// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "pow.h" #include "arith_uint256.h" #include "chain.h" #include "chainparams.h" #include "primitives/block.h" #include "uint256.h" #include unsigned int static KimotoGravityWell(const CBlockIndex* pindexLast, const Consensus::Params& params) { const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; uint64_t PastBlocksMass = 0; int64_t PastRateActualSeconds = 0; int64_t PastRateTargetSeconds = 0; double PastRateAdjustmentRatio = double(1); arith_uint256 PastDifficultyAverage; arith_uint256 PastDifficultyAveragePrev; double EventHorizonDeviation; double EventHorizonDeviationFast; double EventHorizonDeviationSlow; uint64_t pastSecondsMin = params.nPowTargetTimespan * 0.025; uint64_t pastSecondsMax = params.nPowTargetTimespan * 7; uint64_t PastBlocksMin = pastSecondsMin / params.nPowTargetSpacing; uint64_t PastBlocksMax = pastSecondsMax / params.nPowTargetSpacing; if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || (uint64_t)BlockLastSolved->nHeight < PastBlocksMin) { return UintToArith256(params.powLimit).GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } PastBlocksMass++; PastDifficultyAverage.SetCompact(BlockReading->nBits); if (i > 1) { // handle negative arith_uint256 if(PastDifficultyAverage >= PastDifficultyAveragePrev) PastDifficultyAverage = ((PastDifficultyAverage - PastDifficultyAveragePrev) / i) + PastDifficultyAveragePrev; else PastDifficultyAverage = PastDifficultyAveragePrev - ((PastDifficultyAveragePrev - PastDifficultyAverage) / i); } PastDifficultyAveragePrev = PastDifficultyAverage; PastRateActualSeconds = BlockLastSolved->GetBlockTime() - BlockReading->GetBlockTime(); PastRateTargetSeconds = params.nPowTargetSpacing * PastBlocksMass; PastRateAdjustmentRatio = double(1); if (PastRateActualSeconds < 0) { PastRateActualSeconds = 0; } if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { PastRateAdjustmentRatio = double(PastRateTargetSeconds) / double(PastRateActualSeconds); } EventHorizonDeviation = 1 + (0.7084 * pow((double(PastBlocksMass)/double(28.2)), -1.228)); EventHorizonDeviationFast = EventHorizonDeviation; EventHorizonDeviationSlow = 1 / EventHorizonDeviation; if (PastBlocksMass >= PastBlocksMin) { if ((PastRateAdjustmentRatio <= EventHorizonDeviationSlow) || (PastRateAdjustmentRatio >= EventHorizonDeviationFast)) { assert(BlockReading); break; } } if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } arith_uint256 bnNew(PastDifficultyAverage); if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { bnNew *= PastRateActualSeconds; bnNew /= PastRateTargetSeconds; } if (bnNew > UintToArith256(params.powLimit)) { bnNew = UintToArith256(params.powLimit); } return bnNew.GetCompact(); } unsigned int static DarkGravityWave(const CBlockIndex* pindexLast, const CBlockHeader *pblock, const Consensus::Params& params) { /* current difficulty formula, dash - DarkGravity v3, written by Evan Duffield - evan@dash.org */ const arith_uint256 bnPowLimit = UintToArith256(params.powLimit); int64_t nPastBlocks = 24; // make sure we have at least (nPastBlocks + 1) blocks, otherwise just return powLimit if (!pindexLast || pindexLast->nHeight < nPastBlocks) { return bnPowLimit.GetCompact(); } if (params.fPowAllowMinDifficultyBlocks && ( // testnet ... (params.hashDevnetGenesisBlock.IsNull() && pindexLast->nChainWork >= UintToArith256(uint256S("0x000000000000000000000000000000000000000000000000003e9ccfe0e03e01"))) || // or devnet !params.hashDevnetGenesisBlock.IsNull())) { // NOTE: 000000000000000000000000000000000000000000000000003e9ccfe0e03e01 is the work of the "wrong" chain, // so this rule activates there immediately and new blocks with high diff from that chain are going // to be rejected by updated nodes. Note, that old nodes are going to reject blocks from updated nodes // after the "right" chain reaches this amount of work too. This is a temporary condition which should // be removed when we decide to hard-fork testnet again. // TODO: remove "testnet+work OR devnet" part on next testnet hard-fork // Special difficulty rule for testnet/devnet: // If the new block's timestamp is more than 2* 2.5 minutes // then allow mining of a min-difficulty block. // start using smoother adjustment on testnet when total work hits // 000000000000000000000000000000000000000000000000003ff00000000000 if (pindexLast->nChainWork >= UintToArith256(uint256S("0x000000000000000000000000000000000000000000000000003ff00000000000")) // and immediately on devnet || !params.hashDevnetGenesisBlock.IsNull()) { // recent block is more than 2 hours old if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + 2 * 60 * 60) { return bnPowLimit.GetCompact(); } // recent block is more than 10 minutes old if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + params.nPowTargetSpacing*4) { arith_uint256 bnNew = arith_uint256().SetCompact(pindexLast->nBits) * 10; if (bnNew > bnPowLimit) { bnNew = bnPowLimit; } return bnNew.GetCompact(); } } else { // old stuff if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + params.nPowTargetSpacing*2) { return bnPowLimit.GetCompact(); } } } const CBlockIndex *pindex = pindexLast; arith_uint256 bnPastTargetAvg; for (unsigned int nCountBlocks = 1; nCountBlocks <= nPastBlocks; nCountBlocks++) { arith_uint256 bnTarget = arith_uint256().SetCompact(pindex->nBits); if (nCountBlocks == 1) { bnPastTargetAvg = bnTarget; } else { // NOTE: that's not an average really... bnPastTargetAvg = (bnPastTargetAvg * nCountBlocks + bnTarget) / (nCountBlocks + 1); } if(nCountBlocks != nPastBlocks) { assert(pindex->pprev); // should never fail pindex = pindex->pprev; } } arith_uint256 bnNew(bnPastTargetAvg); int64_t nActualTimespan = pindexLast->GetBlockTime() - pindex->GetBlockTime(); // NOTE: is this accurate? nActualTimespan counts it for (nPastBlocks - 1) blocks only... int64_t nTargetTimespan = nPastBlocks * params.nPowTargetSpacing; if (nActualTimespan < nTargetTimespan/3) nActualTimespan = nTargetTimespan/3; if (nActualTimespan > nTargetTimespan*3) nActualTimespan = nTargetTimespan*3; // Retarget bnNew *= nActualTimespan; bnNew /= nTargetTimespan; if (bnNew > bnPowLimit) { bnNew = bnPowLimit; } return bnNew.GetCompact(); } unsigned int GetNextWorkRequiredBTC(const CBlockIndex* pindexLast, const CBlockHeader *pblock, const Consensus::Params& params) { unsigned int nProofOfWorkLimit = UintToArith256(params.powLimit).GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % params.DifficultyAdjustmentInterval() != 0) { if (params.fPowAllowMinDifficultyBlocks) { // Special difficulty rule for testnet: // If the new block's timestamp is more than 2* 2.5 minutes // then allow mining of a min-difficulty block. if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + params.nPowTargetSpacing*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % params.DifficultyAdjustmentInterval() != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Go back by what we want to be 1 day worth of blocks int nHeightFirst = pindexLast->nHeight - (params.DifficultyAdjustmentInterval()-1); assert(nHeightFirst >= 0); const CBlockIndex* pindexFirst = pindexLast->GetAncestor(nHeightFirst); assert(pindexFirst); return CalculateNextWorkRequired(pindexLast, pindexFirst->GetBlockTime(), params); } unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock, const Consensus::Params& params) { // Most recent algo first if (pindexLast->nHeight + 1 >= params.nPowDGWHeight) { return DarkGravityWave(pindexLast, pblock, params); } else if (pindexLast->nHeight + 1 >= params.nPowKGWHeight) { return KimotoGravityWell(pindexLast, params); } else { return GetNextWorkRequiredBTC(pindexLast, pblock, params); } } // for DIFF_BTC only! unsigned int CalculateNextWorkRequired(const CBlockIndex* pindexLast, int64_t nFirstBlockTime, const Consensus::Params& params) { if (params.fPowNoRetargeting) return pindexLast->nBits; // Limit adjustment step int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime; if (nActualTimespan < params.nPowTargetTimespan/4) nActualTimespan = params.nPowTargetTimespan/4; if (nActualTimespan > params.nPowTargetTimespan*4) nActualTimespan = params.nPowTargetTimespan*4; // Retarget const arith_uint256 bnPowLimit = UintToArith256(params.powLimit); arith_uint256 bnNew; bnNew.SetCompact(pindexLast->nBits); bnNew *= nActualTimespan; bnNew /= params.nPowTargetTimespan; if (bnNew > bnPowLimit) bnNew = bnPowLimit; return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits, const Consensus::Params& params) { bool fNegative; bool fOverflow; arith_uint256 bnTarget; bnTarget.SetCompact(nBits, &fNegative, &fOverflow); // Check range if (fNegative || bnTarget == 0 || fOverflow || bnTarget > UintToArith256(params.powLimit)) return false; // Check proof of work matches claimed amount if (UintToArith256(hash) > bnTarget) return false; return true; }