Some extra comments

This commit is contained in:
Pieter Wuille 2011-11-07 00:05:42 +01:00
parent 81a28d7a6f
commit d825e6a31b
7 changed files with 80 additions and 9 deletions

View File

@ -21,7 +21,7 @@
static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
// Encode a byte sequence as a base58-encoded string
inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend)
{
CAutoBN_CTX pctx;
@ -62,11 +62,14 @@ inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char
return str;
}
// Encode a byte vector as a base58-encoded string
inline std::string EncodeBase58(const std::vector<unsigned char>& vch)
{
return EncodeBase58(&vch[0], &vch[0] + vch.size());
}
// Decode a base58-encoded string psz into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58(const char* psz, std::vector<unsigned char>& vchRet)
{
CAutoBN_CTX pctx;
@ -113,6 +116,8 @@ inline bool DecodeBase58(const char* psz, std::vector<unsigned char>& vchRet)
return true;
}
// Decode a base58-encoded string str into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58(const std::string& str, std::vector<unsigned char>& vchRet)
{
return DecodeBase58(str.c_str(), vchRet);
@ -121,7 +126,7 @@ inline bool DecodeBase58(const std::string& str, std::vector<unsigned char>& vch
// Encode a byte vector to a base58-encoded string, including checksum
inline std::string EncodeBase58Check(const std::vector<unsigned char>& vchIn)
{
// add 4-byte hash check to the end
@ -131,6 +136,8 @@ inline std::string EncodeBase58Check(const std::vector<unsigned char>& vchIn)
return EncodeBase58(vch);
}
// Decode a base58-encoded string psz that includes a checksum, into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58Check(const char* psz, std::vector<unsigned char>& vchRet)
{
if (!DecodeBase58(psz, vchRet))
@ -150,6 +157,8 @@ inline bool DecodeBase58Check(const char* psz, std::vector<unsigned char>& vchRe
return true;
}
// Decode a base58-encoded string str that includes a checksum, into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58Check(const std::string& str, std::vector<unsigned char>& vchRet)
{
return DecodeBase58Check(str.c_str(), vchRet);
@ -159,11 +168,14 @@ inline bool DecodeBase58Check(const std::string& str, std::vector<unsigned char>
// Base class for all base58-encoded data
class CBase58Data
{
protected:
// the version byte
unsigned char nVersion;
// the actually encoded data
std::vector<unsigned char> vchData;
CBase58Data()
@ -174,6 +186,7 @@ protected:
~CBase58Data()
{
// zero the memory, as it may contain sensitive data
if (!vchData.empty())
memset(&vchData[0], 0, vchData.size());
}
@ -238,7 +251,9 @@ public:
bool operator> (const CBase58Data& b58) const { return CompareTo(b58) > 0; }
};
// base58-encoded bitcoin addresses
// Addresses have version 0 or 111 (testnet)
// The data vector contains RIPEMD160(SHA256(pubkey)), where pubkey is the serialized public key
class CBitcoinAddress : public CBase58Data
{
public:

View File

@ -13,15 +13,15 @@ const unsigned int WALLET_CRYPTO_SALT_SIZE = 8;
Private key encryption is done based on a CMasterKey,
which holds a salt and random encryption key.
CMasterKeys is encrypted using AES-256-CBC using a key
CMasterKeys are encrypted using AES-256-CBC using a key
derived using derivation method nDerivationMethod
(0 == EVP_sha512()) and derivation iterations nDeriveIterations.
vchOtherDerivationParameters is provided for alternative algorithms
which may require more parameters (such as scrypt).
Wallet Private Keys are then encrypted using AES-256-CBC
with the double-sha256 of the private key as the IV, and the
master key's key as the encryption key.
with the double-sha256 of the public key as the IV, and the
master key's key as the encryption key (see keystore.[ch]).
*/
class CMasterKey

View File

@ -39,6 +39,7 @@
// see www.keylength.com
// script supports up to 75 for single byte push
// Generate a private key from just the secret parameter
int static inline EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
{
int ok = 0;
@ -75,6 +76,9 @@ err:
return(ok);
}
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
// recid selects which key is recovered
// if check is nonzero, additional checks are performed
int static inline ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
{
if (!eckey) return 0;
@ -154,7 +158,9 @@ public:
// secure_allocator is defined in serialize.h
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
// CSecret is a serialization of just the secret parameter (32 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;
class CKey
@ -292,6 +298,9 @@ public:
}
// create a compact signature (65 bytes), which allows reconstructing the used public key
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
// 0x1D = second key with even y, 0x1E = second key with odd y
bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig)
{
bool fOk = false;
@ -318,7 +327,7 @@ public:
}
if (nRecId == -1)
throw key_error("CKEy::SignCompact() : unable to construct recoverable key");
throw key_error("CKey::SignCompact() : unable to construct recoverable key");
vchSig[0] = nRecId+27;
BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]);
@ -330,6 +339,9 @@ public:
}
// reconstruct public key from a compact signature
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig)
{
if (vchSig.size() != 65)
@ -359,6 +371,7 @@ public:
return true;
}
// Verify a compact signature
bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig)
{
CKey key;
@ -369,6 +382,7 @@ public:
return true;
}
// Get the address corresponding to this key
CBitcoinAddress GetAddress() const
{
return CBitcoinAddress(GetPubKey());

View File

@ -7,21 +7,34 @@
#include "crypter.h"
// A virtual base class for key stores
class CKeyStore
{
protected:
mutable CCriticalSection cs_KeyStore;
public:
// Add a key to the store.
virtual bool AddKey(const CKey& key) =0;
// Check whether a key corresponding to a given address is present in the store.
virtual bool HaveKey(const CBitcoinAddress &address) const =0;
// Retrieve a key corresponding to a given address from the store.
// Return true if succesful.
virtual bool GetKey(const CBitcoinAddress &address, CKey& keyOut) const =0;
// Retrieve only the public key corresponding to a given address.
// This may succeed even if GetKey fails (e.g., encrypted wallets)
virtual bool GetPubKey(const CBitcoinAddress &address, std::vector<unsigned char>& vchPubKeyOut) const;
// Generate a new key, and add it to the store
virtual std::vector<unsigned char> GenerateNewKey();
};
typedef std::map<CBitcoinAddress, CSecret> KeyMap;
// Basic key store, that keeps keys in an address->secret map
class CBasicKeyStore : public CKeyStore
{
protected:
@ -53,6 +66,8 @@ public:
typedef std::map<CBitcoinAddress, std::pair<std::vector<unsigned char>, std::vector<unsigned char> > > CryptedKeyMap;
// Keystore which keeps the private keys encrypted
// It derives from the basic key store, which is used if no encryption is active.
class CCryptoKeyStore : public CBasicKeyStore
{
private:

View File

@ -70,6 +70,9 @@ int fUseUPnP = false;
// dispatching functions
//
// These functions dispatch to one or all registered wallets
void RegisterWallet(CWallet* pwalletIn)
{
CRITICAL_BLOCK(cs_setpwalletRegistered)
@ -86,6 +89,7 @@ void UnregisterWallet(CWallet* pwalletIn)
}
}
// check whether the passed transaction is from us
bool static IsFromMe(CTransaction& tx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
@ -94,6 +98,7 @@ bool static IsFromMe(CTransaction& tx)
return false;
}
// get the wallet transaction with the given hash (if it exists)
bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
@ -102,42 +107,49 @@ bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx)
return false;
}
// erases transaction with the given hash from all wallets
void static EraseFromWallets(uint256 hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->EraseFromWallet(hash);
}
// make sure all wallets know about the given transaction, in the given block
void static SyncWithWallets(const CTransaction& tx, const CBlock* pblock = NULL, bool fUpdate = false)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->AddToWalletIfInvolvingMe(tx, pblock, fUpdate);
}
// notify wallets about a new best chain
void static SetBestChain(const CBlockLocator& loc)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->SetBestChain(loc);
}
// notify wallets about an updated transaction
void static UpdatedTransaction(const uint256& hashTx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->UpdatedTransaction(hashTx);
}
// dump all wallets
void static PrintWallets(const CBlock& block)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->PrintWallet(block);
}
// notify wallets about an incoming inventory (for request counts)
void static Inventory(const uint256& hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->Inventory(hash);
}
// ask wallets to resend their transactions
void static ResendWalletTransactions()
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)

View File

@ -289,6 +289,9 @@ bool CWallet::AddToWallet(const CWalletTx& wtxIn)
return true;
}
// Add a transaction to the wallet, or update it.
// pblock is optional, but should be provided if the transaction is known to be in a block.
// If fUpdate is true, existing transactions will be updated.
bool CWallet::AddToWalletIfInvolvingMe(const CTransaction& tx, const CBlock* pblock, bool fUpdate)
{
uint256 hash = tx.GetHash();
@ -551,6 +554,9 @@ bool CWalletTx::WriteToDisk()
return CWalletDB(pwallet->strWalletFile).WriteTx(GetHash(), *this);
}
// Scan the block chain (starting in pindexStart) for transactions
// from or to us. If fUpdate is true, found transactions that already
// exist in the wallet will be updated.
int CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate)
{
int ret = 0;

View File

@ -13,6 +13,9 @@ class CWalletTx;
class CReserveKey;
class CWalletDB;
// A CWallet is an extension of a keystore, which also maintains a set of
// transactions and balances, and provides the ability to create new
// transactions
class CWallet : public CCryptoKeyStore
{
private:
@ -57,9 +60,14 @@ public:
std::vector<unsigned char> vchDefaultKey;
// keystore implementation
// Adds a key to the store, and saves it to disk.
bool AddKey(const CKey& key);
// Adds a key to the store, without saving it to disk (used by LoadWallet)
bool LoadKey(const CKey& key) { return CCryptoKeyStore::AddKey(key); }
// Adds an encrypted key to the store, and saves it to disk.
bool AddCryptedKey(const std::vector<unsigned char> &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
// Adds an encrypted key to the store, without saving it to disk (used by LoadWallet)
bool LoadCryptedKey(const std::vector<unsigned char> &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret) { return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret); }
bool Unlock(const std::string& strWalletPassphrase);
@ -244,7 +252,7 @@ public:
unsigned int nTimeReceived; // time received by this node
char fFromMe;
std::string strFromAccount;
std::vector<char> vfSpent;
std::vector<char> vfSpent; // which outputs are already spent
// memory only
mutable char fDebitCached;
@ -371,6 +379,7 @@ public:
return fReturn;
}
// make sure balances are recalculated
void MarkDirty()
{
fCreditCached = false;