// Copyright (c) 2014-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "base58.h" #include "hash.h" #include "uint256.h" #include #include #include #include #include #include #include /** All alphanumeric characters except for "0", "I", "O", and "l" */ static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; bool DecodeBase58(const char* psz, std::vector& vch) { // Skip leading spaces. while (*psz && isspace(*psz)) psz++; // Skip and count leading '1's. int zeroes = 0; while (*psz == '1') { zeroes++; psz++; } // Allocate enough space in big-endian base256 representation. std::vector b256(strlen(psz) * 733 / 1000 + 1); // log(58) / log(256), rounded up. // Process the characters. while (*psz && !isspace(*psz)) { // Decode base58 character const char* ch = strchr(pszBase58, *psz); if (ch == NULL) return false; // Apply "b256 = b256 * 58 + ch". int carry = ch - pszBase58; for (std::vector::reverse_iterator it = b256.rbegin(); it != b256.rend(); it++) { carry += 58 * (*it); *it = carry % 256; carry /= 256; } assert(carry == 0); psz++; } // Skip trailing spaces. while (isspace(*psz)) psz++; if (*psz != 0) return false; // Skip leading zeroes in b256. std::vector::iterator it = b256.begin(); while (it != b256.end() && *it == 0) it++; // Copy result into output vector. vch.reserve(zeroes + (b256.end() - it)); vch.assign(zeroes, 0x00); while (it != b256.end()) vch.push_back(*(it++)); return true; } std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend) { // Skip & count leading zeroes. int zeroes = 0; while (pbegin != pend && *pbegin == 0) { pbegin++; zeroes++; } // Allocate enough space in big-endian base58 representation. std::vector b58((pend - pbegin) * 138 / 100 + 1); // log(256) / log(58), rounded up. // Process the bytes. while (pbegin != pend) { int carry = *pbegin; // Apply "b58 = b58 * 256 + ch". for (std::vector::reverse_iterator it = b58.rbegin(); it != b58.rend(); it++) { carry += 256 * (*it); *it = carry % 58; carry /= 58; } assert(carry == 0); pbegin++; } // Skip leading zeroes in base58 result. std::vector::iterator it = b58.begin(); while (it != b58.end() && *it == 0) it++; // Translate the result into a string. std::string str; str.reserve(zeroes + (b58.end() - it)); str.assign(zeroes, '1'); while (it != b58.end()) str += pszBase58[*(it++)]; return str; } std::string EncodeBase58(const std::vector& vch) { return EncodeBase58(&vch[0], &vch[0] + vch.size()); } bool DecodeBase58(const std::string& str, std::vector& vchRet) { return DecodeBase58(str.c_str(), vchRet); } std::string EncodeBase58Check(const std::vector& vchIn) { // add 4-byte hash check to the end std::vector vch(vchIn); uint256 hash = Hash(vch.begin(), vch.end()); vch.insert(vch.end(), (unsigned char*)&hash, (unsigned char*)&hash + 4); return EncodeBase58(vch); } bool DecodeBase58Check(const char* psz, std::vector& vchRet) { if (!DecodeBase58(psz, vchRet) || (vchRet.size() < 4)) { vchRet.clear(); return false; } // re-calculate the checksum, insure it matches the included 4-byte checksum uint256 hash = Hash(vchRet.begin(), vchRet.end() - 4); if (memcmp(&hash, &vchRet.end()[-4], 4) != 0) { vchRet.clear(); return false; } vchRet.resize(vchRet.size() - 4); return true; } bool DecodeBase58Check(const std::string& str, std::vector& vchRet) { return DecodeBase58Check(str.c_str(), vchRet); } CBase58Data::CBase58Data() { vchVersion.clear(); vchData.clear(); } void CBase58Data::SetData(const std::vector& vchVersionIn, const void* pdata, size_t nSize) { vchVersion = vchVersionIn; vchData.resize(nSize); if (!vchData.empty()) memcpy(&vchData[0], pdata, nSize); } void CBase58Data::SetData(const std::vector& vchVersionIn, const unsigned char* pbegin, const unsigned char* pend) { SetData(vchVersionIn, (void*)pbegin, pend - pbegin); } bool CBase58Data::SetString(const char* psz, unsigned int nVersionBytes) { std::vector vchTemp; bool rc58 = DecodeBase58Check(psz, vchTemp); if ((!rc58) || (vchTemp.size() < nVersionBytes)) { vchData.clear(); vchVersion.clear(); return false; } vchVersion.assign(vchTemp.begin(), vchTemp.begin() + nVersionBytes); vchData.resize(vchTemp.size() - nVersionBytes); if (!vchData.empty()) memcpy(&vchData[0], &vchTemp[nVersionBytes], vchData.size()); memory_cleanse(&vchTemp[0], vchTemp.size()); return true; } bool CBase58Data::SetString(const std::string& str) { return SetString(str.c_str()); } std::string CBase58Data::ToString() const { std::vector vch = vchVersion; vch.insert(vch.end(), vchData.begin(), vchData.end()); return EncodeBase58Check(vch); } int CBase58Data::CompareTo(const CBase58Data& b58) const { if (vchVersion < b58.vchVersion) return -1; if (vchVersion > b58.vchVersion) return 1; if (vchData < b58.vchData) return -1; if (vchData > b58.vchData) return 1; return 0; } namespace { class CBitcoinAddressVisitor : public boost::static_visitor { private: CBitcoinAddress* addr; public: CBitcoinAddressVisitor(CBitcoinAddress* addrIn) : addr(addrIn) {} bool operator()(const CKeyID& id) const { return addr->Set(id); } bool operator()(const CScriptID& id) const { return addr->Set(id); } bool operator()(const CNoDestination& no) const { return false; } }; } // anon namespace bool CBitcoinAddress::Set(const CKeyID& id) { SetData(Params().Base58Prefix(CChainParams::PUBKEY_ADDRESS), &id, 20); return true; } bool CBitcoinAddress::Set(const CScriptID& id) { SetData(Params().Base58Prefix(CChainParams::SCRIPT_ADDRESS), &id, 20); return true; } bool CBitcoinAddress::Set(const CTxDestination& dest) { return boost::apply_visitor(CBitcoinAddressVisitor(this), dest); } bool CBitcoinAddress::IsValid() const { return IsValid(Params()); } bool CBitcoinAddress::IsValid(const CChainParams& params) const { bool fCorrectSize = vchData.size() == 20; bool fKnownVersion = vchVersion == params.Base58Prefix(CChainParams::PUBKEY_ADDRESS) || vchVersion == params.Base58Prefix(CChainParams::SCRIPT_ADDRESS); return fCorrectSize && fKnownVersion; } CTxDestination CBitcoinAddress::Get() const { if (!IsValid()) return CNoDestination(); uint160 id; memcpy(&id, &vchData[0], 20); if (vchVersion == Params().Base58Prefix(CChainParams::PUBKEY_ADDRESS)) return CKeyID(id); else if (vchVersion == Params().Base58Prefix(CChainParams::SCRIPT_ADDRESS)) return CScriptID(id); else return CNoDestination(); } bool CBitcoinAddress::GetIndexKey(uint160& hashBytes, int& type) const { if (!IsValid()) { return false; } else if (vchVersion == Params().Base58Prefix(CChainParams::PUBKEY_ADDRESS)) { memcpy(&hashBytes, &vchData[0], 20); type = 1; return true; } else if (vchVersion == Params().Base58Prefix(CChainParams::SCRIPT_ADDRESS)) { memcpy(&hashBytes, &vchData[0], 20); type = 2; return true; } return false; } bool CBitcoinAddress::GetKeyID(CKeyID& keyID) const { if (!IsValid() || vchVersion != Params().Base58Prefix(CChainParams::PUBKEY_ADDRESS)) return false; uint160 id; memcpy(&id, &vchData[0], 20); keyID = CKeyID(id); return true; } bool CBitcoinAddress::IsScript() const { return IsValid() && vchVersion == Params().Base58Prefix(CChainParams::SCRIPT_ADDRESS); } void CBitcoinSecret::SetKey(const CKey& vchSecret) { assert(vchSecret.IsValid()); SetData(Params().Base58Prefix(CChainParams::SECRET_KEY), vchSecret.begin(), vchSecret.size()); if (vchSecret.IsCompressed()) vchData.push_back(1); } CKey CBitcoinSecret::GetKey() { CKey ret; assert(vchData.size() >= 32); ret.Set(vchData.begin(), vchData.begin() + 32, vchData.size() > 32 && vchData[32] == 1); return ret; } bool CBitcoinSecret::IsValid() const { bool fExpectedFormat = vchData.size() == 32 || (vchData.size() == 33 && vchData[32] == 1); bool fCorrectVersion = vchVersion == Params().Base58Prefix(CChainParams::SECRET_KEY); return fExpectedFormat && fCorrectVersion; } bool CBitcoinSecret::SetString(const char* pszSecret) { return CBase58Data::SetString(pszSecret) && IsValid(); } bool CBitcoinSecret::SetString(const std::string& strSecret) { return SetString(strSecret.c_str()); }