// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_ALLOCATORS_H #define BITCOIN_ALLOCATORS_H #include #include #include #include #include #include #include // for OPENSSL_cleanse() /** * Thread-safe class to keep track of locked (ie, non-swappable) memory pages. * * Memory locks do not stack, that is, pages which have been locked several times by calls to mlock() * will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when * those functions are used naively. This class simulates stacking memory locks by keeping a counter per page. * * @note By using a map from each page base address to lock count, this class is optimized for * small objects that span up to a few pages, mostly smaller than a page. To support large allocations, * something like an interval tree would be the preferred data structure. */ template class LockedPageManagerBase { public: LockedPageManagerBase(size_t page_size) : page_size(page_size) { // Determine bitmask for extracting page from address assert(!(page_size & (page_size - 1))); // size must be power of two page_mask = ~(page_size - 1); } ~LockedPageManagerBase() { } // For all pages in affected range, increase lock count void LockRange(void* p, size_t size) { boost::mutex::scoped_lock lock(mutex); if (!size) return; const size_t base_addr = reinterpret_cast(p); const size_t start_page = base_addr & page_mask; const size_t end_page = (base_addr + size - 1) & page_mask; for (size_t page = start_page; page <= end_page; page += page_size) { Histogram::iterator it = histogram.find(page); if (it == histogram.end()) // Newly locked page { locker.Lock(reinterpret_cast(page), page_size); histogram.insert(std::make_pair(page, 1)); } else // Page was already locked; increase counter { it->second += 1; } } } // For all pages in affected range, decrease lock count void UnlockRange(void* p, size_t size) { boost::mutex::scoped_lock lock(mutex); if (!size) return; const size_t base_addr = reinterpret_cast(p); const size_t start_page = base_addr & page_mask; const size_t end_page = (base_addr + size - 1) & page_mask; for (size_t page = start_page; page <= end_page; page += page_size) { Histogram::iterator it = histogram.find(page); assert(it != histogram.end()); // Cannot unlock an area that was not locked // Decrease counter for page, when it is zero, the page will be unlocked it->second -= 1; if (it->second == 0) // Nothing on the page anymore that keeps it locked { // Unlock page and remove the count from histogram locker.Unlock(reinterpret_cast(page), page_size); histogram.erase(it); } } } // Get number of locked pages for diagnostics int GetLockedPageCount() { boost::mutex::scoped_lock lock(mutex); return histogram.size(); } private: Locker locker; boost::mutex mutex; size_t page_size, page_mask; // map of page base address to lock count typedef std::map Histogram; Histogram histogram; }; /** * OS-dependent memory page locking/unlocking. * Defined as policy class to make stubbing for test possible. */ class MemoryPageLocker { public: /** Lock memory pages. * addr and len must be a multiple of the system page size */ bool Lock(const void* addr, size_t len); /** Unlock memory pages. * addr and len must be a multiple of the system page size */ bool Unlock(const void* addr, size_t len); }; /** * Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in * std::allocator templates. * * Some implementations of the STL allocate memory in some constructors (i.e., see * MSVC's vector implementation where it allocates 1 byte of memory in the allocator.) * Due to the unpredictable order of static initializers, we have to make sure the * LockedPageManager instance exists before any other STL-based objects that use * secure_allocator are created. So instead of having LockedPageManager also be * static-initialized, it is created on demand. */ class LockedPageManager : public LockedPageManagerBase { public: static LockedPageManager& Instance() { boost::call_once(LockedPageManager::CreateInstance, LockedPageManager::init_flag); return *LockedPageManager::_instance; } private: LockedPageManager(); static void CreateInstance() { // Using a local static instance guarantees that the object is initialized // when it's first needed and also deinitialized after all objects that use // it are done with it. I can think of one unlikely scenario where we may // have a static deinitialization order/problem, but the check in // LockedPageManagerBase's destructor helps us detect if that ever happens. static LockedPageManager instance; LockedPageManager::_instance = &instance; } static LockedPageManager* _instance; static boost::once_flag init_flag; }; // // Functions for directly locking/unlocking memory objects. // Intended for non-dynamically allocated structures. // template void LockObject(const T& t) { LockedPageManager::Instance().LockRange((void*)(&t), sizeof(T)); } template void UnlockObject(const T& t) { OPENSSL_cleanse((void*)(&t), sizeof(T)); LockedPageManager::Instance().UnlockRange((void*)(&t), sizeof(T)); } // // Allocator that locks its contents from being paged // out of memory and clears its contents before deletion. // template struct secure_allocator : public std::allocator { // MSVC8 default copy constructor is broken typedef std::allocator base; typedef typename base::size_type size_type; typedef typename base::difference_type difference_type; typedef typename base::pointer pointer; typedef typename base::const_pointer const_pointer; typedef typename base::reference reference; typedef typename base::const_reference const_reference; typedef typename base::value_type value_type; secure_allocator() throw() {} secure_allocator(const secure_allocator& a) throw() : base(a) {} template secure_allocator(const secure_allocator& a) throw() : base(a) { } ~secure_allocator() throw() {} template struct rebind { typedef secure_allocator<_Other> other; }; T* allocate(std::size_t n, const void* hint = 0) { T* p; p = std::allocator::allocate(n, hint); if (p != NULL) LockedPageManager::Instance().LockRange(p, sizeof(T) * n); return p; } void deallocate(T* p, std::size_t n) { if (p != NULL) { OPENSSL_cleanse(p, sizeof(T) * n); LockedPageManager::Instance().UnlockRange(p, sizeof(T) * n); } std::allocator::deallocate(p, n); } }; // // Allocator that clears its contents before deletion. // template struct zero_after_free_allocator : public std::allocator { // MSVC8 default copy constructor is broken typedef std::allocator base; typedef typename base::size_type size_type; typedef typename base::difference_type difference_type; typedef typename base::pointer pointer; typedef typename base::const_pointer const_pointer; typedef typename base::reference reference; typedef typename base::const_reference const_reference; typedef typename base::value_type value_type; zero_after_free_allocator() throw() {} zero_after_free_allocator(const zero_after_free_allocator& a) throw() : base(a) {} template zero_after_free_allocator(const zero_after_free_allocator& a) throw() : base(a) { } ~zero_after_free_allocator() throw() {} template struct rebind { typedef zero_after_free_allocator<_Other> other; }; void deallocate(T* p, std::size_t n) { if (p != NULL) OPENSSL_cleanse(p, sizeof(T) * n); std::allocator::deallocate(p, n); } }; // This is exactly like std::string, but with a custom allocator. typedef std::basic_string, secure_allocator > SecureString; // Byte-vector that clears its contents before deletion. typedef std::vector > CSerializeData; #endif // BITCOIN_ALLOCATORS_H