// Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CRYPTER_H #define BITCOIN_CRYPTER_H #include "allocators.h" #include "keystore.h" #include "serialize.h" class uint256; const unsigned int WALLET_CRYPTO_KEY_SIZE = 32; const unsigned int WALLET_CRYPTO_SALT_SIZE = 8; /** * Private key encryption is done based on a CMasterKey, * which holds a salt and random encryption key. * * CMasterKeys are encrypted using AES-256-CBC using a key * derived using derivation method nDerivationMethod * (0 == EVP_sha512()) and derivation iterations nDeriveIterations. * vchOtherDerivationParameters is provided for alternative algorithms * which may require more parameters (such as scrypt). * * Wallet Private Keys are then encrypted using AES-256-CBC * with the double-sha256 of the public key as the IV, and the * master key's key as the encryption key (see keystore.[ch]). */ /** Master key for wallet encryption */ class CMasterKey { public: std::vector vchCryptedKey; std::vector vchSalt; //! 0 = EVP_sha512() //! 1 = scrypt() unsigned int nDerivationMethod; unsigned int nDeriveIterations; //! Use this for more parameters to key derivation, //! such as the various parameters to scrypt std::vector vchOtherDerivationParameters; ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { READWRITE(vchCryptedKey); READWRITE(vchSalt); READWRITE(nDerivationMethod); READWRITE(nDeriveIterations); READWRITE(vchOtherDerivationParameters); } CMasterKey() { // 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M // ie slightly lower than the lowest hardware we need bother supporting nDeriveIterations = 25000; nDerivationMethod = 0; vchOtherDerivationParameters = std::vector(0); } }; typedef std::vector > CKeyingMaterial; /** Encryption/decryption context with key information */ class CCrypter { private: unsigned char chKey[WALLET_CRYPTO_KEY_SIZE]; unsigned char chIV[WALLET_CRYPTO_KEY_SIZE]; bool fKeySet; public: bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod); bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector &vchCiphertext); bool Decrypt(const std::vector& vchCiphertext, CKeyingMaterial& vchPlaintext); bool SetKey(const CKeyingMaterial& chNewKey, const std::vector& chNewIV); void CleanKey() { OPENSSL_cleanse(chKey, sizeof(chKey)); OPENSSL_cleanse(chIV, sizeof(chIV)); fKeySet = false; } CCrypter() { fKeySet = false; // Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap) // Note that this does nothing about suspend-to-disk (which will put all our key data on disk) // Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process. LockedPageManager::Instance().LockRange(&chKey[0], sizeof chKey); LockedPageManager::Instance().LockRange(&chIV[0], sizeof chIV); } ~CCrypter() { CleanKey(); LockedPageManager::Instance().UnlockRange(&chKey[0], sizeof chKey); LockedPageManager::Instance().UnlockRange(&chIV[0], sizeof chIV); } }; bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector &vchCiphertext); bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext); bool EncryptAES256(const SecureString& sKey, const SecureString& sPlaintext, const std::string& sIV, std::string& sCiphertext); bool DecryptAES256(const SecureString& sKey, const std::string& sCiphertext, const std::string& sIV, SecureString& sPlaintext); /** Keystore which keeps the private keys encrypted. * It derives from the basic key store, which is used if no encryption is active. */ class CCryptoKeyStore : public CBasicKeyStore { private: CryptedKeyMap mapCryptedKeys; CKeyingMaterial vMasterKey; //! if fUseCrypto is true, mapKeys must be empty //! if fUseCrypto is false, vMasterKey must be empty bool fUseCrypto; //! keeps track of whether Unlock has run a thorough check before bool fDecryptionThoroughlyChecked; protected: bool SetCrypted(); //! will encrypt previously unencrypted keys bool EncryptKeys(CKeyingMaterial& vMasterKeyIn); bool Unlock(const CKeyingMaterial& vMasterKeyIn); public: CCryptoKeyStore() : fUseCrypto(false), fDecryptionThoroughlyChecked(false) { } bool IsCrypted() const { return fUseCrypto; } bool IsLocked() const { if (!IsCrypted()) return false; bool result; { LOCK(cs_KeyStore); result = vMasterKey.empty(); } return result; } bool Lock(); virtual bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret); bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey); bool HaveKey(const CKeyID &address) const { { LOCK(cs_KeyStore); if (!IsCrypted()) return CBasicKeyStore::HaveKey(address); return mapCryptedKeys.count(address) > 0; } return false; } bool GetKey(const CKeyID &address, CKey& keyOut) const; bool GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const; void GetKeys(std::set &setAddress) const { if (!IsCrypted()) { CBasicKeyStore::GetKeys(setAddress); return; } setAddress.clear(); CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin(); while (mi != mapCryptedKeys.end()) { setAddress.insert((*mi).first); mi++; } } /** * Wallet status (encrypted, locked) changed. * Note: Called without locks held. */ boost::signals2::signal NotifyStatusChanged; }; #endif // BITCOIN_CRYPTER_H