// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "pow.h" #include "chain.h" #include "chainparams.h" #include "primitives/block.h" #include "uint256.h" #include "util.h" #include unsigned int static KimotoGravityWell(const CBlockIndex* pindexLast) { const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; uint64_t PastBlocksMass = 0; int64_t PastRateActualSeconds = 0; int64_t PastRateTargetSeconds = 0; double PastRateAdjustmentRatio = double(1); uint256 PastDifficultyAverage; uint256 PastDifficultyAveragePrev; double EventHorizonDeviation; double EventHorizonDeviationFast; double EventHorizonDeviationSlow; uint64_t pastSecondsMin = Params().TargetTimespan() * 0.025; uint64_t pastSecondsMax = Params().TargetTimespan() * 7; uint64_t PastBlocksMin = pastSecondsMin / Params().TargetSpacing(); uint64_t PastBlocksMax = pastSecondsMax / Params().TargetSpacing(); if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || (uint64_t)BlockLastSolved->nHeight < PastBlocksMin) { return Params().ProofOfWorkLimit().GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } PastBlocksMass++; PastDifficultyAverage.SetCompact(BlockReading->nBits); if (i > 1) { // handle negative uint256 if(PastDifficultyAverage >= PastDifficultyAveragePrev) PastDifficultyAverage = ((PastDifficultyAverage - PastDifficultyAveragePrev) / i) + PastDifficultyAveragePrev; else PastDifficultyAverage = PastDifficultyAveragePrev - ((PastDifficultyAveragePrev - PastDifficultyAverage) / i); } PastDifficultyAveragePrev = PastDifficultyAverage; PastRateActualSeconds = BlockLastSolved->GetBlockTime() - BlockReading->GetBlockTime(); PastRateTargetSeconds = Params().TargetSpacing() * PastBlocksMass; PastRateAdjustmentRatio = double(1); if (PastRateActualSeconds < 0) { PastRateActualSeconds = 0; } if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { PastRateAdjustmentRatio = double(PastRateTargetSeconds) / double(PastRateActualSeconds); } EventHorizonDeviation = 1 + (0.7084 * pow((double(PastBlocksMass)/double(28.2)), -1.228)); EventHorizonDeviationFast = EventHorizonDeviation; EventHorizonDeviationSlow = 1 / EventHorizonDeviation; if (PastBlocksMass >= PastBlocksMin) { if ((PastRateAdjustmentRatio <= EventHorizonDeviationSlow) || (PastRateAdjustmentRatio >= EventHorizonDeviationFast)) { assert(BlockReading); break; } } if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } uint256 bnNew(PastDifficultyAverage); if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { bnNew *= PastRateActualSeconds; bnNew /= PastRateTargetSeconds; } if (bnNew > Params().ProofOfWorkLimit()) { bnNew = Params().ProofOfWorkLimit(); } return bnNew.GetCompact(); } unsigned int static DarkGravityWave(const CBlockIndex* pindexLast) { /* current difficulty formula, dash - DarkGravity v3, written by Evan Duffield - evan@dashpay.io */ const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; int64_t nActualTimespan = 0; int64_t LastBlockTime = 0; int64_t PastBlocksMin = 24; int64_t PastBlocksMax = 24; int64_t CountBlocks = 0; uint256 PastDifficultyAverage; uint256 PastDifficultyAveragePrev; if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || BlockLastSolved->nHeight < PastBlocksMin) { return Params().ProofOfWorkLimit().GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } CountBlocks++; if(CountBlocks <= PastBlocksMin) { if (CountBlocks == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); } else { PastDifficultyAverage = ((PastDifficultyAveragePrev * CountBlocks) + (uint256().SetCompact(BlockReading->nBits))) / (CountBlocks + 1); } PastDifficultyAveragePrev = PastDifficultyAverage; } if(LastBlockTime > 0){ int64_t Diff = (LastBlockTime - BlockReading->GetBlockTime()); nActualTimespan += Diff; } LastBlockTime = BlockReading->GetBlockTime(); if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } uint256 bnNew(PastDifficultyAverage); int64_t _nTargetTimespan = CountBlocks * Params().TargetSpacing(); if (nActualTimespan < _nTargetTimespan/3) nActualTimespan = _nTargetTimespan/3; if (nActualTimespan > _nTargetTimespan*3) nActualTimespan = _nTargetTimespan*3; // Retarget bnNew *= nActualTimespan; bnNew /= _nTargetTimespan; if (bnNew > Params().ProofOfWorkLimit()){ bnNew = Params().ProofOfWorkLimit(); } return bnNew.GetCompact(); } unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock) { unsigned int retarget = DIFF_DGW; if (Params().NetworkID() != CBaseChainParams::TESTNET) { if (pindexLast->nHeight + 1 >= 34140) retarget = DIFF_DGW; else if (pindexLast->nHeight + 1 >= 15200) retarget = DIFF_KGW; else retarget = DIFF_BTC; } else { if (pindexLast->nHeight + 1 >= 2000) retarget = DIFF_DGW; else retarget = DIFF_BTC; } // Default Bitcoin style retargeting if (retarget == DIFF_BTC) { unsigned int nProofOfWorkLimit = Params().ProofOfWorkLimit().GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % Params().Interval() != 0) { if (Params().AllowMinDifficultyBlocks()) { // Special difficulty rule for testnet: // If the new block's timestamp is more than 2* 2.5 minutes // then allow mining of a min-difficulty block. if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + Params().TargetSpacing()*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % Params().Interval() != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Go back by what we want to be 1 day worth of blocks const CBlockIndex* pindexFirst = pindexLast; for (int i = 0; pindexFirst && i < Params().Interval()-1; i++) pindexFirst = pindexFirst->pprev; assert(pindexFirst); // Limit adjustment step int64_t nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime(); LogPrintf(" nActualTimespan = %d before bounds\n", nActualTimespan); if (nActualTimespan < Params().TargetTimespan()/4) nActualTimespan = Params().TargetTimespan()/4; if (nActualTimespan > Params().TargetTimespan()*4) nActualTimespan = Params().TargetTimespan()*4; // Retarget uint256 bnNew; uint256 bnOld; bnNew.SetCompact(pindexLast->nBits); bnOld = bnNew; bnNew *= nActualTimespan; bnNew /= Params().TargetTimespan(); if (bnNew > Params().ProofOfWorkLimit()) bnNew = Params().ProofOfWorkLimit(); /// debug print LogPrintf("GetNextWorkRequired RETARGET at %d\n", pindexLast->nHeight + 1); LogPrintf("Params().TargetTimespan() = %d nActualTimespan = %d\n", Params().TargetTimespan(), nActualTimespan); LogPrintf("Before: %08x %s\n", pindexLast->nBits, bnOld.ToString()); LogPrintf("After: %08x %s\n", bnNew.GetCompact(), bnNew.ToString()); return bnNew.GetCompact(); } // Retarget using Kimoto Gravity Wave else if (retarget == DIFF_KGW) { return KimotoGravityWell(pindexLast); } // Retarget using Dark Gravity Wave 3 else if (retarget == DIFF_DGW) { return DarkGravityWave(pindexLast); } return DarkGravityWave(pindexLast); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { bool fNegative; bool fOverflow; uint256 bnTarget; if (Params().SkipProofOfWorkCheck()) return true; bnTarget.SetCompact(nBits, &fNegative, &fOverflow); // Check range if (fNegative || bnTarget == 0 || fOverflow || bnTarget > Params().ProofOfWorkLimit()) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } uint256 GetBlockProof(const CBlockIndex& block) { uint256 bnTarget; bool fNegative; bool fOverflow; bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow); if (fNegative || fOverflow || bnTarget == 0) return 0; // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256 // as it's too large for a uint256. However, as 2**256 is at least as large // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1, // or ~bnTarget / (nTarget+1) + 1. return (~bnTarget / (bnTarget + 1)) + 1; }