// Copyright (c) 2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "test/test_random.h" #include "utilstrencodings.h" #include "test/test_dash.h" #include "wallet/crypter.h" #include #include #include #include BOOST_FIXTURE_TEST_SUITE(wallet_crypto, BasicTestingSetup) bool OldSetKeyFromPassphrase(const SecureString& strKeyData, const std::vector& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod, unsigned char* chKey, unsigned char* chIV) { if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE) return false; int i = 0; if (nDerivationMethod == 0) i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0], (unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV); if (i != (int)WALLET_CRYPTO_KEY_SIZE) { memory_cleanse(chKey, sizeof(chKey)); memory_cleanse(chIV, sizeof(chIV)); return false; } return true; } bool OldEncrypt(const CKeyingMaterial& vchPlaintext, std::vector &vchCiphertext, const unsigned char chKey[32], const unsigned char chIV[16]) { // max ciphertext len for a n bytes of plaintext is // n + AES_BLOCK_SIZE - 1 bytes int nLen = vchPlaintext.size(); int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0; vchCiphertext = std::vector (nCLen); EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (!ctx) return false; bool fOk = true; EVP_CIPHER_CTX_init(ctx); if (fOk) fOk = EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; if (fOk) fOk = EVP_EncryptUpdate(ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen) != 0; if (fOk) fOk = EVP_EncryptFinal_ex(ctx, (&vchCiphertext[0]) + nCLen, &nFLen) != 0; EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx); if (!fOk) return false; vchCiphertext.resize(nCLen + nFLen); return true; } bool OldDecrypt(const std::vector& vchCiphertext, CKeyingMaterial& vchPlaintext, const unsigned char chKey[32], const unsigned char chIV[16]) { // plaintext will always be equal to or lesser than length of ciphertext int nLen = vchCiphertext.size(); int nPLen = nLen, nFLen = 0; vchPlaintext = CKeyingMaterial(nPLen); EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (!ctx) return false; bool fOk = true; EVP_CIPHER_CTX_init(ctx); if (fOk) fOk = EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; if (fOk) fOk = EVP_DecryptUpdate(ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen) != 0; if (fOk) fOk = EVP_DecryptFinal_ex(ctx, (&vchPlaintext[0]) + nPLen, &nFLen) != 0; EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx); if (!fOk) return false; vchPlaintext.resize(nPLen + nFLen); return true; } // General secure AES 256 CBC encryption routine bool OldEncryptAES256(const SecureString& sKey, const SecureString& sPlaintext, const std::string& sIV, std::string& sCiphertext) { // max ciphertext len for a n bytes of plaintext is // n + AES_BLOCK_SIZE - 1 bytes int nLen = sPlaintext.size(); int nCLen = nLen + AES_BLOCK_SIZE; int nFLen = 0; // Verify key sizes if(sKey.size() != 32 || sIV.size() != AES_BLOCK_SIZE) { LogPrintf("crypter EncryptAES256 - Invalid key or block size: Key: %d sIV:%d\n", sKey.size(), sIV.size()); return false; } // Prepare output buffer sCiphertext.resize(nCLen); // Perform the encryption EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (!ctx) return false; bool fOk = true; EVP_CIPHER_CTX_init(ctx); if (fOk) fOk = EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, (const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0]); if (fOk) fOk = EVP_EncryptUpdate(ctx, (unsigned char*) &sCiphertext[0], &nCLen, (const unsigned char*) &sPlaintext[0], nLen); if (fOk) fOk = EVP_EncryptFinal_ex(ctx, (unsigned char*) (&sCiphertext[0])+nCLen, &nFLen); EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx); if (!fOk) return false; sCiphertext.resize(nCLen + nFLen); return true; } bool OldDecryptAES256(const SecureString& sKey, const std::string& sCiphertext, const std::string& sIV, SecureString& sPlaintext) { // plaintext will always be equal to or lesser than length of ciphertext int nLen = sCiphertext.size(); int nPLen = nLen, nFLen = 0; // Verify key sizes if(sKey.size() != 32 || sIV.size() != AES_BLOCK_SIZE) { LogPrintf("crypter DecryptAES256 - Invalid key or block size\n"); return false; } sPlaintext.resize(nPLen); EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (!ctx) return false; bool fOk = true; EVP_CIPHER_CTX_init(ctx); if (fOk) fOk = EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, (const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0]); if (fOk) fOk = EVP_DecryptUpdate(ctx, (unsigned char *) &sPlaintext[0], &nPLen, (const unsigned char *) &sCiphertext[0], nLen); if (fOk) fOk = EVP_DecryptFinal_ex(ctx, (unsigned char *) (&sPlaintext[0])+nPLen, &nFLen); EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx); if (!fOk) return false; sPlaintext.resize(nPLen + nFLen); return true; } void TestAES256CBC(const std::string &hexkey, const std::string &hexiv, const std::string &hexin, const std::string &hexout) { std::vector key = ParseHex(hexkey); std::vector iv = ParseHex(hexiv); std::vector in = ParseHex(hexin); std::vector correctout = ParseHex(hexout); SecureString sKey(key.begin(), key.end()), sPlaintextIn(in.begin(), in.end()), sPlaintextOut, sPlaintextOutOld; std::string sIv(iv.begin(), iv.end()), sCiphertextIn(correctout.begin(), correctout.end()), sCiphertextOut, sCiphertextOutOld; BOOST_CHECK_MESSAGE(EncryptAES256(sKey, sPlaintextIn, sIv, sCiphertextOut), "EncryptAES256: " + HexStr(sCiphertextOut) + std::string(" != ") + hexout); BOOST_CHECK_MESSAGE(OldEncryptAES256(sKey, sPlaintextIn, sIv, sCiphertextOutOld), "OldEncryptAES256: " + HexStr(sCiphertextOutOld) + std::string(" != ") + hexout); BOOST_CHECK(sCiphertextOut == sCiphertextOutOld); BOOST_CHECK_MESSAGE(DecryptAES256(sKey, sCiphertextIn, sIv, sPlaintextOut), "DecryptAES256: " + HexStr(sPlaintextOut) + std::string(" != ") + hexin); BOOST_CHECK_MESSAGE(OldDecryptAES256(sKey, sCiphertextIn, sIv, sPlaintextOutOld), "OldDecryptAES256: " + HexStr(sPlaintextOutOld) + std::string(" != ") + hexin); BOOST_CHECK(sPlaintextOut == sPlaintextOutOld); } class TestCrypter { public: static void TestPassphraseSingle(const std::vector& vchSalt, const SecureString& passphrase, uint32_t rounds, const std::vector& correctKey = std::vector(), const std::vector& correctIV=std::vector()) { unsigned char chKey[WALLET_CRYPTO_KEY_SIZE]; unsigned char chIV[WALLET_CRYPTO_IV_SIZE]; CCrypter crypt; crypt.SetKeyFromPassphrase(passphrase, vchSalt, rounds, 0); OldSetKeyFromPassphrase(passphrase, vchSalt, rounds, 0, chKey, chIV); BOOST_CHECK_MESSAGE(memcmp(chKey, crypt.vchKey.data(), crypt.vchKey.size()) == 0, \ HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(crypt.vchKey)); BOOST_CHECK_MESSAGE(memcmp(chIV, crypt.vchIV.data(), crypt.vchIV.size()) == 0, \ HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(crypt.vchIV)); if(!correctKey.empty()) BOOST_CHECK_MESSAGE(memcmp(chKey, &correctKey[0], sizeof(chKey)) == 0, \ HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(correctKey.begin(), correctKey.end())); if(!correctIV.empty()) BOOST_CHECK_MESSAGE(memcmp(chIV, &correctIV[0], sizeof(chIV)) == 0, HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(correctIV.begin(), correctIV.end())); } static void TestPassphrase(const std::vector& vchSalt, const SecureString& passphrase, uint32_t rounds, const std::vector& correctKey = std::vector(), const std::vector& correctIV=std::vector()) { TestPassphraseSingle(vchSalt, passphrase, rounds, correctKey, correctIV); for(SecureString::const_iterator i(passphrase.begin()); i != passphrase.end(); ++i) TestPassphraseSingle(vchSalt, SecureString(i, passphrase.end()), rounds); } static void TestDecrypt(const CCrypter& crypt, const std::vector& vchCiphertext, \ const std::vector& vchPlaintext = std::vector()) { CKeyingMaterial vchDecrypted1; CKeyingMaterial vchDecrypted2; int result1, result2; result1 = crypt.Decrypt(vchCiphertext, vchDecrypted1); result2 = OldDecrypt(vchCiphertext, vchDecrypted2, crypt.vchKey.data(), crypt.vchIV.data()); BOOST_CHECK(result1 == result2); // These two should be equal. However, OpenSSL 1.0.1j introduced a change // that would zero all padding except for the last byte for failed decrypts. // This behavior was reverted for 1.0.1k. if (vchDecrypted1 != vchDecrypted2 && vchDecrypted1.size() >= AES_BLOCK_SIZE && SSLeay() == 0x100010afL) { for(CKeyingMaterial::iterator it = vchDecrypted1.end() - AES_BLOCK_SIZE; it != vchDecrypted1.end() - 1; it++) *it = 0; } BOOST_CHECK_MESSAGE(vchDecrypted1 == vchDecrypted2, HexStr(vchDecrypted1.begin(), vchDecrypted1.end()) + " != " + HexStr(vchDecrypted2.begin(), vchDecrypted2.end())); if (vchPlaintext.size()) BOOST_CHECK(CKeyingMaterial(vchPlaintext.begin(), vchPlaintext.end()) == vchDecrypted2); } static void TestEncryptSingle(const CCrypter& crypt, const CKeyingMaterial& vchPlaintext, const std::vector& vchCiphertextCorrect = std::vector()) { std::vector vchCiphertext1; std::vector vchCiphertext2; int result1 = crypt.Encrypt(vchPlaintext, vchCiphertext1); int result2 = OldEncrypt(vchPlaintext, vchCiphertext2, crypt.vchKey.data(), crypt.vchIV.data()); BOOST_CHECK(result1 == result2); BOOST_CHECK(vchCiphertext1 == vchCiphertext2); if (!vchCiphertextCorrect.empty()) BOOST_CHECK(vchCiphertext2 == vchCiphertextCorrect); const std::vector vchPlaintext2(vchPlaintext.begin(), vchPlaintext.end()); if(vchCiphertext1 == vchCiphertext2) TestDecrypt(crypt, vchCiphertext1, vchPlaintext2); } static void TestEncrypt(const CCrypter& crypt, const std::vector& vchPlaintextIn, \ const std::vector& vchCiphertextCorrect = std::vector()) { TestEncryptSingle(crypt, CKeyingMaterial(vchPlaintextIn.begin(), vchPlaintextIn.end()), vchCiphertextCorrect); for(std::vector::const_iterator i(vchPlaintextIn.begin()); i != vchPlaintextIn.end(); ++i) TestEncryptSingle(crypt, CKeyingMaterial(i, vchPlaintextIn.end())); } }; BOOST_AUTO_TEST_CASE(passphrase) { // These are expensive. TestCrypter::TestPassphrase(ParseHex("0000deadbeef0000"), "test", 25000, \ ParseHex("fc7aba077ad5f4c3a0988d8daa4810d0d4a0e3bcb53af662998898f33df0556a"), \ ParseHex("cf2f2691526dd1aa220896fb8bf7c369")); std::string hash(GetRandHash().ToString()); std::vector vchSalt(8); GetRandBytes(&vchSalt[0], vchSalt.size()); uint32_t rounds = insecure_rand(); if (rounds > 30000) rounds = 30000; TestCrypter::TestPassphrase(vchSalt, SecureString(hash.begin(), hash.end()), rounds); } BOOST_AUTO_TEST_CASE(encrypt) { std::vector vchSalt = ParseHex("0000deadbeef0000"); BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE); CCrypter crypt; crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0); TestCrypter::TestEncrypt(crypt, ParseHex("22bcade09ac03ff6386914359cfe885cfeb5f77ff0d670f102f619687453b29d")); for (int i = 0; i != 100; i++) { uint256 hash(GetRandHash()); TestCrypter::TestEncrypt(crypt, std::vector(hash.begin(), hash.end())); } } BOOST_AUTO_TEST_CASE(decrypt) { std::vector vchSalt = ParseHex("0000deadbeef0000"); BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE); CCrypter crypt; crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0); // Some corner cases the came up while testing TestCrypter::TestDecrypt(crypt,ParseHex("795643ce39d736088367822cdc50535ec6f103715e3e48f4f3b1a60a08ef59ca")); TestCrypter::TestDecrypt(crypt,ParseHex("de096f4a8f9bd97db012aa9d90d74de8cdea779c3ee8bc7633d8b5d6da703486")); TestCrypter::TestDecrypt(crypt,ParseHex("32d0a8974e3afd9c6c3ebf4d66aa4e6419f8c173de25947f98cf8b7ace49449c")); TestCrypter::TestDecrypt(crypt,ParseHex("e7c055cca2faa78cb9ac22c9357a90b4778ded9b2cc220a14cea49f931e596ea")); TestCrypter::TestDecrypt(crypt,ParseHex("b88efddd668a6801d19516d6830da4ae9811988ccbaf40df8fbb72f3f4d335fd")); TestCrypter::TestDecrypt(crypt,ParseHex("8cae76aa6a43694e961ebcb28c8ca8f8540b84153d72865e8561ddd93fa7bfa9")); for (int i = 0; i != 100; i++) { uint256 hash(GetRandHash()); TestCrypter::TestDecrypt(crypt, std::vector(hash.begin(), hash.end())); } } BOOST_AUTO_TEST_CASE(aes_256_cbc_testvectors) { // NIST AES CBC 256-bit encryption test-vectors with padding enabled TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ "000102030405060708090A0B0C0D0E0F", "6bc1bee22e409f96e93d7e117393172a", \ "f58c4c04d6e5f1ba779eabfb5f7bfbd6485a5c81519cf378fa36d42b8547edc0"); TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ "F58C4C04D6E5F1BA779EABFB5F7BFBD6", "ae2d8a571e03ac9c9eb76fac45af8e51", \ "9cfc4e967edb808d679f777bc6702c7d3a3aa5e0213db1a9901f9036cf5102d2"); TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ "9CFC4E967EDB808D679F777BC6702C7D", "30c81c46a35ce411e5fbc1191a0a52ef", "39f23369a9d9bacfa530e263042314612f8da707643c90a6f732b3de1d3f5cee"); TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \ "39F23369A9D9BACFA530E26304231461", "f69f2445df4f9b17ad2b417be66c3710", \ "b2eb05e2c39be9fcda6c19078c6a9d1b3f461796d6b0d6b2e0c2a72b4d80e644"); } BOOST_AUTO_TEST_SUITE_END()