From bf688abcee5a12f72874260e94508119e8711d54 Mon Sep 17 00:00:00 2001 From: "Wladimir J. van der Laan" Date: Thu, 3 Dec 2015 13:35:55 +0100 Subject: [PATCH] Merge pull request #7113 086ee67 Switch to a more efficient rolling Bloom filter (Pieter Wuille) --- src/bloom.cpp | 77 +++++++++++++++++++++++++++++------------- src/bloom.h | 26 +++++++++++--- src/net_processing.cpp | 2 +- 3 files changed, 75 insertions(+), 30 deletions(-) diff --git a/src/bloom.cpp b/src/bloom.cpp index 6f5cdb3fd..34104b6e0 100644 --- a/src/bloom.cpp +++ b/src/bloom.cpp @@ -216,30 +216,54 @@ void CBloomFilter::UpdateEmptyFull() isEmpty = empty; } -CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate) : - b1(nElements * 2, fpRate, 0), b2(nElements * 2, fpRate, 0) +CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate) { - // Implemented using two bloom filters of 2 * nElements each. - // We fill them up, and clear them, staggered, every nElements - // inserted, so at least one always contains the last nElements - // inserted. - nInsertions = 0; - nBloomSize = nElements * 2; - + double logFpRate = log(fpRate); + /* The optimal number of hash functions is log(fpRate) / log(0.5), but + * restrict it to the range 1-50. */ + nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50)); + /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */ + nEntriesPerGeneration = (nElements + 1) / 2; + uint32_t nMaxElements = nEntriesPerGeneration * 3; + /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs) + * => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits) + * => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits) + * => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits + * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) + * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)) + */ + uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))); + data.clear(); + /* We store up to 16 'bits' per data element. */ + data.resize((nFilterBits + 15) / 16); reset(); } +/* Similar to CBloomFilter::Hash */ +inline unsigned int CRollingBloomFilter::Hash(unsigned int nHashNum, const std::vector& vDataToHash) const { + return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (data.size() * 16); +} + void CRollingBloomFilter::insert(const std::vector& vKey) { - if (nInsertions == 0) { - b1.clear(); - } else if (nInsertions == nBloomSize / 2) { - b2.clear(); + if (nEntriesThisGeneration == nEntriesPerGeneration) { + nEntriesThisGeneration = 0; + nGeneration++; + if (nGeneration == 4) { + nGeneration = 1; + } + /* Wipe old entries that used this generation number. */ + for (uint32_t p = 0; p < data.size() * 16; p++) { + if (get(p) == nGeneration) { + put(p, 0); + } + } } - b1.insert(vKey); - b2.insert(vKey); - if (++nInsertions == nBloomSize) { - nInsertions = 0; + nEntriesThisGeneration++; + + for (int n = 0; n < nHashFuncs; n++) { + uint32_t h = Hash(n, vKey); + put(h, nGeneration); } } @@ -251,10 +275,13 @@ void CRollingBloomFilter::insert(const uint256& hash) bool CRollingBloomFilter::contains(const std::vector& vKey) const { - if (nInsertions < nBloomSize / 2) { - return b2.contains(vKey); + for (int n = 0; n < nHashFuncs; n++) { + uint32_t h = Hash(n, vKey); + if (get(h) == 0) { + return false; + } } - return b1.contains(vKey); + return true; } bool CRollingBloomFilter::contains(const uint256& hash) const @@ -265,8 +292,10 @@ bool CRollingBloomFilter::contains(const uint256& hash) const void CRollingBloomFilter::reset() { - unsigned int nNewTweak = GetRand(std::numeric_limits::max()); - b1.reset(nNewTweak); - b2.reset(nNewTweak); - nInsertions = 0; + nTweak = GetRand(std::numeric_limits::max()); + nEntriesThisGeneration = 0; + nGeneration = 1; + for (std::vector::iterator it = data.begin(); it != data.end(); it++) { + *it = 0; + } } diff --git a/src/bloom.h b/src/bloom.h index f48ebe55e..b0ad8b875 100644 --- a/src/bloom.h +++ b/src/bloom.h @@ -110,8 +110,11 @@ public: * reset() is provided, which also changes nTweak to decrease the impact of * false-positives. * - * contains(item) will always return true if item was one of the last N things + * contains(item) will always return true if item was one of the last N to 1.5*N * insert()'ed ... but may also return true for items that were not inserted. + * + * It needs around 1.8 bytes per element per factor 0.1 of false positive rate. + * (More accurately: 3/(log(256)*log(2)) * log(1/fpRate) * nElements bytes) */ class CRollingBloomFilter { @@ -129,10 +132,23 @@ public: void reset(); private: - unsigned int nBloomSize; - unsigned int nInsertions; - CBloomFilter b1, b2; + int nEntriesPerGeneration; + int nEntriesThisGeneration; + int nGeneration; + std::vector data; + unsigned int nTweak; + int nHashFuncs; + + unsigned int Hash(unsigned int nHashNum, const std::vector& vDataToHash) const; + + inline int get(uint32_t position) const { + return (data[(position >> 4) % data.size()] >> (2 * (position & 0xF))) & 0x3; + } + + inline void put(uint32_t position, uint32_t val) { + uint32_t& cell = data[(position >> 4) % data.size()]; + cell = (cell & ~(((uint32_t)3) << (2 * (position & 0xF)))) | (val << (2 * (position & 0xF))); + } }; - #endif // BITCOIN_BLOOM_H diff --git a/src/net_processing.cpp b/src/net_processing.cpp index c32256cc5..52274e286 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -88,7 +88,7 @@ namespace { * million to make it highly unlikely for users to have issues with this * filter. * - * Memory used: 1.7MB + * Memory used: 1.3MB */ boost::scoped_ptr recentRejects; uint256 hashRecentRejectsChainTip;