b30fb42 test: Rename wallet.dat to wallet_test.dat (Wladimir J. van der Laan)
a25a4f5 wallet_ismine.h → script/ismine.h (Wladimir J. van der Laan)
f4eae2d test: Create test fixture for wallet (Wladimir J. van der Laan)
de39c95 test: move accounting_tests and rpc_wallet_tests to wallet/test (Wladimir J. van der Laan)
589827975 scripted-diff: various renames for per-utxo consistency (Pieter Wuille)
a5e02bc7f Increase travis unit test timeout (Pieter Wuille)
73de2c1ff Rename CCoinsCacheEntry::coins to coin (Pieter Wuille)
119e552f7 Merge CCoinsViewCache's GetOutputFor and AccessCoin (Pieter Wuille)
580b02309 [MOVEONLY] Move old CCoins class to txdb.cpp (Pieter Wuille)
8b25d2c0c Upgrade from per-tx database to per-txout (Pieter Wuille)
b2af357f3 Reduce reserved memory space for flushing (Pieter Wuille)
41aa5b79a Pack Coin more tightly (Pieter Wuille)
97072d668 Remove unused CCoins methods (Pieter Wuille)
ce23efaa5 Extend coins_tests (Pieter Wuille)
508307968 Switch CCoinsView and chainstate db from per-txid to per-txout (Pieter Wuille)
4ec0d9e79 Refactor GetUTXOStats in preparation for per-COutPoint iteration (Pieter Wuille)
13870b56f Replace CCoins-based CTxMemPool::pruneSpent with isSpent (Pieter Wuille)
05293f3cb Remove ModifyCoins/ModifyNewCoins (Pieter Wuille)
961e48397 Switch tests from ModifyCoins to AddCoin/SpendCoin (Pieter Wuille)
8b3868c1b Switch CScriptCheck to use Coin instead of CCoins (Pieter Wuille)
c87b957a3 Only pass things committed to by tx's witness hash to CScriptCheck (Matt Corallo)
f68cdfe92 Switch from per-tx to per-txout CCoinsViewCache methods in some places (Pieter Wuille)
000391132 Introduce new per-txout CCoinsViewCache functions (Pieter Wuille)
bd83111a0 Optimization: Coin&& to ApplyTxInUndo (Pieter Wuille)
cb2c7fdac Replace CTxInUndo with Coin (Pieter Wuille)
422634e2f Introduce Coin, a single unspent output (Pieter Wuille)
7d991b55d Store/allow tx metadata in all undo records (Pieter Wuille)
c3aa0c119 Report on-disk size in gettxoutsetinfo (Pieter Wuille)
d34242430 Remove/ignore tx version in utxo and undo (Pieter Wuille)
7e0032290 Add specialization of SipHash for 256 + 32 bit data (Pieter Wuille)
e484652fc Introduce CHashVerifier to hash read data (Pieter Wuille)
f54580e7e error() in disconnect for disk corruption, not inconsistency (Pieter Wuille)
e66dbde6d Add SizeEstimate to CDBBatch (Pieter Wuille)
Tree-SHA512: ce1fb1e40c77d38915cd02189fab7a8b125c7f44d425c85579d872c3bede3a437760997907c99d7b3017ced1c2de54b2ac7223d99d83a6658fe5ef61edef1de3
* Remove orphan state wipe from UnloadBlockIndex.
As orphan state is now "network state", like in
d6ea737be19a0001e69e4e854eb1cef21523ea7a,
UnloadBlockIndex is only used during init if we end up reindexing
to clear our block state so that we can start over. However, at
that time no connections have been brought up as CConnman hasn't
been started yet, so all of the network processing state logic is
empty when its called.
* Move network-msg-processing code out of main to its own file
* Rename the remaining main.{h,cpp} to validation.{h,cpp}
Make sure that chainparams and logging is properly initialized. Doing
this for every test may be overkill, but this initialization is so
simple that that does not matter.
This should fix the travis issues.
This allows for a reversal of the current behavior.
This:
CScript foo;
CScriptID bar(foo.GetID());
Becomes:
CScript foo;
CScriptID bar(foo);
This way, CScript is no longer dependent on CScriptID or Hash();
7c70438 Get rid of the dummy CCoinsViewCache constructor arg (Pieter Wuille)
ed27e53 Add coins_tests with a large randomized CCoinViewCache test. (Pieter Wuille)
058b08c Do not keep fully spent but unwritten CCoins entries cached. (Pieter Wuille)
c9d1a81 Get rid of CCoinsView's SetCoins and SetBestBlock. (Pieter Wuille)
f28aec0 Use ModifyCoins instead of mutable GetCoins. (Pieter Wuille)
All direct modifications are now done through ModifyCoins, and BatchWrite is
used for pushing batches of queued modifications up, so we don't need the
low-level SetCoins and SetBestBlock anymore in the top-level CCoinsView class.
Relax the AreInputsStandard() tests for P2SH transactions --
allow any Script in a P2SH transaction to be relayed/mined,
as long as it has 15 or fewer signature operations.
Rationale: https://gist.github.com/gavinandresen/88be40c141bc67acb247
I don't have an easy way to test this, but the code changes are
straightforward and I've updated the AreInputsStandard unit tests.
- Add license headers to source files (years based on commit dates)
in `src/test` as well as `qa`
- Add `README.md` to `src/test/data` specifying MIT license
Fixes#3848
Use misc methods of avoiding unnecesary header includes.
Replace int typedefs with int##_t from stdint.h.
Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h.
Normalize QT_VERSION ifs where possible.
Resolve some indirect dependencies as direct ones.
Remove extern declarations from .cpp files.
Removed AreInputsStandard from CTransaction, made it a regular function in main.
Moved CTransaction::GetOutputFor to CCoinsViewCache.
Moved GetLegacySigOpCount and GetP2SHSigOpCount out of CTransaction into regular functions in main.
Moved GetValueIn and HaveInputs from CTransaction into CCoinsViewCache.
Moved AllowFree, ClientCheckInputs, CheckInputs, UpdateCoins, and CheckTransaction out of CTransaction and into main.
Moved IsStandard and IsFinal out of CTransaction and put them in main as IsStandardTx and IsFinalTx. Moved GetValueOut out of CTransaction into main. Moved CTxIn, CTxOut, and CTransaction into core.
Added minimum fee parameter to CTxOut::IsDust() temporarily until CTransaction is moved to core.h so that CTxOut needn't know about CTransaction.
These flags select features to be enabled/disabled during script
evaluation/checking, instead of several booleans passed along.
Currently these flags are defined:
* SCRIPT_VERIFY_P2SH: enable BIP16-style subscript evaluation
* SCRIPT_VERIFY_STRICTENC: enforce strict adherence to pubkey/sig encoding standards.
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
This introduces internal types:
* CKeyID: reference (hash160) of a key
* CScriptID: reference (hash160) of a script
* CTxDestination: a boost::variant of the former two
CBitcoinAddress is retrofitted to be a Base58 encoding of a
CTxDestination. This allows all internal code to only use the
internal types, and only have RPC and GUI depend on the base58 code.
Furthermore, the header dependencies are a lot saner now. base58.h is
at the top (right below rpc and gui) instead of at the bottom. For the
rest: wallet -> script -> keystore -> key. Only keystore still requires
a forward declaration of CScript. Solving that would require splitting
script into two layers.