// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Copyright (c) 2014-2017 The Dash Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/dash-config.h" #endif #include "net.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "consensus/consensus.h" #include "crypto/common.h" #include "hash.h" #include "primitives/transaction.h" #include "netbase.h" #include "scheduler.h" #include "ui_interface.h" #include "utilstrencodings.h" #include "instantx.h" #include "masternode-sync.h" #include "masternodeman.h" #include "privatesend.h" #ifdef WIN32 #include #else #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization. #define FEELER_SLEEP_WINDOW 1 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; constexpr const CConnman::CFullyConnectedOnly CConnman::FullyConnectedOnly; constexpr const CConnman::CAllNodes CConnman::AllNodes; // // Global state variables // bool fDiscover = true; bool fListen = true; bool fRelayTxes = true; CCriticalSection cs_mapLocalHost; std::map mapLocalHost; static bool vfLimited[NET_MAX] = {}; static CNode* pnodeLocalHost = NULL; std::string strSubVersion; std::map mapRelay; std::deque > vRelayExpiration; CCriticalSection cs_mapRelay; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); // Signals for message handling static CNodeSignals g_signals; CNodeSignals& GetNodeSignals() { return g_signals; } void CConnman::AddOneShot(const std::string& strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (std::map::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) { int nScore = (*it).second.nScore; int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService((*it).first, (*it).second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeeds6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. // Seed nodes are given a random 'last seen time' of between one and two // weeks ago. const int64_t nOneWeek = 7*24*60*60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (std::vector::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i) { struct in6_addr ip; memcpy(&ip, i->addr, sizeof(ip)); CAddress addr(CService(ip, i->port), NODE_NETWORK); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(),GetListenPort()), NODE_NONE); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() && !IsLimited(pnode->addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->addrLocal); } if (addrLocal.IsRoutable()) { LogPrintf("AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); pnode->PushAddress(addrLocal); } } } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } bool RemoveLocal(const CService& addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); return true; } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } std::vector CNode::vchSecretKey; CNode* CConnman::FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CNetAddr)pnode->addr == ip) return (pnode); return NULL; } CNode* CConnman::FindNode(const CSubNet& subNet) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (subNet.Match((CNetAddr)pnode->addr)) return (pnode); return NULL; } CNode* CConnman::FindNode(const std::string& addrName) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->addrName == addrName) return (pnode); return NULL; } CNode* CConnman::FindNode(const CService& addr) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if((CService)pnode->addr == addr) return (pnode); return NULL; } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) return false; } return true; } CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fConnectToMasternode) { // TODO: This is different from what we have in Bitcoin which only calls ConnectNode from OpenNetworkConnection // If we ever switch to using OpenNetworkConnection for MNs as well, this can be removed if (!fNetworkActive) { return NULL; } if (pszDest == NULL) { // we clean masternode connections in CMasternodeMan::ProcessMasternodeConnections() // so should be safe to skip this and connect to local Hot MN on CActiveMasternode::ManageState() if (IsLocal(addrConnect) && !fConnectToMasternode) return NULL; LOCK(cs_vNodes); // Look for an existing connection CNode* pnode = FindNode((CService)addrConnect); if (pnode) { // we have existing connection to this node but it was not a connection to masternode, // change flag and add reference so that we can correctly clear it later if(fConnectToMasternode && !pnode->fMasternode) { pnode->AddRef(); pnode->fMasternode = true; } return pnode; } } /// debug print LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); // Connect SOCKET hSocket; bool proxyConnectionFailed = false; if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) : ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed)) { if (!IsSelectableSocket(hSocket)) { LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n"); CloseSocket(hSocket); return NULL; } if (pszDest && addrConnect.IsValid()) { // It is possible that we already have a connection to the IP/port pszDest resolved to. // In that case, drop the connection that was just created, and return the existing CNode instead. // Also store the name we used to connect in that CNode, so that future FindNode() calls to that // name catch this early. LOCK(cs_vNodes); CNode* pnode = FindNode((CService)addrConnect); if (pnode) { // we have existing connection to this node but it was not a connection to masternode, // change flag and add reference so that we can correctly clear it later if(fConnectToMasternode && !pnode->fMasternode) { pnode->AddRef(); pnode->fMasternode = true; } if (pnode->addrName.empty()) { pnode->addrName = std::string(pszDest); } CloseSocket(hSocket); return pnode; } } addrman.Attempt(addrConnect); // Add node CNode* pnode = new CNode(GetNewNodeId(), nLocalServices, GetBestHeight(), hSocket, addrConnect, pszDest ? pszDest : "", false, true); pnode->nServicesExpected = ServiceFlags(addrConnect.nServices & nRelevantServices); pnode->nTimeConnected = GetSystemTimeInSeconds(); if(fConnectToMasternode) { pnode->AddRef(); pnode->fMasternode = true; } GetNodeSignals().InitializeNode(pnode, *this); LOCK(cs_vNodes); vNodes.push_back(pnode); return pnode; } else if (!proxyConnectionFailed) { // If connecting to the node failed, and failure is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect); } return NULL; } void CConnman::DumpBanlist() { SweepBanned(); // clean unused entries (if bantime has expired) if (!BannedSetIsDirty()) return; int64_t nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; SetBannedSetDirty(false); GetBanned(banmap); if (!bandb.Write(banmap)) SetBannedSetDirty(true); LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::CloseSocketDisconnect() { fDisconnect = true; if (hSocket != INVALID_SOCKET) { LogPrint("net", "disconnecting peer=%d\n", id); CloseSocket(hSocket); } } void CConnman::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } DumpBanlist(); //store banlist to disk if(clientInterface) clientInterface->BannedListChanged(); } bool CConnman::IsBanned(CNetAddr ip) { bool fResult = false; { LOCK(cs_setBanned); for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil) fResult = true; } } return fResult; } bool CConnman::IsBanned(CSubNet subnet) { bool fResult = false; { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) fResult = true; } } return fResult; } void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()); banEntry.banReason = banReason; if (bantimeoffset <= 0) { bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); sinceUnixEpoch = false; } banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else return; } if(clientInterface) clientInterface->BannedListChanged(); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (subNet.Match((CNetAddr)pnode->addr)) pnode->fDisconnect = true; } } if(banReason == BanReasonManuallyAdded) DumpBanlist(); //store banlist to disk immediately if user requested ban } bool CConnman::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CConnman::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) return false; setBannedIsDirty = true; } if(clientInterface) clientInterface->BannedListChanged(); DumpBanlist(); //store banlist to disk immediately return true; } void CConnman::GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); banMap = setBanned; //create a thread safe copy } void CConnman::SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void CConnman::SweepBanned() { int64_t now = GetTime(); LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while(it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else ++it; } } bool CConnman::BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void CConnman::SetBannedSetDirty(bool dirty) { LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag setBannedIsDirty = dirty; } bool CConnman::IsWhitelistedRange(const CNetAddr &addr) { LOCK(cs_vWhitelistedRange); BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } void CConnman::AddWhitelistedRange(const CSubNet &subnet) { LOCK(cs_vWhitelistedRange); vWhitelistedRange.push_back(subnet); } #undef X #define X(name) stats.name = name void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); X(nServices); X(addr); X(fRelayTxes); X(nLastSend); X(nLastRecv); X(nTimeConnected); X(nTimeOffset); X(addrName); X(nVersion); X(cleanSubVer); X(fInbound); X(nStartingHeight); X(nSendBytes); X(mapSendBytesPerMsgCmd); X(nRecvBytes); X(mapRecvBytesPerMsgCmd); X(fWhitelisted); // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Dash users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dMinPing = (((double)nMinPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : ""; } #undef X bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete) { complete = false; int64_t nTimeMicros = GetTimeMicros(); nLastRecv = nTimeMicros / 1000000; nRecvBytes += nBytes; while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { //store received bytes per message command //to prevent a memory DOS, only allow valid commands mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand); if (i == mapRecvBytesPerMsgCmd.end()) i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; msg.nTime = nTimeMicros; complete = true; } } return true; } void CNode::SetSendVersion(int nVersionIn) { // Send version may only be changed in the version message, and // only one version message is allowed per session. We can therefore // treat this value as const and even atomic as long as it's only used // once a version message has been successfully processed. Any attempt to // set this twice is an error. if (nSendVersion != 0) { error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn); } else { nSendVersion = nVersionIn; } } int CNode::GetSendVersion() const { // The send version should always be explicitly set to // INIT_PROTO_VERSION rather than using this value until SetSendVersion // has been called. if (nSendVersion == 0) { error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); return INIT_PROTO_VERSION; } return nSendVersion; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } // requires LOCK(cs_vSend) size_t CConnman::SocketSendData(CNode *pnode) { std::deque::iterator it = pnode->vSendMsg.begin(); size_t nSentSize = 0; while (it != pnode->vSendMsg.end()) { const CSerializeData &data = *it; assert(data.size() > pnode->nSendOffset); int nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); if (nBytes > 0) { pnode->nLastSend = GetSystemTimeInSeconds(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; nSentSize += nBytes; if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->fDisconnect = true; } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); return nSentSize; } struct NodeEvictionCandidate { NodeEvictionCandidate(CNode* pnode) : id(pnode->id), nTimeConnected(pnode->nTimeConnected), nMinPingUsecTime(pnode->nMinPingUsecTime), nLastBlockTime(pnode->nLastBlockTime), nLastTXTime(pnode->nLastTXTime), fNetworkNode(pnode->fNetworkNode), fRelayTxes(pnode->fRelayTxes), fBloomFilter(pnode->pfilter != NULL), vchNetGroup(pnode->addr.GetGroup()), vchKeyedNetGroup(pnode->vchKeyedNetGroup) {} int id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fNetworkNode; bool fRelayTxes; bool fBloomFilter; std::vector vchNetGroup; std::vector vchKeyedNetGroup; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareKeyedNetGroup(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) { return a.vchKeyedNetGroup < b.vchKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime; if (a.fNetworkNode != b.fNetworkNode) return b.fNetworkNode; return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime; if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes; if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; return a.nTimeConnected > b.nTimeConnected; } /** Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker * triggered network partitioning. * The strategy used here is to protect a small number of peers * for each of several distinct characteristics which are difficult * to forge. In order to partition a node the attacker must be * simultaneously better at all of them than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for(size_t i = 0; i < vNodes.size(); ++i) { CNode* pnode = vNodes[i]; if (pnode->fWhitelisted) continue; if (!pnode->fInbound) continue; if (pnode->fDisconnect) continue; vEvictionCandidates.push_back(NodeEvictionCandidate(pnode)); } } if (vEvictionCandidates.empty()) return false; // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareKeyedNetGroup); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeTXTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeBlockTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the half of the remaining nodes which have been connected the longest. // This replicates the non-eviction implicit behavior, and precludes attacks that start later. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected); vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast(vEvictionCandidates.size() / 2), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) std::vector naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map, std::vector > mapAddrCounts; for(size_t i = 0; i < vEvictionCandidates.size(); ++i) { const NodeEvictionCandidate& candidate = vEvictionCandidates[i]; mapAddrCounts[candidate.vchNetGroup].push_back(candidate); int64_t grouptime = mapAddrCounts[candidate.vchNetGroup][0].nTimeConnected; size_t groupsize = mapAddrCounts[candidate.vchNetGroup].size(); if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = groupsize; nMostConnectionsTime = grouptime; naMostConnections = candidate.vchNetGroup; } } // Reduce to the network group with the most connections std::vector vEvictionNodes = mapAddrCounts[naMostConnections]; // Do not disconnect peers if there is only 1 connection from their network group if(vEvictionNodes.empty()) { return false; } // Disconnect from the network group with the most connections int nEvictionId = vEvictionNodes[0].id; { LOCK(cs_vNodes); for(size_t i = 0; i < vNodes.size(); ++i) { CNode* pnode = vNodes[i]; if(pnode->id == nEvictionId) { pnode->fDisconnect = true; return true; } } } return false; } void CConnman::AcceptConnection(const ListenSocket& hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler); if (hSocket != INVALID_SOCKET) if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) LogPrintf("Warning: Unknown socket family\n"); bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->fInbound) nInbound++; } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); return; } if (!fNetworkActive) { LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted sockets // on all platforms. Set it again here just to be sure. int set = 1; #ifdef WIN32 setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); #else setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); #endif if (IsBanned(addr) && !whitelisted) { LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n"); CloseSocket(hSocket); return; } } // don't accept incoming connections until fully synced if(fMasterNode && !masternodeSync.IsSynced()) { LogPrintf("AcceptConnection -- masternode is not synced yet, skipping inbound connection attempt\n"); CloseSocket(hSocket); return; } CNode* pnode = new CNode(GetNewNodeId(), nLocalServices, GetBestHeight(), hSocket, addr, "", true); pnode->fWhitelisted = whitelisted; GetNodeSignals().InitializeNode(pnode, *this); LogPrint("net", "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (!interruptNet) { // // Disconnect nodes // { LOCK(cs_vNodes); // Disconnect unused nodes std::vector vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) { LogPrintf("ThreadSocketHandler -- removing node: peer=%d addr=%s nRefCount=%d fNetworkNode=%d fInbound=%d fMasternode=%d\n", pnode->id, pnode->addr.ToString(), pnode->GetRefCount(), pnode->fNetworkNode, pnode->fInbound, pnode->fMasternode); // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); pnode->grantMasternodeOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released if (pnode->fNetworkNode || pnode->fInbound) pnode->Release(); if (pnode->fMasternode) pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) fDelete = true; } } if (fDelete) { vNodesDisconnected.remove(pnode); DeleteNode(pnode); } } } } size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } if(vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if(clientInterface) clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount); } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, pnode->hSocket); have_fds = true; // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer, select() for // receiving data. // * Hand off all complete messages to the processor, to be handled without // blocking here. { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { if (!pnode->vSendMsg.empty()) { FD_SET(pnode->hSocket, &fdsetSend); continue; } } } { if (!pnode->fPauseRecv) FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); if (interruptNet) return; if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000))) return; } // // Accept new connections // BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy = CopyNodeVector(); BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (interruptNet) return; // // Receive // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError)) { { { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify)) pnode->CloseSocketDisconnect(); RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { if (!it->complete()) break; nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) LogPrint("net", "socket closed\n"); pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } } } } // // Send // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetSend)) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { size_t nBytes = SocketSendData(pnode); if (nBytes) { RecordBytesSent(nBytes); } } } // // Inactivity checking // int64_t nTime = GetSystemTimeInSeconds(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } } } ReleaseNodeVector(vNodesCopy); } } void CConnman::WakeMessageHandler() { { std::lock_guard lock(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } #ifdef USE_UPNP void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char * multicastif = 0; const char * minissdpdpath = 0; struct UPNPDev * devlist = 0; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); if(r != UPNPCOMMAND_SUCCESS) LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); else { if(externalIPAddress[0]) { CNetAddr resolved; if(LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); AddLocal(resolved, LOCAL_UPNP); } } else LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } std::string strDesc = "Dash Core " + FormatFullVersion(); try { while (true) { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if(r!=UPNPCOMMAND_SUCCESS) LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); else LogPrintf("UPnP Port Mapping successful.\n"); MilliSleep(20*60*1000); // Refresh every 20 minutes } } catch (const boost::thread_interrupted&) { r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = 0; FreeUPNPUrls(&urls); throw; } } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = 0; if (r != 0) FreeUPNPUrls(&urls); } } void MapPort(bool fUseUPnP) { static boost::thread* upnp_thread = NULL; if (fUseUPnP) { if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; } upnp_thread = new boost::thread(boost::bind(&TraceThread, "upnp", &ThreadMapPort)); } else if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; upnp_thread = NULL; } } #else void MapPort(bool) { // Intentionally left blank. } #endif void CConnman::ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute if ((addrman.size() > 0) && (!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { if (!interruptNet.sleep_for(std::chrono::seconds(11))) return; LOCK(cs_vNodes); if (vNodes.size() >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const std::vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { std::vector vIPs; std::vector vAdd; if (LookupHost(seed.host.c_str(), vIPs, 0, true)) { BOOST_FOREACH(const CNetAddr& ip, vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), NODE_NETWORK); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); found++; } } // TODO: The seed name resolve may fail, yielding an IP of [::], which results in // addrman assigning the same source to results from different seeds. // This should switch to a hard-coded stable dummy IP for each seed name, so that the // resolve is not required at all. if (!vIPs.empty()) { CService seedSource; Lookup(seed.name.c_str(), seedSource, 0, true); addrman.Add(vAdd, seedSource); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::DumpData() { DumpAddresses(); DumpBanlist(); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { if (!OpenNetworkConnection(addr, &grant, strDest.c_str(), true)) AddOneShot(strDest); } } void CConnman::ThreadOpenConnections() { // Connect to specific addresses if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"]) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, NULL, strAddr.c_str()); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL); while (!interruptNet) { ProcessOneShot(); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; CSemaphoreGrant grant(*semOutbound); if (interruptNet) return; // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); CNetAddr local; LookupHost("127.0.0.1", local, false); addrman.Add(convertSeed6(Params().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). // Do this here so we don't have to critsect vNodes inside mapAddresses critsect. // This is only done for mainnet and testnet int nOutbound = 0; std::set > setConnected; if (!Params().AllowMultipleAddressesFromGroup()) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fInbound && !pnode->fMasternode) { setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if we can connect // successfully it is added to tried. // * Start attempting feeler connections only after node finishes making outbound // connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutbound >= nMaxOutbound) { int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds). if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { CAddrInfo addr = addrman.Select(fFeeler); // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only connect to full nodes if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep))) return; LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString()); } OpenNetworkConnection(addrConnect, &grant, NULL, false, fFeeler); } } } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } if (!pnode->addrName.empty()) { mapConnectedByName[pnode->addrName] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } BOOST_FOREACH(const std::string& strAddNode, lAddresses) { CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { ret.push_back(AddedNodeInfo{strAddNode, service, true, it->second}); } else { ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false}); } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true, it->second.first}); } else { ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false}); } } } return ret; } void CConnman::ThreadOpenAddedConnections() { { LOCK(cs_vAddedNodes); vAddedNodes = mapMultiArgs["-addnode"]; } for (unsigned int i = 0; true; i++) { std::vector vInfo = GetAddedNodeInfo(); for (const AddedNodeInfo& info : vInfo) { if (!info.fConnected) { CSemaphoreGrant grant(*semOutbound); // If strAddedNode is an IP/port, decode it immediately, so // OpenNetworkConnection can detect existing connections to that IP/port. CService service(LookupNumeric(info.strAddedNode.c_str(), Params().GetDefaultPort())); OpenNetworkConnection(CAddress(service, NODE_NONE), &grant, info.strAddedNode.c_str(), false); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } if (!interruptNet.sleep_for(std::chrono::minutes(2))) return; } } void CConnman::ThreadMnbRequestConnections() { // Connecting to specific addresses, no masternode connections available if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) return; while (!interruptNet) { if (!interruptNet.sleep_for(std::chrono::milliseconds(1000))) return; CSemaphoreGrant grant(*semMasternodeOutbound); if (interruptNet) return; std::pair > p = mnodeman.PopScheduledMnbRequestConnection(); if(p.first == CService() || p.second.empty()) continue; ConnectNode(CAddress(p.first, NODE_NETWORK), NULL, true); LOCK(cs_vNodes); CNode *pnode = FindNode(p.first); if(!pnode || pnode->fDisconnect) continue; grant.MoveTo(pnode->grantMasternodeOutbound); // compile request vector std::vector vToFetch; std::set::iterator it = p.second.begin(); while(it != p.second.end()) { if(*it != uint256()) { vToFetch.push_back(CInv(MSG_MASTERNODE_ANNOUNCE, *it)); LogPrint("masternode", "ThreadMnbRequestConnections -- asking for mnb %s from addr=%s\n", it->ToString(), p.first.ToString()); } ++it; } // ask for data PushMessage(pnode, NetMsgType::GETDATA, vToFetch); } } // if successful, this moves the passed grant to the constructed node bool CConnman::OpenNetworkConnection(const CAddress& addrConnect, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler) { // // Initiate outbound network connection // if (interruptNet) { return false; } if (!fNetworkActive) { return false; } if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return false; } else if (FindNode(std::string(pszDest))) return false; CNode* pnode = ConnectNode(addrConnect, pszDest); if (!pnode) return false; if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); if (fOneShot) pnode->fOneShot = true; if (fFeeler) pnode->fFeeler = true; return true; } void CConnman::ThreadMessageHandler() { SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL); while (!flagInterruptMsgProc) { std::vector vNodesCopy = CopyNodeVector(); bool fMoreWork = false; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages bool fMoreNodeWork = GetNodeSignals().ProcessMessages(pnode, *this, flagInterruptMsgProc); fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) return; // Send messages { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) GetNodeSignals().SendMessages(pnode, *this, flagInterruptMsgProc); } if (flagInterruptMsgProc) return; } ReleaseNodeVector(vNodesCopy); std::unique_lock lock(mutexMsgProc); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; }); } fMsgProcWake = false; } } bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } if (!IsSelectableSocket(hListenSocket)) { strError = "Error: Couldn't create a listenable socket for incoming connections"; LogPrintf("%s\n", strError); return false; } #ifndef WIN32 #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); #endif // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); // Disable Nagle's algorithm setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int)); setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int)); #endif // Set to non-blocking, incoming connections will also inherit this if (!SetSocketNonBlocking(hListenSocket, true)) { strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY #ifdef WIN32 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); #endif #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void Discover(boost::thread_group& threadGroup) { if (!fDiscover) return; #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { BOOST_FOREACH (const CNetAddr &addr, vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { if (fDebug) { LogPrint("net", "SetNetworkActive: %s\n", active); } if (!active) { fNetworkActive = false; LOCK(cs_vNodes); // Close sockets to all nodes BOOST_FOREACH(CNode* pnode, vNodes) { pnode->CloseSocketDisconnect(); } } else { fNetworkActive = true; } uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman() { fNetworkActive = true; setBannedIsDirty = false; fAddressesInitialized = false; nLastNodeId = 0; nSendBufferMaxSize = 0; nReceiveFloodSize = 0; semOutbound = NULL; semMasternodeOutbound = NULL; nMaxConnections = 0; nMaxOutbound = 0; nBestHeight = 0; clientInterface = NULL; flagInterruptMsgProc = false; } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1, std::memory_order_relaxed); } bool CConnman::Start(CScheduler& scheduler, std::string& strNodeError, Options connOptions) { nTotalBytesRecv = 0; nTotalBytesSent = 0; nMaxOutboundLimit = 0; nMaxOutboundTotalBytesSentInCycle = 0; nMaxOutboundTimeframe = 60*60*24; //1 day nMaxOutboundCycleStartTime = 0; nRelevantServices = connOptions.nRelevantServices; nLocalServices = connOptions.nLocalServices; nMaxConnections = connOptions.nMaxConnections; nMaxOutbound = std::min((connOptions.nMaxOutbound), nMaxConnections); nMaxFeeler = connOptions.nMaxFeeler; nSendBufferMaxSize = connOptions.nSendBufferMaxSize; nReceiveFloodSize = connOptions.nReceiveFloodSize; SetBestHeight(connOptions.nBestHeight); clientInterface = connOptions.uiInterface; if (clientInterface) clientInterface->InitMessage(_("Loading addresses...")); // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (adb.Read(addrman)) LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); else { addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } if (clientInterface) clientInterface->InitMessage(_("Loading banlist...")); // Load addresses from banlist.dat nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; if (bandb.Read(banmap)) { SetBanned(banmap); // thread save setter SetBannedSetDirty(false); // no need to write down, just read data SweepBanned(); // sweep out unused entries LogPrint("net", "Loaded %d banned node ips/subnets from banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } else { LogPrintf("Invalid or missing banlist.dat; recreating\n"); SetBannedSetDirty(true); // force write DumpBanlist(); } fAddressesInitialized = true; if (semOutbound == NULL) { // initialize semaphore semOutbound = new CSemaphore(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections)); } if (semMasternodeOutbound == NULL) { // initialize semaphore semMasternodeOutbound = new CSemaphore(MAX_OUTBOUND_MASTERNODE_CONNECTIONS); } if (pnodeLocalHost == NULL) { CNetAddr local; LookupHost("127.0.0.1", local, false); pnodeLocalHost = new CNode(GetNewNodeId(), nLocalServices, GetBestHeight(), INVALID_SOCKET, CAddress(CService(local, 0), nLocalServices)); GetNodeSignals().InitializeNode(pnodeLocalHost, *this); } // // Start threads // InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { std::unique_lock lock(mutexMsgProc); fMsgProcWake = false; } // Send and receive from sockets, accept connections threadSocketHandler = std::thread(&TraceThread >, "net", std::function(std::bind(&CConnman::ThreadSocketHandler, this))); if (!GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadDNSAddressSeed = std::thread(&TraceThread >, "dnsseed", std::function(std::bind(&CConnman::ThreadDNSAddressSeed, this))); // Initiate outbound connections from -addnode threadOpenAddedConnections = std::thread(&TraceThread >, "addcon", std::function(std::bind(&CConnman::ThreadOpenAddedConnections, this))); // Initiate outbound connections threadOpenConnections = std::thread(&TraceThread >, "opencon", std::function(std::bind(&CConnman::ThreadOpenConnections, this))); // Initiate masternode connections threadMnbRequestConnections = std::thread(&TraceThread >, "mnbcon", std::function(std::bind(&CConnman::ThreadMnbRequestConnections, this))); // Process messages threadMessageHandler = std::thread(&TraceThread >, "msghand", std::function(std::bind(&CConnman::ThreadMessageHandler, this))); // Dump network addresses scheduler.scheduleEvery(boost::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void CExplicitNetCleanup::callCleanup() { // Explicit call to destructor of CNetCleanup because it's not implicitly called // when the wallet is restarted from within the wallet itself. CNetCleanup *tmp = new CNetCleanup(); delete tmp; // Stroustrup's gonna kill me for that } void CConnman::Interrupt() { { std::lock_guard lock(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++) semOutbound->post(); } void CConnman::Stop() { if (threadMessageHandler.joinable()) threadMessageHandler.join(); if (threadMnbRequestConnections.joinable()) threadMnbRequestConnections.join(); if (threadOpenConnections.joinable()) threadOpenConnections.join(); if (threadOpenAddedConnections.joinable()) threadOpenAddedConnections.join(); if (threadDNSAddressSeed.joinable()) threadDNSAddressSeed.join(); if (threadSocketHandler.joinable()) threadSocketHandler.join(); if (semMasternodeOutbound) for (int i=0; ipost(); if (fAddressesInitialized) { DumpData(); fAddressesInitialized = false; } // Close sockets BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->hSocket != INVALID_SOCKET) CloseSocket(pnode->hSocket); BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) BOOST_FOREACH(CNode *pnode, vNodes) { DeleteNode(pnode); } BOOST_FOREACH(CNode *pnode, vNodesDisconnected) { DeleteNode(pnode); } vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); delete semOutbound; semOutbound = NULL; delete semMasternodeOutbound; semMasternodeOutbound = NULL; if(pnodeLocalHost) DeleteNode(pnodeLocalHost); pnodeLocalHost = NULL; } void CConnman::DeleteNode(CNode* pnode) { assert(pnode); bool fUpdateConnectionTime = false; GetNodeSignals().FinalizeNode(pnode->GetId(), fUpdateConnectionTime); if(fUpdateConnectionTime) addrman.Connected(pnode->addr); delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } size_t CConnman::GetAddressCount() const { return addrman.size(); } void CConnman::SetServices(const CService &addr, ServiceFlags nServices) { addrman.SetServices(addr, nServices); } void CConnman::MarkAddressGood(const CAddress& addr) { addrman.Good(addr); } void CConnman::AddNewAddress(const CAddress& addr, const CAddress& addrFrom, int64_t nTimePenalty) { addrman.Add(addr, addrFrom, nTimePenalty); } void CConnman::AddNewAddresses(const std::vector& vAddr, const CAddress& addrFrom, int64_t nTimePenalty) { addrman.Add(vAddr, addrFrom, nTimePenalty); } std::vector CConnman::GetAddresses() { return addrman.GetAddr(); } bool CConnman::AddNode(const std::string& strNode) { LOCK(cs_vAddedNodes); for(std::vector::const_iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) return false; } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string& strNode) { LOCK(cs_vAddedNodes); for(std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total return vNodes.size(); int nNum = 0; for(std::vector::const_iterator it = vNodes.begin(); it != vNodes.end(); ++it) if (flags & ((*it)->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) nNum++; return nNum; } void CConnman::GetNodeStats(std::vector& vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for(std::vector::iterator it = vNodes.begin(); it != vNodes.end(); ++it) { CNode* pnode = *it; CNodeStats stats; pnode->copyStats(stats); vstats.push_back(stats); } } bool CConnman::DisconnectNode(const std::string& strNode) { LOCK(cs_vNodes); if (CNode* pnode = FindNode(strNode)) { pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for(CNode* pnode : vNodes) { if (id == pnode->id) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::RelayTransaction(const CTransaction& tx, CFeeRate feerate) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(10000); uint256 hash = tx.GetHash(); CTxLockRequest txLockRequest; CDarksendBroadcastTx dstx = CPrivateSend::GetDSTX(hash); if(dstx) { // MSG_DSTX ss << dstx; } else if(instantsend.GetTxLockRequest(hash, txLockRequest)) { // MSG_TXLOCK_REQUEST ss << txLockRequest; } else { // MSG_TX ss << tx; } RelayTransaction(tx, feerate, ss); } void CConnman::RelayTransaction(const CTransaction& tx, CFeeRate feerate, const CDataStream& ss) { uint256 hash = tx.GetHash(); int nInv = static_cast(CPrivateSend::GetDSTX(hash)) ? MSG_DSTX : (instantsend.HasTxLockRequest(hash) ? MSG_TXLOCK_REQUEST : MSG_TX); CInv inv(nInv, hash); { LOCK(cs_mapRelay); // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime()) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } // Save original serialized message so newer versions are preserved mapRelay.insert(std::make_pair(inv, ss)); vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv)); } LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { pnode->PushInventory(inv); } } void CConnman::RelayInv(CInv &inv, const int minProtoVersion) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if(pnode->nVersion >= minProtoVersion) pnode->PushInventory(inv); } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CConnman::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); uint64_t recommendedMinimum = (nMaxOutboundTimeframe / 600) * MaxBlockSize(true); nMaxOutboundLimit = limit; if (limit > 0 && limit < recommendedMinimum) LogPrintf("Max outbound target is very small (%s bytes) and will be overshot. Recommended minimum is %s bytes.\n", nMaxOutboundLimit, recommendedMinimum); } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CConnman::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; if (nMaxOutboundCycleStartTime == 0) return nMaxOutboundTimeframe; uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing // the timeframe nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return false; if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * MaxBlockSize(fDIP0001ActiveAtTip); if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) return true; } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) return true; return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } void CConnman::SetBestHeight(int height) { nBestHeight.store(height, std::memory_order_release); } int CConnman::GetBestHeight() const { return nBestHeight.load(std::memory_order_acquire); } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } unsigned int CConnman::GetSendBufferSize() const{ return nSendBufferMaxSize; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn, bool fNetworkNodeIn) : addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001), nSendVersion(0) { nServices = NODE_NONE; nServicesExpected = NODE_NONE; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeConnected = GetSystemTimeInSeconds(); nTimeOffset = 0; addr = addrIn; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; nNumWarningsSkipped = 0; nLastWarningTime = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; fClient = false; // set by version message fFeeler = false; fInbound = fInboundIn; fNetworkNode = fNetworkNodeIn; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; filterInventoryKnown.reset(); fSendMempool = false; fGetAddr = false; nNextLocalAddrSend = 0; nNextAddrSend = 0; nNextInvSend = 0; fRelayTxes = false; fSentAddr = false; pfilter = new CBloomFilter(); nLastBlockTime = 0; nLastTXTime = 0; nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; fMasternode = false; nMinPingUsecTime = std::numeric_limits::max(); minFeeFilter = 0; lastSentFeeFilter = 0; nextSendTimeFeeFilter = 0; vchKeyedNetGroup = CalculateKeyedNetGroup(addr); id = idIn; nLocalServices = nLocalServicesIn; fPauseRecv = false; fPauseSend = false; nProcessQueueSize = 0; GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce)); nMyStartingHeight = nMyStartingHeightIn; BOOST_FOREACH(const std::string &msg, getAllNetMessageTypes()) mapRecvBytesPerMsgCmd[msg] = 0; mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if(fNetworkNode || fInbound) AddRef(); if (fLogIPs) LogPrint("net", "Added connection to %s peer=%d\n", addrName, id); else LogPrint("net", "Added connection peer=%d\n", id); } CNode::~CNode() { CloseSocket(hSocket); if (pfilter) delete pfilter; } void CNode::AskFor(const CInv& inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) { int64_t nNow = GetTime(); if(nNow - nLastWarningTime > WARNING_INTERVAL) { LogPrintf("CNode::AskFor -- WARNING: inventory message dropped: mapAskFor.size = %d, setAskFor.size = %d, MAPASKFOR_MAX_SZ = %d, SETASKFOR_MAX_SZ = %d, nSkipped = %d, peer=%d\n", mapAskFor.size(), setAskFor.size(), MAPASKFOR_MAX_SZ, SETASKFOR_MAX_SZ, nNumWarningsSkipped, id); nLastWarningTime = nNow; nNumWarningsSkipped = 0; } else { ++nNumWarningsSkipped; } return; } // a peer may not have multiple non-responded queue positions for a single inv item if (!setAskFor.insert(inv.hash).second) return; // We're using mapAskFor as a priority queue, // the key is the earliest time the request can be sent int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv.hash); if (it != mapAlreadyAskedFor.end()) nRequestTime = it->second; else nRequestTime = 0; LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) mapAlreadyAskedFor.update(it, nRequestTime); else mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime)); mapAskFor.insert(std::make_pair(nRequestTime, inv)); } bool CConnman::NodeFullyConnected(const CNode* pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } std::vector CNode::CalculateKeyedNetGroup(CAddress& address) { if(vchSecretKey.size() == 0) { vchSecretKey.resize(32, 0); GetRandBytes(vchSecretKey.data(), vchSecretKey.size()); } std::vector vchGroup; CSHA256 hash; std::vector vch(32); vchGroup = address.GetGroup(); hash.Write(begin_ptr(vchGroup), vchGroup.size()); hash.Write(begin_ptr(vchSecretKey), vchSecretKey.size()); hash.Finalize(begin_ptr(vch)); return vch; } CDataStream CConnman::BeginMessage(CNode* pnode, int nVersion, int flags, const std::string& sCommand) { return {SER_NETWORK, (nVersion ? nVersion : pnode->GetSendVersion()) | flags, CMessageHeader(Params().MessageStart(), sCommand.c_str(), 0) }; } void CConnman::EndMessage(CDataStream& strm) { // Set the size assert(strm.size () >= CMessageHeader::HEADER_SIZE); unsigned int nSize = strm.size() - CMessageHeader::HEADER_SIZE; WriteLE32((uint8_t*)&strm[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize); // Set the checksum uint256 hash = Hash(strm.begin() + CMessageHeader::HEADER_SIZE, strm.end()); memcpy((char*)&strm[CMessageHeader::CHECKSUM_OFFSET], hash.begin(), CMessageHeader::CHECKSUM_SIZE); } void CConnman::PushMessage(CNode* pnode, CDataStream& strm, const std::string& sCommand) { if(strm.empty()) return; unsigned int nSize = strm.size() - CMessageHeader::HEADER_SIZE; LogPrint("net", "sending %s (%d bytes) peer=%d\n", SanitizeString(sCommand.c_str()), nSize, pnode->id); size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); if(pnode->hSocket == INVALID_SOCKET) { return; } bool optimisticSend(pnode->vSendMsg.empty()); pnode->vSendMsg.emplace_back(strm.begin(), strm.end()); //log total amount of bytes per command pnode->mapSendBytesPerMsgCmd[sCommand] += strm.size(); pnode->nSendSize += strm.size(); if (pnode->nSendSize > nSendBufferMaxSize) pnode->fPauseSend = true; // If write queue empty, attempt "optimistic write" if (optimisticSend == true) nBytesSent = SocketSendData(pnode); } if (nBytesSent) RecordBytesSent(nBytesSent); } bool CConnman::ForNode(const CService& addr, std::function cond, std::function func) { CNode* found = nullptr; LOCK(cs_vNodes); for (auto&& pnode : vNodes) { if((CService)pnode->addr == addr) { found = pnode; break; } } return found != nullptr && cond(found) && func(found); } bool CConnman::ForNode(NodeId id, std::function cond, std::function func) { CNode* found = nullptr; LOCK(cs_vNodes); for (auto&& pnode : vNodes) { if(pnode->id == id) { found = pnode; break; } } return found != nullptr && cond(found) && func(found); } int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) { return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } std::vector CConnman::CopyNodeVector() { std::vector vecNodesCopy; LOCK(cs_vNodes); for(size_t i = 0; i < vNodes.size(); ++i) { CNode* pnode = vNodes[i]; pnode->AddRef(); vecNodesCopy.push_back(pnode); } return vecNodesCopy; } void CConnman::ReleaseNodeVector(const std::vector& vecNodes) { LOCK(cs_vNodes); for(size_t i = 0; i < vecNodes.size(); ++i) { CNode* pnode = vecNodes[i]; pnode->Release(); } }