@ -221,7 +221,7 @@ static void TestDecrypt(const CCrypter& crypt, const std::vector<unsigned char>&
CKeyingMaterial vchDecrypted2;
int result1, result2;
result1 = crypt.Decrypt(vchCiphertext, vchDecrypted1);
result2 = OldDecrypt(vchCiphertext, vchDecrypted2, crypt.chKey, crypt.chIV);
result2 = OldDecrypt(vchCiphertext, vchDecrypted2, crypt.vchKey.data(), crypt.vchIV.data());
BOOST_CHECK(result1 == result2);
// These two should be equal. However, OpenSSL 1.0.1j introduced a change
@ -246,7 +246,7 @@ static void TestEncryptSingle(const CCrypter& crypt, const CKeyingMaterial& vchP
std::vector<unsigned char> vchCiphertext2;
int result1 = crypt.Encrypt(vchPlaintext, vchCiphertext1);
int result2 = OldEncrypt(vchPlaintext, vchCiphertext2, crypt.chKey, crypt.chIV);
int result2 = OldEncrypt(vchPlaintext, vchCiphertext2, crypt.vchKey.data(), crypt.vchIV.data());
BOOST_CHECK(result1 == result2);
BOOST_CHECK(vchCiphertext1 == vchCiphertext2);