#!/usr/bin/env python3 # Copyright (c) 2015-2020 The Dash Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test deterministic masternodes # import sys from test_framework.blocktools import create_block, create_coinbase, get_masternode_payment from test_framework.mininode import CTransaction, ToHex, FromHex, CTxOut, COIN, CCbTx from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class Masternode(object): pass class DIP3Test(BitcoinTestFramework): def set_test_params(self): self.num_initial_mn = 11 # Should be >= 11 to make sure quorums are not always the same MNs self.num_nodes = 1 + self.num_initial_mn + 2 # +1 for controller, +1 for mn-qt, +1 for mn created after dip3 activation self.setup_clean_chain = True self.extra_args = ["-budgetparams=10:10:10"] self.extra_args += ["-sporkkey=cP4EKFyJsHT39LDqgdcB43Y3YXjNyjb5Fuas1GQSeAtjnZWmZEQK"] self.extra_args += ["-dip3params=135:150"] def setup_network(self): self.disable_mocktime() self.add_nodes(1) self.start_controller_node() def start_controller_node(self): self.log.info("starting controller node") self.start_node(0, extra_args=self.extra_args) for i in range(1, self.num_nodes): if i < len(self.nodes) and self.nodes[i] is not None and self.nodes[i].process is not None: connect_nodes_bi(self.nodes, 0, i) def stop_controller_node(self): self.log.info("stopping controller node") self.stop_node(0) def restart_controller_node(self): self.stop_controller_node() self.start_controller_node() def run_test(self): self.log.info("funding controller node") while self.nodes[0].getbalance() < (self.num_initial_mn + 3) * 1000: self.nodes[0].generate(1) # generate enough for collaterals self.log.info("controller node has {} dash".format(self.nodes[0].getbalance())) # Make sure we're below block 135 (which activates dip3) self.log.info("testing rejection of ProTx before dip3 activation") assert(self.nodes[0].getblockchaininfo()['blocks'] < 135) mns = [] # prepare mn which should still be accepted later when dip3 activates self.log.info("creating collateral for mn-before-dip3") before_dip3_mn = self.prepare_mn(self.nodes[0], 1, 'mn-before-dip3') self.create_mn_collateral(self.nodes[0], before_dip3_mn) mns.append(before_dip3_mn) # block 150 starts enforcing DIP3 MN payments while self.nodes[0].getblockcount() < 150: self.nodes[0].generate(1) self.log.info("mining final block for DIP3 activation") self.nodes[0].generate(1) # We have hundreds of blocks to sync here, give it more time self.log.info("syncing blocks for all nodes") sync_blocks(self.nodes, timeout=120) # DIP3 is fully enforced here self.register_mn(self.nodes[0], before_dip3_mn) self.start_mn(before_dip3_mn) self.log.info("registering MNs") for i in range(0, self.num_initial_mn): mn = self.prepare_mn(self.nodes[0], i + 2, "mn-%d" % i) mns.append(mn) # start a few MNs before they are registered and a few after they are registered start = (i % 3) == 0 if start: self.start_mn(mn) # let a few of the protx MNs refer to the existing collaterals fund = (i % 2) == 0 if fund: self.log.info("register_fund %s" % mn.alias) self.register_fund_mn(self.nodes[0], mn) else: self.log.info("create_collateral %s" % mn.alias) self.create_mn_collateral(self.nodes[0], mn) self.log.info("register %s" % mn.alias) self.register_mn(self.nodes[0], mn) self.nodes[0].generate(1) if not start: self.start_mn(mn) self.sync_all() self.assert_mnlists(mns) self.log.info("test that MNs disappear from the list when the ProTx collateral is spent") spend_mns_count = 3 mns_tmp = [] + mns dummy_txins = [] for i in range(spend_mns_count): dummy_txin = self.spend_mn_collateral(mns[i], with_dummy_input_output=True) dummy_txins.append(dummy_txin) self.nodes[0].generate(1) self.sync_all() mns_tmp.remove(mns[i]) self.assert_mnlists(mns_tmp) self.log.info("test that reverting the blockchain on a single node results in the mnlist to be reverted as well") for i in range(spend_mns_count): self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) mns_tmp.append(mns[spend_mns_count - 1 - i]) self.assert_mnlist(self.nodes[0], mns_tmp) self.log.info("cause a reorg with a double spend and check that mnlists are still correct on all nodes") self.mine_double_spend(self.nodes[0], dummy_txins, self.nodes[0].getnewaddress(), use_mnmerkleroot_from_tip=True) self.nodes[0].generate(spend_mns_count) self.sync_all() self.assert_mnlists(mns_tmp) self.log.info("test mn payment enforcement with deterministic MNs") for i in range(20): node = self.nodes[i % len(self.nodes)] self.test_invalid_mn_payment(node) self.nodes[0].generate(1) self.sync_all() self.log.info("testing ProUpServTx") for mn in mns: self.test_protx_update_service(mn) self.log.info("testing P2SH/multisig for payee addresses") multisig = self.nodes[0].createmultisig(1, [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()])['address'] self.update_mn_payee(mns[0], multisig) found_multisig_payee = False for i in range(len(mns)): bt = self.nodes[0].getblocktemplate() expected_payee = bt['masternode'][0]['payee'] expected_amount = bt['masternode'][0]['amount'] self.nodes[0].generate(1) self.sync_all() if expected_payee == multisig: block = self.nodes[0].getblock(self.nodes[0].getbestblockhash()) cbtx = self.nodes[0].getrawtransaction(block['tx'][0], 1) for out in cbtx['vout']: if 'addresses' in out['scriptPubKey']: if expected_payee in out['scriptPubKey']['addresses'] and out['valueSat'] == expected_amount: found_multisig_payee = True assert(found_multisig_payee) self.log.info("testing reusing of collaterals for replaced MNs") for i in range(0, 5): mn = mns[i] # a few of these will actually refer to old ProRegTx internal collaterals, # which should work the same as external collaterals new_mn = self.prepare_mn(self.nodes[0], mn.idx, mn.alias) new_mn.collateral_address = mn.collateral_address new_mn.collateral_txid = mn.collateral_txid new_mn.collateral_vout = mn.collateral_vout self.register_mn(self.nodes[0], new_mn) mns[i] = new_mn self.nodes[0].generate(1) self.sync_all() self.assert_mnlists(mns) self.log.info("restarting MN %s" % new_mn.alias) self.stop_node(new_mn.idx) self.start_mn(new_mn) self.sync_all() self.log.info("testing masternode status updates") # change voting address and see if changes are reflected in `masternode status` rpc output mn = mns[0] node = self.nodes[0] old_dmnState = mn.node.masternode("status")["dmnState"] old_voting_address = old_dmnState["votingAddress"] new_voting_address = node.getnewaddress() assert(old_voting_address != new_voting_address) # also check if funds from payout address are used when no fee source address is specified node.sendtoaddress(mn.rewards_address, 0.001) node.protx('update_registrar', mn.protx_hash, "", new_voting_address, "") node.generate(1) self.sync_all() new_dmnState = mn.node.masternode("status")["dmnState"] new_voting_address_from_rpc = new_dmnState["votingAddress"] assert(new_voting_address_from_rpc == new_voting_address) # make sure payoutAddress is the same as before assert(old_dmnState["payoutAddress"] == new_dmnState["payoutAddress"]) def prepare_mn(self, node, idx, alias): mn = Masternode() mn.idx = idx mn.alias = alias mn.is_protx = True mn.p2p_port = p2p_port(mn.idx) blsKey = node.bls('generate') mn.fundsAddr = node.getnewaddress() mn.ownerAddr = node.getnewaddress() mn.operatorAddr = blsKey['public'] mn.votingAddr = mn.ownerAddr mn.blsMnkey = blsKey['secret'] return mn def create_mn_collateral(self, node, mn): mn.collateral_address = node.getnewaddress() mn.collateral_txid = node.sendtoaddress(mn.collateral_address, 1000) mn.collateral_vout = -1 node.generate(1) rawtx = node.getrawtransaction(mn.collateral_txid, 1) for txout in rawtx['vout']: if txout['value'] == Decimal(1000): mn.collateral_vout = txout['n'] break assert(mn.collateral_vout != -1) # register a protx MN and also fund it (using collateral inside ProRegTx) def register_fund_mn(self, node, mn): node.sendtoaddress(mn.fundsAddr, 1000.001) mn.collateral_address = node.getnewaddress() mn.rewards_address = node.getnewaddress() mn.protx_hash = node.protx('register_fund', mn.collateral_address, '127.0.0.1:%d' % mn.p2p_port, mn.ownerAddr, mn.operatorAddr, mn.votingAddr, 0, mn.rewards_address, mn.fundsAddr) mn.collateral_txid = mn.protx_hash mn.collateral_vout = -1 rawtx = node.getrawtransaction(mn.collateral_txid, 1) for txout in rawtx['vout']: if txout['value'] == Decimal(1000): mn.collateral_vout = txout['n'] break assert(mn.collateral_vout != -1) # create a protx MN which refers to an existing collateral def register_mn(self, node, mn): node.sendtoaddress(mn.fundsAddr, 0.001) mn.rewards_address = node.getnewaddress() mn.protx_hash = node.protx('register', mn.collateral_txid, mn.collateral_vout, '127.0.0.1:%d' % mn.p2p_port, mn.ownerAddr, mn.operatorAddr, mn.votingAddr, 0, mn.rewards_address, mn.fundsAddr) node.generate(1) def start_mn(self, mn): while len(self.nodes) <= mn.idx: self.add_nodes(1) extra_args = ['-masternodeblsprivkey=%s' % mn.blsMnkey] self.start_node(mn.idx, extra_args = self.extra_args + extra_args) force_finish_mnsync(self.nodes[mn.idx]) for i in range(0, len(self.nodes)): if i < len(self.nodes) and self.nodes[i] is not None and self.nodes[i].process is not None and i != mn.idx: connect_nodes_bi(self.nodes, mn.idx, i) mn.node = self.nodes[mn.idx] self.sync_all() def spend_mn_collateral(self, mn, with_dummy_input_output=False): return self.spend_input(mn.collateral_txid, mn.collateral_vout, 1000, with_dummy_input_output) def update_mn_payee(self, mn, payee): self.nodes[0].sendtoaddress(mn.fundsAddr, 0.001) self.nodes[0].protx('update_registrar', mn.protx_hash, '', '', payee, mn.fundsAddr) self.nodes[0].generate(1) self.sync_all() info = self.nodes[0].protx('info', mn.protx_hash) assert(info['state']['payoutAddress'] == payee) def test_protx_update_service(self, mn): self.nodes[0].sendtoaddress(mn.fundsAddr, 0.001) self.nodes[0].protx('update_service', mn.protx_hash, '127.0.0.2:%d' % mn.p2p_port, mn.blsMnkey, "", mn.fundsAddr) self.nodes[0].generate(1) self.sync_all() for node in self.nodes: protx_info = node.protx('info', mn.protx_hash) mn_list = node.masternode('list') assert_equal(protx_info['state']['service'], '127.0.0.2:%d' % mn.p2p_port) assert_equal(mn_list['%s-%d' % (mn.collateral_txid, mn.collateral_vout)]['address'], '127.0.0.2:%d' % mn.p2p_port) # undo self.nodes[0].protx('update_service', mn.protx_hash, '127.0.0.1:%d' % mn.p2p_port, mn.blsMnkey, "", mn.fundsAddr) self.nodes[0].generate(1) def assert_mnlists(self, mns): for node in self.nodes: self.assert_mnlist(node, mns) def assert_mnlist(self, node, mns): if not self.compare_mnlist(node, mns): expected = [] for mn in mns: expected.append('%s-%d' % (mn.collateral_txid, mn.collateral_vout)) self.log.error('mnlist: ' + str(node.masternode('list', 'status'))) self.log.error('expected: ' + str(expected)) raise AssertionError("mnlists does not match provided mns") def compare_mnlist(self, node, mns): mnlist = node.masternode('list', 'status') for mn in mns: s = '%s-%d' % (mn.collateral_txid, mn.collateral_vout) in_list = s in mnlist if not in_list: return False mnlist.pop(s, None) if len(mnlist) != 0: return False return True def spend_input(self, txid, vout, amount, with_dummy_input_output=False): # with_dummy_input_output is useful if you want to test reorgs with double spends of the TX without touching the actual txid/vout address = self.nodes[0].getnewaddress() txins = [ {'txid': txid, 'vout': vout} ] targets = {address: amount} dummy_txin = None if with_dummy_input_output: dummyaddress = self.nodes[0].getnewaddress() unspent = self.nodes[0].listunspent(110) for u in unspent: if u['amount'] > Decimal(1): dummy_txin = {'txid': u['txid'], 'vout': u['vout']} txins.append(dummy_txin) targets[dummyaddress] = float(u['amount'] - Decimal(0.0001)) break rawtx = self.nodes[0].createrawtransaction(txins, targets) rawtx = self.nodes[0].fundrawtransaction(rawtx)['hex'] rawtx = self.nodes[0].signrawtransaction(rawtx)['hex'] new_txid = self.nodes[0].sendrawtransaction(rawtx) return dummy_txin def mine_block(self, node, vtx=[], miner_address=None, mn_payee=None, mn_amount=None, use_mnmerkleroot_from_tip=False, expected_error=None): bt = node.getblocktemplate() height = bt['height'] tip_hash = bt['previousblockhash'] tip_block = node.getblock(tip_hash) coinbasevalue = bt['coinbasevalue'] if miner_address is None: miner_address = self.nodes[0].getnewaddress() if mn_payee is None: if isinstance(bt['masternode'], list): mn_payee = bt['masternode'][0]['payee'] else: mn_payee = bt['masternode']['payee'] # we can't take the masternode payee amount from the template here as we might have additional fees in vtx # calculate fees that the block template included (we'll have to remove it from the coinbase as we won't # include the template's transactions bt_fees = 0 for tx in bt['transactions']: bt_fees += tx['fee'] new_fees = 0 for tx in vtx: in_value = 0 out_value = 0 for txin in tx.vin: txout = node.gettxout("%064x" % txin.prevout.hash, txin.prevout.n, False) in_value += int(txout['value'] * COIN) for txout in tx.vout: out_value += txout.nValue new_fees += in_value - out_value # fix fees coinbasevalue -= bt_fees coinbasevalue += new_fees if mn_amount is None: mn_amount = get_masternode_payment(height, coinbasevalue) miner_amount = coinbasevalue - mn_amount outputs = {miner_address: str(Decimal(miner_amount) / COIN)} if mn_amount > 0: outputs[mn_payee] = str(Decimal(mn_amount) / COIN) coinbase = FromHex(CTransaction(), node.createrawtransaction([], outputs)) coinbase.vin = create_coinbase(height).vin # We can't really use this one as it would result in invalid merkle roots for masternode lists if len(bt['coinbase_payload']) != 0: cbtx = FromHex(CCbTx(version=1), bt['coinbase_payload']) if use_mnmerkleroot_from_tip: if 'cbTx' in tip_block: cbtx.merkleRootMNList = int(tip_block['cbTx']['merkleRootMNList'], 16) else: cbtx.merkleRootMNList = 0 coinbase.nVersion = 3 coinbase.nType = 5 # CbTx coinbase.vExtraPayload = cbtx.serialize() coinbase.calc_sha256() block = create_block(int(tip_hash, 16), coinbase) block.vtx += vtx # Add quorum commitments from template for tx in bt['transactions']: tx2 = FromHex(CTransaction(), tx['data']) if tx2.nType == 6: block.vtx.append(tx2) block.hashMerkleRoot = block.calc_merkle_root() block.solve() result = node.submitblock(ToHex(block)) if expected_error is not None and result != expected_error: raise AssertionError('mining the block should have failed with error %s, but submitblock returned %s' % (expected_error, result)) elif expected_error is None and result is not None: raise AssertionError('submitblock returned %s' % (result)) def mine_double_spend(self, node, txins, target_address, use_mnmerkleroot_from_tip=False): amount = Decimal(0) for txin in txins: txout = node.gettxout(txin['txid'], txin['vout'], False) amount += txout['value'] amount -= Decimal("0.001") # fee rawtx = node.createrawtransaction(txins, {target_address: amount}) rawtx = node.signrawtransaction(rawtx)['hex'] tx = FromHex(CTransaction(), rawtx) self.mine_block(node, [tx], use_mnmerkleroot_from_tip=use_mnmerkleroot_from_tip) def test_invalid_mn_payment(self, node): mn_payee = self.nodes[0].getnewaddress() self.mine_block(node, mn_payee=mn_payee, expected_error='bad-cb-payee') self.mine_block(node, mn_amount=1, expected_error='bad-cb-payee') if __name__ == '__main__': DIP3Test().main()