// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "txmempool.h" #include "clientversion.h" #include "consensus/consensus.h" #include "consensus/validation.h" #include "instantx.h" #include "validation.h" #include "policy/policy.h" #include "policy/fees.h" #include "random.h" #include "streams.h" #include "timedata.h" #include "util.h" #include "utilmoneystr.h" #include "utiltime.h" #include "version.h" #include "hash.h" #include "evo/specialtx.h" #include "evo/providertx.h" CTxMemPoolEntry::CTxMemPoolEntry(const CTransactionRef& _tx, const CAmount& _nFee, int64_t _nTime, double _entryPriority, unsigned int _entryHeight, CAmount _inChainInputValue, bool _spendsCoinbase, unsigned int _sigOps, LockPoints lp): tx(_tx), nFee(_nFee), nTime(_nTime), entryPriority(_entryPriority), entryHeight(_entryHeight), inChainInputValue(_inChainInputValue), spendsCoinbase(_spendsCoinbase), sigOpCount(_sigOps), lockPoints(lp) { nTxSize = ::GetSerializeSize(*_tx, SER_NETWORK, PROTOCOL_VERSION); nModSize = _tx->CalculateModifiedSize(nTxSize); nUsageSize = RecursiveDynamicUsage(*tx) + memusage::DynamicUsage(tx); nCountWithDescendants = 1; nSizeWithDescendants = nTxSize; nModFeesWithDescendants = nFee; CAmount nValueIn = tx->GetValueOut()+nFee; assert(inChainInputValue <= nValueIn); feeDelta = 0; nCountWithAncestors = 1; nSizeWithAncestors = nTxSize; nModFeesWithAncestors = nFee; nSigOpCountWithAncestors = sigOpCount; } CTxMemPoolEntry::CTxMemPoolEntry(const CTxMemPoolEntry& other) { *this = other; } double CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const { double deltaPriority = ((double)(currentHeight-entryHeight)*inChainInputValue)/nModSize; double dResult = entryPriority + deltaPriority; if (dResult < 0) // This should only happen if it was called with a height below entry height dResult = 0; return dResult; } void CTxMemPoolEntry::UpdateFeeDelta(int64_t newFeeDelta) { nModFeesWithDescendants += newFeeDelta - feeDelta; nModFeesWithAncestors += newFeeDelta - feeDelta; feeDelta = newFeeDelta; } void CTxMemPoolEntry::UpdateLockPoints(const LockPoints& lp) { lockPoints = lp; } // Update the given tx for any in-mempool descendants. // Assumes that setMemPoolChildren is correct for the given tx and all // descendants. void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap &cachedDescendants, const std::set &setExclude) { setEntries stageEntries, setAllDescendants; stageEntries = GetMemPoolChildren(updateIt); while (!stageEntries.empty()) { const txiter cit = *stageEntries.begin(); setAllDescendants.insert(cit); stageEntries.erase(cit); const setEntries &setChildren = GetMemPoolChildren(cit); BOOST_FOREACH(const txiter childEntry, setChildren) { cacheMap::iterator cacheIt = cachedDescendants.find(childEntry); if (cacheIt != cachedDescendants.end()) { // We've already calculated this one, just add the entries for this set // but don't traverse again. BOOST_FOREACH(const txiter cacheEntry, cacheIt->second) { setAllDescendants.insert(cacheEntry); } } else if (!setAllDescendants.count(childEntry)) { // Schedule for later processing stageEntries.insert(childEntry); } } } // setAllDescendants now contains all in-mempool descendants of updateIt. // Update and add to cached descendant map int64_t modifySize = 0; CAmount modifyFee = 0; int64_t modifyCount = 0; BOOST_FOREACH(txiter cit, setAllDescendants) { if (!setExclude.count(cit->GetTx().GetHash())) { modifySize += cit->GetTxSize(); modifyFee += cit->GetModifiedFee(); modifyCount++; cachedDescendants[updateIt].insert(cit); // Update ancestor state for each descendant mapTx.modify(cit, update_ancestor_state(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCount())); } } mapTx.modify(updateIt, update_descendant_state(modifySize, modifyFee, modifyCount)); } // vHashesToUpdate is the set of transaction hashes from a disconnected block // which has been re-added to the mempool. // for each entry, look for descendants that are outside hashesToUpdate, and // add fee/size information for such descendants to the parent. // for each such descendant, also update the ancestor state to include the parent. void CTxMemPool::UpdateTransactionsFromBlock(const std::vector &vHashesToUpdate) { LOCK(cs); // For each entry in vHashesToUpdate, store the set of in-mempool, but not // in-vHashesToUpdate transactions, so that we don't have to recalculate // descendants when we come across a previously seen entry. cacheMap mapMemPoolDescendantsToUpdate; // Use a set for lookups into vHashesToUpdate (these entries are already // accounted for in the state of their ancestors) std::set setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end()); // Iterate in reverse, so that whenever we are looking at at a transaction // we are sure that all in-mempool descendants have already been processed. // This maximizes the benefit of the descendant cache and guarantees that // setMemPoolChildren will be updated, an assumption made in // UpdateForDescendants. BOOST_REVERSE_FOREACH(const uint256 &hash, vHashesToUpdate) { // we cache the in-mempool children to avoid duplicate updates setEntries setChildren; // calculate children from mapNextTx txiter it = mapTx.find(hash); if (it == mapTx.end()) { continue; } auto iter = mapNextTx.lower_bound(COutPoint(hash, 0)); // First calculate the children, and update setMemPoolChildren to // include them, and update their setMemPoolParents to include this tx. for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) { const uint256 &childHash = iter->second->GetHash(); txiter childIter = mapTx.find(childHash); assert(childIter != mapTx.end()); // We can skip updating entries we've encountered before or that // are in the block (which are already accounted for). if (setChildren.insert(childIter).second && !setAlreadyIncluded.count(childHash)) { UpdateChild(it, childIter, true); UpdateParent(childIter, it, true); } } UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded); } } bool CTxMemPool::CalculateMemPoolAncestors(const CTxMemPoolEntry &entry, setEntries &setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString, bool fSearchForParents /* = true */) const { LOCK(cs); setEntries parentHashes; const CTransaction &tx = entry.GetTx(); if (fSearchForParents) { // Get parents of this transaction that are in the mempool // GetMemPoolParents() is only valid for entries in the mempool, so we // iterate mapTx to find parents. for (unsigned int i = 0; i < tx.vin.size(); i++) { txiter piter = mapTx.find(tx.vin[i].prevout.hash); if (piter != mapTx.end()) { parentHashes.insert(piter); if (parentHashes.size() + 1 > limitAncestorCount) { errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount); return false; } } } } else { // If we're not searching for parents, we require this to be an // entry in the mempool already. txiter it = mapTx.iterator_to(entry); parentHashes = GetMemPoolParents(it); } size_t totalSizeWithAncestors = entry.GetTxSize(); while (!parentHashes.empty()) { txiter stageit = *parentHashes.begin(); setAncestors.insert(stageit); parentHashes.erase(stageit); totalSizeWithAncestors += stageit->GetTxSize(); if (stageit->GetSizeWithDescendants() + entry.GetTxSize() > limitDescendantSize) { errString = strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantSize); return false; } else if (stageit->GetCountWithDescendants() + 1 > limitDescendantCount) { errString = strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantCount); return false; } else if (totalSizeWithAncestors > limitAncestorSize) { errString = strprintf("exceeds ancestor size limit [limit: %u]", limitAncestorSize); return false; } const setEntries & setMemPoolParents = GetMemPoolParents(stageit); BOOST_FOREACH(const txiter &phash, setMemPoolParents) { // If this is a new ancestor, add it. if (setAncestors.count(phash) == 0) { parentHashes.insert(phash); } if (parentHashes.size() + setAncestors.size() + 1 > limitAncestorCount) { errString = strprintf("too many unconfirmed ancestors [limit: %u]", limitAncestorCount); return false; } } } return true; } void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors) { setEntries parentIters = GetMemPoolParents(it); // add or remove this tx as a child of each parent BOOST_FOREACH(txiter piter, parentIters) { UpdateChild(piter, it, add); } const int64_t updateCount = (add ? 1 : -1); const int64_t updateSize = updateCount * it->GetTxSize(); const CAmount updateFee = updateCount * it->GetModifiedFee(); BOOST_FOREACH(txiter ancestorIt, setAncestors) { mapTx.modify(ancestorIt, update_descendant_state(updateSize, updateFee, updateCount)); } } void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors) { int64_t updateCount = setAncestors.size(); int64_t updateSize = 0; CAmount updateFee = 0; int updateSigOps = 0; BOOST_FOREACH(txiter ancestorIt, setAncestors) { updateSize += ancestorIt->GetTxSize(); updateFee += ancestorIt->GetModifiedFee(); updateSigOps += ancestorIt->GetSigOpCount(); } mapTx.modify(it, update_ancestor_state(updateSize, updateFee, updateCount, updateSigOps)); } void CTxMemPool::UpdateChildrenForRemoval(txiter it) { const setEntries &setMemPoolChildren = GetMemPoolChildren(it); BOOST_FOREACH(txiter updateIt, setMemPoolChildren) { UpdateParent(updateIt, it, false); } } void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants) { // For each entry, walk back all ancestors and decrement size associated with this // transaction const uint64_t nNoLimit = std::numeric_limits::max(); if (updateDescendants) { // updateDescendants should be true whenever we're not recursively // removing a tx and all its descendants, eg when a transaction is // confirmed in a block. // Here we only update statistics and not data in mapLinks (which // we need to preserve until we're finished with all operations that // need to traverse the mempool). BOOST_FOREACH(txiter removeIt, entriesToRemove) { setEntries setDescendants; CalculateDescendants(removeIt, setDescendants); setDescendants.erase(removeIt); // don't update state for self int64_t modifySize = -((int64_t)removeIt->GetTxSize()); CAmount modifyFee = -removeIt->GetModifiedFee(); int modifySigOps = -removeIt->GetSigOpCount(); BOOST_FOREACH(txiter dit, setDescendants) { mapTx.modify(dit, update_ancestor_state(modifySize, modifyFee, -1, modifySigOps)); } } } BOOST_FOREACH(txiter removeIt, entriesToRemove) { setEntries setAncestors; const CTxMemPoolEntry &entry = *removeIt; std::string dummy; // Since this is a tx that is already in the mempool, we can call CMPA // with fSearchForParents = false. If the mempool is in a consistent // state, then using true or false should both be correct, though false // should be a bit faster. // However, if we happen to be in the middle of processing a reorg, then // the mempool can be in an inconsistent state. In this case, the set // of ancestors reachable via mapLinks will be the same as the set of // ancestors whose packages include this transaction, because when we // add a new transaction to the mempool in addUnchecked(), we assume it // has no children, and in the case of a reorg where that assumption is // false, the in-mempool children aren't linked to the in-block tx's // until UpdateTransactionsFromBlock() is called. // So if we're being called during a reorg, ie before // UpdateTransactionsFromBlock() has been called, then mapLinks[] will // differ from the set of mempool parents we'd calculate by searching, // and it's important that we use the mapLinks[] notion of ancestor // transactions as the set of things to update for removal. CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); // Note that UpdateAncestorsOf severs the child links that point to // removeIt in the entries for the parents of removeIt. UpdateAncestorsOf(false, removeIt, setAncestors); } // After updating all the ancestor sizes, we can now sever the link between each // transaction being removed and any mempool children (ie, update setMemPoolParents // for each direct child of a transaction being removed). BOOST_FOREACH(txiter removeIt, entriesToRemove) { UpdateChildrenForRemoval(removeIt); } } void CTxMemPoolEntry::UpdateDescendantState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount) { nSizeWithDescendants += modifySize; assert(int64_t(nSizeWithDescendants) > 0); nModFeesWithDescendants += modifyFee; nCountWithDescendants += modifyCount; assert(int64_t(nCountWithDescendants) > 0); } void CTxMemPoolEntry::UpdateAncestorState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount, int modifySigOps) { nSizeWithAncestors += modifySize; assert(int64_t(nSizeWithAncestors) > 0); nModFeesWithAncestors += modifyFee; nCountWithAncestors += modifyCount; assert(int64_t(nCountWithAncestors) > 0); nSigOpCountWithAncestors += modifySigOps; assert(int(nSigOpCountWithAncestors) >= 0); } CTxMemPool::CTxMemPool(const CFeeRate& _minReasonableRelayFee) : nTransactionsUpdated(0) { _clear(); //lock free clear // Sanity checks off by default for performance, because otherwise // accepting transactions becomes O(N^2) where N is the number // of transactions in the pool nCheckFrequency = 0; minerPolicyEstimator = new CBlockPolicyEstimator(_minReasonableRelayFee); } CTxMemPool::~CTxMemPool() { delete minerPolicyEstimator; } bool CTxMemPool::isSpent(const COutPoint& outpoint) { LOCK(cs); return mapNextTx.count(outpoint); } unsigned int CTxMemPool::GetTransactionsUpdated() const { LOCK(cs); return nTransactionsUpdated; } void CTxMemPool::AddTransactionsUpdated(unsigned int n) { LOCK(cs); nTransactionsUpdated += n; } bool CTxMemPool::addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry, setEntries &setAncestors, bool validFeeEstimate) { NotifyEntryAdded(entry.GetSharedTx()); // Add to memory pool without checking anything. // Used by AcceptToMemoryPool(), which DOES do // all the appropriate checks. LOCK(cs); indexed_transaction_set::iterator newit = mapTx.insert(entry).first; mapLinks.insert(make_pair(newit, TxLinks())); // Update transaction for any feeDelta created by PrioritiseTransaction // TODO: refactor so that the fee delta is calculated before inserting // into mapTx. std::map >::const_iterator pos = mapDeltas.find(hash); if (pos != mapDeltas.end()) { const std::pair &deltas = pos->second; if (deltas.second) { mapTx.modify(newit, update_fee_delta(deltas.second)); } } // Update cachedInnerUsage to include contained transaction's usage. // (When we update the entry for in-mempool parents, memory usage will be // further updated.) cachedInnerUsage += entry.DynamicMemoryUsage(); const CTransaction& tx = newit->GetTx(); std::set setParentTransactions; for (unsigned int i = 0; i < tx.vin.size(); i++) { mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx)); setParentTransactions.insert(tx.vin[i].prevout.hash); } // Don't bother worrying about child transactions of this one. // Normal case of a new transaction arriving is that there can't be any // children, because such children would be orphans. // An exception to that is if a transaction enters that used to be in a block. // In that case, our disconnect block logic will call UpdateTransactionsFromBlock // to clean up the mess we're leaving here. // Update ancestors with information about this tx BOOST_FOREACH (const uint256 &phash, setParentTransactions) { txiter pit = mapTx.find(phash); if (pit != mapTx.end()) { UpdateParent(newit, pit, true); } } UpdateAncestorsOf(true, newit, setAncestors); UpdateEntryForAncestors(newit, setAncestors); nTransactionsUpdated++; totalTxSize += entry.GetTxSize(); minerPolicyEstimator->processTransaction(entry, validFeeEstimate); vTxHashes.emplace_back(hash, newit); newit->vTxHashesIdx = vTxHashes.size() - 1; if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { CProRegTx proTx; if (!GetTxPayload(tx, proTx)) { assert(false); } mapProTxAddresses.emplace(proTx.addr, tx.GetHash()); mapProTxPubKeyIDs.emplace(proTx.keyIDOwner, tx.GetHash()); mapProTxBlsPubKeyHashes.emplace(proTx.pubKeyOperator.GetHash(), tx.GetHash()); if (!proTx.collateralOutpoint.hash.IsNull()) { mapProTxCollaterals.emplace(proTx.collateralOutpoint, tx.GetHash()); } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { CProUpServTx proTx; if (!GetTxPayload(tx, proTx)) { assert(false); } mapProTxAddresses.emplace(proTx.addr, tx.GetHash()); } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { CProUpRegTx proTx; if (!GetTxPayload(tx, proTx)) { assert(false); } mapProTxBlsPubKeyHashes.emplace(proTx.pubKeyOperator.GetHash(), tx.GetHash()); } return true; } void CTxMemPool::addAddressIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view) { LOCK(cs); const CTransaction& tx = entry.GetTx(); std::vector inserted; uint256 txhash = tx.GetHash(); for (unsigned int j = 0; j < tx.vin.size(); j++) { const CTxIn input = tx.vin[j]; const Coin& coin = view.AccessCoin(input.prevout); const CTxOut &prevout = coin.out; if (prevout.scriptPubKey.IsPayToScriptHash()) { std::vector hashBytes(prevout.scriptPubKey.begin()+2, prevout.scriptPubKey.begin()+22); CMempoolAddressDeltaKey key(2, uint160(hashBytes), txhash, j, 1); CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n); mapAddress.insert(std::make_pair(key, delta)); inserted.push_back(key); } else if (prevout.scriptPubKey.IsPayToPublicKeyHash()) { std::vector hashBytes(prevout.scriptPubKey.begin()+3, prevout.scriptPubKey.begin()+23); CMempoolAddressDeltaKey key(1, uint160(hashBytes), txhash, j, 1); CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n); mapAddress.insert(std::make_pair(key, delta)); inserted.push_back(key); } else if (prevout.scriptPubKey.IsPayToPublicKey()) { uint160 hashBytes(Hash160(prevout.scriptPubKey.begin()+1, prevout.scriptPubKey.end()-1)); CMempoolAddressDeltaKey key(1, hashBytes, txhash, j, 1); CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n); mapAddress.insert(std::make_pair(key, delta)); inserted.push_back(key); } } for (unsigned int k = 0; k < tx.vout.size(); k++) { const CTxOut &out = tx.vout[k]; if (out.scriptPubKey.IsPayToScriptHash()) { std::vector hashBytes(out.scriptPubKey.begin()+2, out.scriptPubKey.begin()+22); CMempoolAddressDeltaKey key(2, uint160(hashBytes), txhash, k, 0); mapAddress.insert(std::make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue))); inserted.push_back(key); } else if (out.scriptPubKey.IsPayToPublicKeyHash()) { std::vector hashBytes(out.scriptPubKey.begin()+3, out.scriptPubKey.begin()+23); std::pair ret; CMempoolAddressDeltaKey key(1, uint160(hashBytes), txhash, k, 0); mapAddress.insert(std::make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue))); inserted.push_back(key); } else if (out.scriptPubKey.IsPayToPublicKey()) { uint160 hashBytes(Hash160(out.scriptPubKey.begin()+1, out.scriptPubKey.end()-1)); std::pair ret; CMempoolAddressDeltaKey key(1, hashBytes, txhash, k, 0); mapAddress.insert(std::make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue))); inserted.push_back(key); } } mapAddressInserted.insert(std::make_pair(txhash, inserted)); } bool CTxMemPool::getAddressIndex(std::vector > &addresses, std::vector > &results) { LOCK(cs); for (std::vector >::iterator it = addresses.begin(); it != addresses.end(); it++) { addressDeltaMap::iterator ait = mapAddress.lower_bound(CMempoolAddressDeltaKey((*it).second, (*it).first)); while (ait != mapAddress.end() && (*ait).first.addressBytes == (*it).first && (*ait).first.type == (*it).second) { results.push_back(*ait); ait++; } } return true; } bool CTxMemPool::removeAddressIndex(const uint256 txhash) { LOCK(cs); addressDeltaMapInserted::iterator it = mapAddressInserted.find(txhash); if (it != mapAddressInserted.end()) { std::vector keys = (*it).second; for (std::vector::iterator mit = keys.begin(); mit != keys.end(); mit++) { mapAddress.erase(*mit); } mapAddressInserted.erase(it); } return true; } void CTxMemPool::addSpentIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view) { LOCK(cs); const CTransaction& tx = entry.GetTx(); std::vector inserted; uint256 txhash = tx.GetHash(); for (unsigned int j = 0; j < tx.vin.size(); j++) { const CTxIn input = tx.vin[j]; const Coin& coin = view.AccessCoin(input.prevout); const CTxOut &prevout = coin.out; uint160 addressHash; int addressType; if (prevout.scriptPubKey.IsPayToScriptHash()) { addressHash = uint160(std::vector (prevout.scriptPubKey.begin()+2, prevout.scriptPubKey.begin()+22)); addressType = 2; } else if (prevout.scriptPubKey.IsPayToPublicKeyHash()) { addressHash = uint160(std::vector (prevout.scriptPubKey.begin()+3, prevout.scriptPubKey.begin()+23)); addressType = 1; } else if (prevout.scriptPubKey.IsPayToPublicKey()) { addressHash = Hash160(prevout.scriptPubKey.begin()+1, prevout.scriptPubKey.end()-1); addressType = 1; } else { addressHash.SetNull(); addressType = 0; } CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n); CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, addressType, addressHash); mapSpent.insert(std::make_pair(key, value)); inserted.push_back(key); } mapSpentInserted.insert(make_pair(txhash, inserted)); } bool CTxMemPool::getSpentIndex(CSpentIndexKey &key, CSpentIndexValue &value) { LOCK(cs); mapSpentIndex::iterator it; it = mapSpent.find(key); if (it != mapSpent.end()) { value = it->second; return true; } return false; } bool CTxMemPool::removeSpentIndex(const uint256 txhash) { LOCK(cs); mapSpentIndexInserted::iterator it = mapSpentInserted.find(txhash); if (it != mapSpentInserted.end()) { std::vector keys = (*it).second; for (std::vector::iterator mit = keys.begin(); mit != keys.end(); mit++) { mapSpent.erase(*mit); } mapSpentInserted.erase(it); } return true; } void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason) { NotifyEntryRemoved(it->GetSharedTx(), reason); const uint256 hash = it->GetTx().GetHash(); BOOST_FOREACH(const CTxIn& txin, it->GetTx().vin) mapNextTx.erase(txin.prevout); if (vTxHashes.size() > 1) { vTxHashes[it->vTxHashesIdx] = std::move(vTxHashes.back()); vTxHashes[it->vTxHashesIdx].second->vTxHashesIdx = it->vTxHashesIdx; vTxHashes.pop_back(); if (vTxHashes.size() * 2 < vTxHashes.capacity()) vTxHashes.shrink_to_fit(); } else vTxHashes.clear(); if (it->GetTx().nType == TRANSACTION_PROVIDER_REGISTER) { CProRegTx proTx; if (!GetTxPayload(it->GetTx(), proTx)) { assert(false); } mapProTxAddresses.erase(proTx.addr); mapProTxPubKeyIDs.erase(proTx.keyIDOwner); mapProTxBlsPubKeyHashes.erase(proTx.pubKeyOperator.GetHash()); mapProTxCollaterals.erase(proTx.collateralOutpoint); } else if (it->GetTx().nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { CProUpServTx proTx; if (!GetTxPayload(it->GetTx(), proTx)) { assert(false); } mapProTxAddresses.erase(proTx.addr); } else if (it->GetTx().nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { CProUpRegTx proTx; if (!GetTxPayload(it->GetTx(), proTx)) { assert(false); } mapProTxBlsPubKeyHashes.erase(proTx.pubKeyOperator.GetHash()); } totalTxSize -= it->GetTxSize(); cachedInnerUsage -= it->DynamicMemoryUsage(); cachedInnerUsage -= memusage::DynamicUsage(mapLinks[it].parents) + memusage::DynamicUsage(mapLinks[it].children); mapLinks.erase(it); mapTx.erase(it); nTransactionsUpdated++; minerPolicyEstimator->removeTx(hash); removeAddressIndex(hash); removeSpentIndex(hash); } // Calculates descendants of entry that are not already in setDescendants, and adds to // setDescendants. Assumes entryit is already a tx in the mempool and setMemPoolChildren // is correct for tx and all descendants. // Also assumes that if an entry is in setDescendants already, then all // in-mempool descendants of it are already in setDescendants as well, so that we // can save time by not iterating over those entries. void CTxMemPool::CalculateDescendants(txiter entryit, setEntries &setDescendants) { setEntries stage; if (setDescendants.count(entryit) == 0) { stage.insert(entryit); } // Traverse down the children of entry, only adding children that are not // accounted for in setDescendants already (because those children have either // already been walked, or will be walked in this iteration). while (!stage.empty()) { txiter it = *stage.begin(); setDescendants.insert(it); stage.erase(it); const setEntries &setChildren = GetMemPoolChildren(it); BOOST_FOREACH(const txiter &childiter, setChildren) { if (!setDescendants.count(childiter)) { stage.insert(childiter); } } } } void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason) { // Remove transaction from memory pool { LOCK(cs); setEntries txToRemove; txiter origit = mapTx.find(origTx.GetHash()); if (origit != mapTx.end()) { txToRemove.insert(origit); } else { // When recursively removing but origTx isn't in the mempool // be sure to remove any children that are in the pool. This can // happen during chain re-orgs if origTx isn't re-accepted into // the mempool for any reason. for (unsigned int i = 0; i < origTx.vout.size(); i++) { auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i)); if (it == mapNextTx.end()) continue; txiter nextit = mapTx.find(it->second->GetHash()); assert(nextit != mapTx.end()); txToRemove.insert(nextit); } } setEntries setAllRemoves; BOOST_FOREACH(txiter it, txToRemove) { CalculateDescendants(it, setAllRemoves); } RemoveStaged(setAllRemoves, false, reason); } } void CTxMemPool::removeForReorg(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight, int flags) { // Remove transactions spending a coinbase which are now immature and no-longer-final transactions LOCK(cs); setEntries txToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { const CTransaction& tx = it->GetTx(); LockPoints lp = it->GetLockPoints(); bool validLP = TestLockPointValidity(&lp); if (!CheckFinalTx(tx, flags) || !CheckSequenceLocks(tx, flags, &lp, validLP)) { // Note if CheckSequenceLocks fails the LockPoints may still be invalid // So it's critical that we remove the tx and not depend on the LockPoints. txToRemove.insert(it); } else if (it->GetSpendsCoinbase()) { BOOST_FOREACH(const CTxIn& txin, tx.vin) { indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) continue; const Coin &coin = pcoins->AccessCoin(txin.prevout); if (nCheckFrequency != 0) assert(!coin.IsSpent()); if (coin.IsSpent() || (coin.IsCoinBase() && ((signed long)nMemPoolHeight) - coin.nHeight < COINBASE_MATURITY)) { txToRemove.insert(it); break; } } } if (!validLP) { mapTx.modify(it, update_lock_points(lp)); } } setEntries setAllRemoves; for (txiter it : txToRemove) { CalculateDescendants(it, setAllRemoves); } RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG); } void CTxMemPool::removeConflicts(const CTransaction &tx) { // Remove transactions which depend on inputs of tx, recursively LOCK(cs); BOOST_FOREACH(const CTxIn &txin, tx.vin) { auto it = mapNextTx.find(txin.prevout); if (it != mapNextTx.end()) { const CTransaction &txConflict = *it->second; if (txConflict != tx) { ClearPrioritisation(txConflict.GetHash()); removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT); } } } } void CTxMemPool::removeProTxPubKeyConflicts(const CTransaction &tx, const CKeyID &keyId) { if (mapProTxPubKeyIDs.count(keyId)) { uint256 conflictHash = mapProTxPubKeyIDs[keyId]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } void CTxMemPool::removeProTxPubKeyConflicts(const CTransaction &tx, const CBLSPublicKey &pubKey) { if (mapProTxBlsPubKeyHashes.count(pubKey.GetHash())) { uint256 conflictHash = mapProTxBlsPubKeyHashes[pubKey.GetHash()]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } void CTxMemPool::removeProTxCollateralConflicts(const CTransaction &tx, const COutPoint &collateralOutpoint) { if (mapProTxCollaterals.count(collateralOutpoint)) { uint256 conflictHash = mapProTxCollaterals[collateralOutpoint]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } void CTxMemPool::removeProTxConflicts(const CTransaction &tx) { if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { CProRegTx proTx; if (!GetTxPayload(tx, proTx)) { assert(false); } if (mapProTxAddresses.count(proTx.addr)) { uint256 conflictHash = mapProTxAddresses[proTx.addr]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } removeProTxPubKeyConflicts(tx, proTx.keyIDOwner); removeProTxPubKeyConflicts(tx, proTx.pubKeyOperator); if (!proTx.collateralOutpoint.hash.IsNull()) { removeProTxCollateralConflicts(tx, proTx.collateralOutpoint); } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { CProUpServTx proTx; if (!GetTxPayload(tx, proTx)) { assert(false); } if (mapProTxAddresses.count(proTx.addr)) { uint256 conflictHash = mapProTxAddresses[proTx.addr]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { CProUpRegTx proTx; if (!GetTxPayload(tx, proTx)) { assert(false); } removeProTxPubKeyConflicts(tx, proTx.pubKeyOperator); } } /** * Called when a block is connected. Removes from mempool and updates the miner fee estimator. */ void CTxMemPool::removeForBlock(const std::vector& vtx, unsigned int nBlockHeight) { LOCK(cs); std::vector entries; for (const auto& tx : vtx) { uint256 hash = tx->GetHash(); indexed_transaction_set::iterator i = mapTx.find(hash); if (i != mapTx.end()) entries.push_back(&*i); } // Before the txs in the new block have been removed from the mempool, update policy estimates minerPolicyEstimator->processBlock(nBlockHeight, entries); for (const auto& tx : vtx) { txiter it = mapTx.find(tx->GetHash()); if (it != mapTx.end()) { setEntries stage; stage.insert(it); RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK); } removeConflicts(*tx); removeProTxConflicts(*tx); ClearPrioritisation(tx->GetHash()); } lastRollingFeeUpdate = GetTime(); blockSinceLastRollingFeeBump = true; } void CTxMemPool::_clear() { mapLinks.clear(); mapTx.clear(); mapNextTx.clear(); mapProTxAddresses.clear(); mapProTxPubKeyIDs.clear(); totalTxSize = 0; cachedInnerUsage = 0; lastRollingFeeUpdate = GetTime(); blockSinceLastRollingFeeBump = false; rollingMinimumFeeRate = 0; ++nTransactionsUpdated; } void CTxMemPool::clear() { LOCK(cs); _clear(); } void CTxMemPool::check(const CCoinsViewCache *pcoins) const { if (nCheckFrequency == 0) return; if (GetRand(std::numeric_limits::max()) >= nCheckFrequency) return; LogPrint("mempool", "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size()); uint64_t checkTotal = 0; uint64_t innerUsage = 0; CCoinsViewCache mempoolDuplicate(const_cast(pcoins)); const int64_t nSpendHeight = GetSpendHeight(mempoolDuplicate); LOCK(cs); std::list waitingOnDependants; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { unsigned int i = 0; checkTotal += it->GetTxSize(); innerUsage += it->DynamicMemoryUsage(); const CTransaction& tx = it->GetTx(); txlinksMap::const_iterator linksiter = mapLinks.find(it); assert(linksiter != mapLinks.end()); const TxLinks &links = linksiter->second; innerUsage += memusage::DynamicUsage(links.parents) + memusage::DynamicUsage(links.children); bool fDependsWait = false; setEntries setParentCheck; int64_t parentSizes = 0; unsigned int parentSigOpCount = 0; BOOST_FOREACH(const CTxIn &txin, tx.vin) { // Check that every mempool transaction's inputs refer to available coins, or other mempool tx's. indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) { const CTransaction& tx2 = it2->GetTx(); assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull()); fDependsWait = true; if (setParentCheck.insert(it2).second) { parentSizes += it2->GetTxSize(); parentSigOpCount += it2->GetSigOpCount(); } } else { assert(pcoins->HaveCoin(txin.prevout)); } // Check whether its inputs are marked in mapNextTx. auto it3 = mapNextTx.find(txin.prevout); assert(it3 != mapNextTx.end()); assert(it3->first == &txin.prevout); assert(it3->second == &tx); i++; } assert(setParentCheck == GetMemPoolParents(it)); // Verify ancestor state is correct. setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy); uint64_t nCountCheck = setAncestors.size() + 1; uint64_t nSizeCheck = it->GetTxSize(); CAmount nFeesCheck = it->GetModifiedFee(); unsigned int nSigOpCheck = it->GetSigOpCount(); BOOST_FOREACH(txiter ancestorIt, setAncestors) { nSizeCheck += ancestorIt->GetTxSize(); nFeesCheck += ancestorIt->GetModifiedFee(); nSigOpCheck += ancestorIt->GetSigOpCount(); } assert(it->GetCountWithAncestors() == nCountCheck); assert(it->GetSizeWithAncestors() == nSizeCheck); assert(it->GetSigOpCountWithAncestors() == nSigOpCheck); assert(it->GetModFeesWithAncestors() == nFeesCheck); // Check children against mapNextTx CTxMemPool::setEntries setChildrenCheck; auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0)); int64_t childSizes = 0; for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) { txiter childit = mapTx.find(iter->second->GetHash()); assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions if (setChildrenCheck.insert(childit).second) { childSizes += childit->GetTxSize(); } } assert(setChildrenCheck == GetMemPoolChildren(it)); // Also check to make sure size is greater than sum with immediate children. // just a sanity check, not definitive that this calc is correct... assert(it->GetSizeWithDescendants() >= childSizes + it->GetTxSize()); if (fDependsWait) waitingOnDependants.push_back(&(*it)); else { CValidationState state; bool fCheckResult = tx.IsCoinBase() || Consensus::CheckTxInputs(tx, state, mempoolDuplicate, nSpendHeight); assert(fCheckResult); UpdateCoins(tx, mempoolDuplicate, 1000000); } } unsigned int stepsSinceLastRemove = 0; while (!waitingOnDependants.empty()) { const CTxMemPoolEntry* entry = waitingOnDependants.front(); waitingOnDependants.pop_front(); CValidationState state; if (!mempoolDuplicate.HaveInputs(entry->GetTx())) { waitingOnDependants.push_back(entry); stepsSinceLastRemove++; assert(stepsSinceLastRemove < waitingOnDependants.size()); } else { bool fCheckResult = entry->GetTx().IsCoinBase() || Consensus::CheckTxInputs(entry->GetTx(), state, mempoolDuplicate, nSpendHeight); assert(fCheckResult); UpdateCoins(entry->GetTx(), mempoolDuplicate, 1000000); stepsSinceLastRemove = 0; } } for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) { uint256 hash = it->second->GetHash(); indexed_transaction_set::const_iterator it2 = mapTx.find(hash); const CTransaction& tx = it2->GetTx(); assert(it2 != mapTx.end()); assert(&tx == it->second); } assert(totalTxSize == checkTotal); assert(innerUsage == cachedInnerUsage); } bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb) { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hasha); if (i == mapTx.end()) return false; indexed_transaction_set::const_iterator j = mapTx.find(hashb); if (j == mapTx.end()) return true; uint64_t counta = i->GetCountWithAncestors(); uint64_t countb = j->GetCountWithAncestors(); if (counta == countb) { return CompareTxMemPoolEntryByScore()(*i, *j); } return counta < countb; } namespace { class DepthAndScoreComparator { public: bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b) { uint64_t counta = a->GetCountWithAncestors(); uint64_t countb = b->GetCountWithAncestors(); if (counta == countb) { return CompareTxMemPoolEntryByScore()(*a, *b); } return counta < countb; } }; } std::vector CTxMemPool::GetSortedDepthAndScore() const { std::vector iters; AssertLockHeld(cs); iters.reserve(mapTx.size()); for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) { iters.push_back(mi); } std::sort(iters.begin(), iters.end(), DepthAndScoreComparator()); return iters; } void CTxMemPool::queryHashes(std::vector& vtxid) { LOCK(cs); auto iters = GetSortedDepthAndScore(); vtxid.clear(); vtxid.reserve(mapTx.size()); for (auto it : iters) { vtxid.push_back(it->GetTx().GetHash()); } } static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) { return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), CFeeRate(it->GetFee(), it->GetTxSize()), it->GetModifiedFee() - it->GetFee()}; } std::vector CTxMemPool::infoAll() const { LOCK(cs); auto iters = GetSortedDepthAndScore(); std::vector ret; ret.reserve(mapTx.size()); for (auto it : iters) { ret.push_back(GetInfo(it)); } return ret; } CTransactionRef CTxMemPool::get(const uint256& hash) const { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hash); if (i == mapTx.end()) return nullptr; return i->GetSharedTx(); } TxMempoolInfo CTxMemPool::info(const uint256& hash) const { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hash); if (i == mapTx.end()) return TxMempoolInfo(); return GetInfo(i); } bool CTxMemPool::existsProviderTxConflict(const CTransaction &tx) const { LOCK(cs); if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { CProRegTx proTx; if (!GetTxPayload(tx, proTx)) assert(false); if (mapProTxAddresses.count(proTx.addr) || mapProTxPubKeyIDs.count(proTx.keyIDOwner) || mapProTxBlsPubKeyHashes.count(proTx.pubKeyOperator.GetHash())) return true; if (!proTx.collateralOutpoint.hash.IsNull() && mapProTxCollaterals.count(proTx.collateralOutpoint)) return true; return false; } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { CProUpServTx proTx; if (!GetTxPayload(tx, proTx)) assert(false); auto it = mapProTxAddresses.find(proTx.addr); return it != mapProTxAddresses.end() && it->second != proTx.proTxHash; } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { CProUpRegTx proTx; if (!GetTxPayload(tx, proTx)) assert(false); auto it = mapProTxBlsPubKeyHashes.find(proTx.pubKeyOperator.GetHash()); return it != mapProTxBlsPubKeyHashes.end() && it->second != proTx.proTxHash; } return false; } CFeeRate CTxMemPool::estimateFee(int nBlocks) const { LOCK(cs); return minerPolicyEstimator->estimateFee(nBlocks); } CFeeRate CTxMemPool::estimateSmartFee(int nBlocks, int *answerFoundAtBlocks) const { LOCK(cs); return minerPolicyEstimator->estimateSmartFee(nBlocks, answerFoundAtBlocks, *this); } double CTxMemPool::estimatePriority(int nBlocks) const { LOCK(cs); return minerPolicyEstimator->estimatePriority(nBlocks); } double CTxMemPool::estimateSmartPriority(int nBlocks, int *answerFoundAtBlocks) const { LOCK(cs); return minerPolicyEstimator->estimateSmartPriority(nBlocks, answerFoundAtBlocks, *this); } bool CTxMemPool::WriteFeeEstimates(CAutoFile& fileout) const { try { LOCK(cs); fileout << 120300; // version required to read: 0.12.00 or later fileout << CLIENT_VERSION; // version that wrote the file minerPolicyEstimator->Write(fileout); } catch (const std::exception&) { LogPrintf("CTxMemPool::WriteFeeEstimates(): unable to write policy estimator data (non-fatal)\n"); return false; } return true; } bool CTxMemPool::ReadFeeEstimates(CAutoFile& filein) { try { int nVersionRequired, nVersionThatWrote; filein >> nVersionRequired >> nVersionThatWrote; if (nVersionRequired > CLIENT_VERSION) return error("CTxMemPool::ReadFeeEstimates(): up-version (%d) fee estimate file", nVersionRequired); LOCK(cs); minerPolicyEstimator->Read(filein, nVersionThatWrote); } catch (const std::exception&) { LogPrintf("CTxMemPool::ReadFeeEstimates(): unable to read policy estimator data (non-fatal)\n"); return false; } return true; } void CTxMemPool::PrioritiseTransaction(const uint256 hash, const std::string strHash, double dPriorityDelta, const CAmount& nFeeDelta) { { LOCK(cs); std::pair &deltas = mapDeltas[hash]; deltas.first += dPriorityDelta; deltas.second += nFeeDelta; txiter it = mapTx.find(hash); if (it != mapTx.end()) { mapTx.modify(it, update_fee_delta(deltas.second)); // Now update all ancestors' modified fees with descendants setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); BOOST_FOREACH(txiter ancestorIt, setAncestors) { mapTx.modify(ancestorIt, update_descendant_state(0, nFeeDelta, 0)); } // Now update all descendants' modified fees with ancestors setEntries setDescendants; CalculateDescendants(it, setDescendants); setDescendants.erase(it); BOOST_FOREACH(txiter descendantIt, setDescendants) { mapTx.modify(descendantIt, update_ancestor_state(0, nFeeDelta, 0, 0)); } ++nTransactionsUpdated; } } LogPrintf("PrioritiseTransaction: %s priority += %f, fee += %d\n", strHash, dPriorityDelta, FormatMoney(nFeeDelta)); } void CTxMemPool::ApplyDeltas(const uint256 hash, double &dPriorityDelta, CAmount &nFeeDelta) const { LOCK(cs); std::map >::const_iterator pos = mapDeltas.find(hash); if (pos == mapDeltas.end()) return; const std::pair &deltas = pos->second; dPriorityDelta += deltas.first; nFeeDelta += deltas.second; } void CTxMemPool::ClearPrioritisation(const uint256 hash) { LOCK(cs); mapDeltas.erase(hash); } bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const { for (unsigned int i = 0; i < tx.vin.size(); i++) if (exists(tx.vin[i].prevout.hash)) return false; return true; } CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { } bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const { // If an entry in the mempool exists, always return that one, as it's guaranteed to never // conflict with the underlying cache, and it cannot have pruned entries (as it contains full) // transactions. First checking the underlying cache risks returning a pruned entry instead. CTransactionRef ptx = mempool.get(outpoint.hash); if (ptx) { if (outpoint.n < ptx->vout.size()) { coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false); return true; } else { return false; } } return base->GetCoin(outpoint, coin); } size_t CTxMemPool::DynamicMemoryUsage() const { LOCK(cs); // Estimate the overhead of mapTx to be 15 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented. return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 15 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(mapLinks) + memusage::DynamicUsage(vTxHashes) + cachedInnerUsage; } double CTxMemPool::UsedMemoryShare() const { // use 1000000 instead of real bytes number in megabyte because of // this param is calculated in such way in other places (see AppInit // function in src/init.cpp or mempoolInfoToJSON function in // src/rpc/blockchain.cpp) size_t maxmempool = GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000; return double(DynamicMemoryUsage()) / maxmempool; } void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) { AssertLockHeld(cs); UpdateForRemoveFromMempool(stage, updateDescendants); BOOST_FOREACH(const txiter& it, stage) { removeUnchecked(it, reason); } } int CTxMemPool::Expire(int64_t time) { LOCK(cs); indexed_transaction_set::index::type::iterator it = mapTx.get().begin(); setEntries toremove; while (it != mapTx.get().end() && it->GetTime() < time) { // locked txes do not expire until mined and have sufficient confirmations if (instantsend.IsLockedInstantSendTransaction(it->GetTx().GetHash())) { it++; continue; } toremove.insert(mapTx.project<0>(it)); it++; } setEntries stage; BOOST_FOREACH(txiter removeit, toremove) { CalculateDescendants(removeit, stage); } RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY); return stage.size(); } bool CTxMemPool::addUnchecked(const uint256&hash, const CTxMemPoolEntry &entry, bool validFeeEstimate) { LOCK(cs); setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy); return addUnchecked(hash, entry, setAncestors, validFeeEstimate); } void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add) { setEntries s; if (add && mapLinks[entry].children.insert(child).second) { cachedInnerUsage += memusage::IncrementalDynamicUsage(s); } else if (!add && mapLinks[entry].children.erase(child)) { cachedInnerUsage -= memusage::IncrementalDynamicUsage(s); } } void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add) { setEntries s; if (add && mapLinks[entry].parents.insert(parent).second) { cachedInnerUsage += memusage::IncrementalDynamicUsage(s); } else if (!add && mapLinks[entry].parents.erase(parent)) { cachedInnerUsage -= memusage::IncrementalDynamicUsage(s); } } const CTxMemPool::setEntries & CTxMemPool::GetMemPoolParents(txiter entry) const { assert (entry != mapTx.end()); txlinksMap::const_iterator it = mapLinks.find(entry); assert(it != mapLinks.end()); return it->second.parents; } const CTxMemPool::setEntries & CTxMemPool::GetMemPoolChildren(txiter entry) const { assert (entry != mapTx.end()); txlinksMap::const_iterator it = mapLinks.find(entry); assert(it != mapLinks.end()); return it->second.children; } CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const { LOCK(cs); if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0) return CFeeRate(rollingMinimumFeeRate); int64_t time = GetTime(); if (time > lastRollingFeeUpdate + 10) { double halflife = ROLLING_FEE_HALFLIFE; if (DynamicMemoryUsage() < sizelimit / 4) halflife /= 4; else if (DynamicMemoryUsage() < sizelimit / 2) halflife /= 2; rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife); lastRollingFeeUpdate = time; if (rollingMinimumFeeRate < (double)incrementalRelayFee.GetFeePerK() / 2) { rollingMinimumFeeRate = 0; return CFeeRate(0); } } return std::max(CFeeRate(rollingMinimumFeeRate), incrementalRelayFee); } void CTxMemPool::UpdateMinFee(const CFeeRate& _minReasonableRelayFee) { LOCK(cs); delete minerPolicyEstimator; minerPolicyEstimator = new CBlockPolicyEstimator(_minReasonableRelayFee); } void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) { AssertLockHeld(cs); if (rate.GetFeePerK() > rollingMinimumFeeRate) { rollingMinimumFeeRate = rate.GetFeePerK(); blockSinceLastRollingFeeBump = false; } } void CTxMemPool::TrimToSize(size_t sizelimit, std::vector* pvNoSpendsRemaining) { LOCK(cs); unsigned nTxnRemoved = 0; CFeeRate maxFeeRateRemoved(0); while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) { indexed_transaction_set::index::type::iterator it = mapTx.get().begin(); // We set the new mempool min fee to the feerate of the removed set, plus the // "minimum reasonable fee rate" (ie some value under which we consider txn // to have 0 fee). This way, we don't allow txn to enter mempool with feerate // equal to txn which were removed with no block in between. CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants()); removed += incrementalRelayFee; trackPackageRemoved(removed); maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed); setEntries stage; CalculateDescendants(mapTx.project<0>(it), stage); nTxnRemoved += stage.size(); std::vector txn; if (pvNoSpendsRemaining) { txn.reserve(stage.size()); BOOST_FOREACH(txiter iter, stage) txn.push_back(iter->GetTx()); } RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT); if (pvNoSpendsRemaining) { BOOST_FOREACH(const CTransaction& tx, txn) { BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (exists(txin.prevout.hash)) continue; pvNoSpendsRemaining->push_back(txin.prevout); } } } } if (maxFeeRateRemoved > CFeeRate(0)) LogPrint("mempool", "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString()); } bool CTxMemPool::TransactionWithinChainLimit(const uint256& txid, size_t chainLimit) const { LOCK(cs); auto it = mapTx.find(txid); return it == mapTx.end() || (it->GetCountWithAncestors() < chainLimit && it->GetCountWithDescendants() < chainLimit); } SaltedTxidHasher::SaltedTxidHasher() : k0(GetRand(std::numeric_limits::max())), k1(GetRand(std::numeric_limits::max())) {}