Changes:
* Add Add/Have WatchOnly methods to CKeyStore, and implementations
in CBasicKeyStore.
* Add similar methods to CWallet, and support entries for it in
CWalletDB.
* Make IsMine in script/wallet return a new enum 'isminetype',
rather than a boolean. This allows distinguishing between
spendable and unspendable coins.
* Add a field fSpendable to COutput (GetAvailableCoins' return type).
* Mark watchonly coins in listunspent as 'watchonly': true.
* Add 'watchonly' to validateaddress, suppressing script/pubkey/...
in this case.
Based on a patch by Eric Lombrozo.
Conflicts:
src/qt/walletmodel.cpp
src/rpcserver.cpp
src/wallet.cpp
Two changes:
First removes a unit test that fails in my development environment
(OSX, compiled -g3 with clang).
sipa says that's not terribly surprising; the CMutableTransaction change
makes signing a little more expensive but verification quicker. The unit
test timed sign+verify-uncached versus verify-cached-five-times.
He also says the test will be invalid when libsec256kp1 is integrated
(because validation is super-optimized over signing).
core.h change fixes a compiler warning (clang -Wall : CMutableTransaction defined
as struct, declared as class in script.h).
`&vch[vch.size()]` and even `&vch[0]` on vectors can cause assertion
errors with VC in debug mode. This is the problem mentioned in #4239.
The deeper problem with this is that we rely on undefined behavior.
- Add `begin_ptr` and `end_ptr` functions that get the beginning and end
pointer of vector in a reliable way that copes with empty vectors and
doesn't reference outside the vector
(see https://stackoverflow.com/questions/1339470/how-to-get-the-address-of-the-stdvector-buffer-start-most-elegantly/1339767#1339767).
- Add a convenience constructor to CFlatData that wraps a vector.
I added `begin_ptr` and `end_ptr` as separate functions as I imagine
they will be useful in more places.
787ee0c Check redeemScript size does not exceed 520 byte limit (Peter Todd)
4d79098 Increase IsStandard() scriptSig length (Peter Todd)
f80cffa Do not trigger a DoS ban if SCRIPT_VERIFY_NULLDUMMY fails (Peter Todd)
6380180 Add rejection of non-null CHECKMULTISIG dummy values (Peter Todd)
29c1749 Let tx (in)valid tests use any SCRIPT_VERIFY flag (Peter Todd)
68f7d1d Create (MANDATORY|STANDARD)_SCRIPT_VERIFY_FLAGS constants (Peter Todd)
This is a source of transaction mutability as the dummy value was
previously not checked and could be modified to something other than the
usual OP_0 value.
a81cd968 introduced a malleability breaker for signatures
(using an even value for S). In e0e14e43 this was changed to
the lower of two potential values, rather than the even one.
Only the signing code was changed though, the (for now unused)
verification code wasn't adapted.
Use misc methods of avoiding unnecesary header includes.
Replace int typedefs with int##_t from stdint.h.
Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h.
Normalize QT_VERSION ifs where possible.
Resolve some indirect dependencies as direct ones.
Remove extern declarations from .cpp files.
Seems it was forgotten about when IsPushOnly() and the unittests were
written. A particular oddity is that OP_RESERVED doesn't count towards
the >201 opcode limit unlike every other named opcode.
To fix a minor malleability found by Sergio Lerner (reported here:
https://bitcointalk.org/index.php?topic=8392.msg1245898#msg1245898)
The problem is that if (R,S) is a valid ECDSA signature for a given
message and public key, (R,-S) is also valid. Modulo N (the order
of the secp256k1 curve), this means that both (R,S) and (R,N-S) are
valid. Given that N is odd, S and N-S have a different lowest bit.
We solve the problem by forcing signatures to have an even S value,
excluding one of the alternatives.
This commit just changes the signing code to always produce even S
values, and adds a verification mode to check it. This code is not
enabled anywhere yet. Existing tests in key_tests.cpp verify that
the produced signatures are still valid.
This function finds all keys affected by a particular output script,
supporting everything ExtractDestinations supports (pay-to-pubkey,
pay-to-pubkeyhash, multisig) and recurses into subscripts (P2SH).
Removed AreInputsStandard from CTransaction, made it a regular function in main.
Moved CTransaction::GetOutputFor to CCoinsViewCache.
Moved GetLegacySigOpCount and GetP2SHSigOpCount out of CTransaction into regular functions in main.
Moved GetValueIn and HaveInputs from CTransaction into CCoinsViewCache.
Moved AllowFree, ClientCheckInputs, CheckInputs, UpdateCoins, and CheckTransaction out of CTransaction and into main.
Moved IsStandard and IsFinal out of CTransaction and put them in main as IsStandardTx and IsFinalTx. Moved GetValueOut out of CTransaction into main. Moved CTxIn, CTxOut, and CTransaction into core.
Added minimum fee parameter to CTxOut::IsDust() temporarily until CTransaction is moved to core.h so that CTxOut needn't know about CTransaction.
Since block validation happens in parallel, multiple threads may be
accessing the signature cache simultaneously. To prevent contention:
* Turn the signature cache lock into a shared mutex
* Make reading from the cache only acquire a shared lock
* Let block validations not store their results in the cache
These flags select features to be enabled/disabled during script
evaluation/checking, instead of several booleans passed along.
Currently these flags are defined:
* SCRIPT_VERIFY_P2SH: enable BIP16-style subscript evaluation
* SCRIPT_VERIFY_STRICTENC: enforce strict adherence to pubkey/sig encoding standards.
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
Special serializers for script which detect common cases and encode
them much more efficiently. 3 special cases are defined:
* Pay to pubkey hash (encoded as 21 bytes)
* Pay to script hash (encoded as 21 bytes)
* Pay to pubkey starting with 0x02, 0x03 or 0x04 (encoded as 33 bytes)
Other scripts up to 121 bytes require 1 byte + script length. Above
that, scripts up to 16505 bytes require 2 bytes + script length.
- ensure warnings always start with "Warning:" and that the first
character after ":" is written uppercase
- ensure the first sentence in warnings ends with an "!"
- remove unneeded spaces from Warning-strings
- add missing Warning-string translation
- remove a "\n" and replace with untranslatable "<br><br>"
Implement listunspent / getrawtransaction / createrawtransaction /
signrawtransaction, to support creation and
signing-on-multiple-device multisignature transactions.
This introduces internal types:
* CKeyID: reference (hash160) of a key
* CScriptID: reference (hash160) of a script
* CTxDestination: a boost::variant of the former two
CBitcoinAddress is retrofitted to be a Base58 encoding of a
CTxDestination. This allows all internal code to only use the
internal types, and only have RPC and GUI depend on the base58 code.
Furthermore, the header dependencies are a lot saner now. base58.h is
at the top (right below rpc and gui) instead of at the bottom. For the
rest: wallet -> script -> keystore -> key. Only keystore still requires
a forward declaration of CScript. Solving that would require splitting
script into two layers.
- Easier for debugging (what opcode was 0x... again?)
- Clarifies that the opcodes are set in stone in the protocol, and signals that it is impossible to insert opcodes in between.