81e3228 Make CTransaction actually immutable (Pieter Wuille)
42fd8de Make DecodeHexTx return a CMutableTransaction (Pieter Wuille)
c3f5673 Make CWalletTx store a CTransactionRef instead of inheriting (Pieter Wuille)
a188353 Switch GetTransaction to returning a CTransactionRef (Pieter Wuille)
d59a518 Use fixed preallocation instead of costly GetSerializeSize (Pieter Wuille)
25a211a Add optimized CSizeComputer serializers (Pieter Wuille)
a2929a2 Make CSerAction's ForRead() constexpr (Pieter Wuille)
a603925 Avoid -Wshadow errors (Pieter Wuille)
5284721 Get rid of nType and nVersion (Pieter Wuille)
657e05a Make GetSerializeSize a wrapper on top of CSizeComputer (Pieter Wuille)
fad9b66 Make nType and nVersion private and sometimes const (Pieter Wuille)
c2c5d42 Make streams' read and write return void (Pieter Wuille)
50e8a9c Remove unused ReadVersion and WriteVersion (Pieter Wuille)
* serialization: teach serializers variadics
Also add a variadic CDataStream ctor for ease-of-use.
* connman is in charge of pushing messages
The changes here are dense and subtle, but hopefully all is more explicit
than before.
- CConnman is now in charge of sending data rather than the nodes themselves.
This is necessary because many decisions need to be made with all nodes in
mind, and a model that requires the nodes calling up to their manager quickly
turns to spaghetti.
- The per-node-serializer (ssSend) has been replaced with a (quasi-)const
send-version. Since the send version for serialization can only change once
per connection, we now explicitly tag messages with INIT_PROTO_VERSION if
they are sent before the handshake. With this done, there's no need to lock
for access to nSendVersion.
Also, a new stream is used for each message, so there's no need to lock
during the serialization process.
- This takes care of accounting for optimistic sends, so the
nOptimisticBytesWritten hack can be removed.
- -dropmessagestest and -fuzzmessagestest have not been preserved, as I suspect
they haven't been used in years.
* net: switch all callers to connman for pushing messages
Drop all of the old stuff.
* drop the optimistic write counter hack
This is now handled properly in realtime.
* net: remove now-unused ssSend and Fuzz
* net: construct CNodeStates in place
* net: handle version push in InitializeNode
* Add hassentinelping to governanceinfo
* sentinelping rpc call
* additional fields in mnp
* sentinel ping implementation
* change sentinel state to byte in mnp
* use adjusted time in sentinel ping
* update nTimeLastWatchdogVote if sentinel ping is actual
* remove unused fields
* bump protocol to 70207
* Fix small issues
- fix the error message text in CActivbeMasternodeUpdateSentinelPing;
- add empty string before public: in CActiveMasternode class declaration;
- rename field sentinelPing in CMasternodePing to sentinelIsActual and change $
- decrease sentinelVersion field size to uint16_t;
* revert proto bump for MIN_... consts
* revert changes in getgovernanceinfo
* Update mn vote time for remote masternodes
- call UpdateWatchdogVoteTime in CMasternodeMan::ProcessMessage
- deserialize masternodeping from the previous version archive without exception
- add ability to set time in UpdateWatchdogVoteTime
- set nTimeLastWatchdogVote to masternode ping sigTime if sentinel is actual
- bump CMasternodeMan::SERIALIZATION_VERSION_STRING
* remove mn state checks and add correct rpc param convertion
* fix var names
* Helper class for version in string and integer form
* String version in sentinel ping
Version format is "x.x.x"
* test for bacward compatibility in serialization
* Change VersionInfo class to convert functions
Make sure that chainparams and logging is properly initialized. Doing
this for every test may be overkill, but this initialization is so
simple that that does not matter.
This should fix the travis issues.
- Add license headers to source files (years based on commit dates)
in `src/test` as well as `qa`
- Add `README.md` to `src/test/data` specifying MIT license
Fixes#3848
Instead, use have an exception object to check if the string returned by what() on the raised exception matches the string returned by what() on the expected exception instance.
This way, we do not need to list all different possible explanatory strings for different platforms in the test code, and make it simple. (The idea is by Cory Fields.)
Before the fix, there were 6 errors such as :
serialize_tests.cpp:77: error in "noncanonical": incorrect exception std::ios_base::failure is caught
It turns out that ex.what() returns following string instead of "non-canonical ReadCompactSize()"
"non-canonical ReadCompactSize(): unspecified iostream_category error"
After the fix, unit test passed.
The test ran using Apple LLVM v5.0 on OSX 10.9 and the unit test error happened because of different error messages by different compilers.
g++ --version on my development environment.
```
Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1
Apple LLVM version 5.0 (clang-500.2.79) (based on LLVM 3.3svn)
Target: x86_64-apple-darwin13.0.0
Thread model: posix
```
Use misc methods of avoiding unnecesary header includes.
Replace int typedefs with int##_t from stdint.h.
Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h.
Normalize QT_VERSION ifs where possible.
Resolve some indirect dependencies as direct ones.
Remove extern declarations from .cpp files.
Changed CDataStream::GetAndClear() to use the most obvious
get get and clear instead of a tricky swap().
Added a unit test for CDataStream insert/erase/GetAndClear.
Note: GetAndClear() is not performance critical, it is used only
by the send-a-message-to-the-network code. Bug was not noticed
before now because the send-a-message code never erased from the
stream.
The length of vectors, maps, sets, etc are serialized using
Write/ReadCompactSize -- which, unfortunately, do not use a
unique encoding.
So deserializing and then re-serializing a transaction (for example)
can give you different bits than you started with. That doesn't
cause any problems that we are aware of, but it is exactly the type
of subtle mismatch that can lead to exploits.
With this pull, reading a non-canonical CompactSize throws an
exception, which means nodes will ignore 'tx' or 'block' or
other messages that are not properly encoded.
Please check my logic... but this change is safe with respect to
causing a network split. Old clients that receive
non-canonically-encoded transactions or blocks deserialize
them into CTransaction/CBlock structures in memory, and then
re-serialize them before relaying them to peers.
And please check my logic with respect to causing a blockchain
split: there are no CompactSize fields in the block header, so
the block hash is always canonical. The merkle root in the block
header is computed on a vector<CTransaction>, so
any non-canonical encoding of the transactions in 'tx' or 'block'
messages is erased as they are read into memory by old clients,
and does not affect the block hash. And, as noted above, old
clients re-serialize (with canonical encoding) 'tx' and 'block'
messages before relaying to peers.
Variable-length integers: bytes are a MSB base-128 encoding of the number.
The high bit in each byte signifies whether another digit follows. To make
the encoding is one-to-one, one is subtracted from all but the last digit.
Thus, the byte sequence a[] with length len, where all but the last byte
has bit 128 set, encodes the number:
(a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
Properties:
* Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
* Every integer has exactly one encoding
* Encoding does not depend on size of original integer type