// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Copyright (c) 2014-2015 The Dash developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "wallet.h" #include "base58.h" #include "checkpoints.h" #include "coincontrol.h" #include "net.h" #include "masternode-budget.h" #include "keepass.h" #include "instantx.h" #include "script/script.h" #include "script/sign.h" #include "spork.h" #include "timedata.h" #include "util.h" #include "utilmoneystr.h" #include #include #include using namespace std; /** * Settings */ CFeeRate payTxFee(DEFAULT_TRANSACTION_FEE); CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE; unsigned int nTxConfirmTarget = 1; bool bSpendZeroConfChange = true; bool fSendFreeTransactions = false; bool fPayAtLeastCustomFee = true; /** * Fees smaller than this (in duffs) are considered zero fee (for transaction creation) * We are ~100 times smaller then bitcoin now (2015-06-23), set minTxFee 10 times higher * so it's still 10 times lower comparing to bitcoin. * Override with -mintxfee */ CFeeRate CWallet::minTxFee = CFeeRate(10000); /** @defgroup mapWallet * * @{ */ struct CompareValueOnly { bool operator()(const pair >& t1, const pair >& t2) const { return t1.first < t2.first; } }; std::string COutput::ToString() const { return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->vout[i].nValue)); } const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const { LOCK(cs_wallet); std::map::const_iterator it = mapWallet.find(hash); if (it == mapWallet.end()) return NULL; return &(it->second); } CPubKey CWallet::GenerateNewKey() { AssertLockHeld(cs_wallet); // mapKeyMetadata bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets RandAddSeedPerfmon(); CKey secret; secret.MakeNewKey(fCompressed); // Compressed public keys were introduced in version 0.6.0 if (fCompressed) SetMinVersion(FEATURE_COMPRPUBKEY); CPubKey pubkey = secret.GetPubKey(); assert(secret.VerifyPubKey(pubkey)); // Create new metadata int64_t nCreationTime = GetTime(); mapKeyMetadata[pubkey.GetID()] = CKeyMetadata(nCreationTime); if (!nTimeFirstKey || nCreationTime < nTimeFirstKey) nTimeFirstKey = nCreationTime; if (!AddKeyPubKey(secret, pubkey)) throw std::runtime_error("CWallet::GenerateNewKey() : AddKey failed"); return pubkey; } bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey) { AssertLockHeld(cs_wallet); // mapKeyMetadata if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey)) return false; // check if we need to remove from watch-only CScript script; script = GetScriptForDestination(pubkey.GetID()); if (HaveWatchOnly(script)) RemoveWatchOnly(script); if (!fFileBacked) return true; if (!IsCrypted()) { return CWalletDB(strWalletFile).WriteKey(pubkey, secret.GetPrivKey(), mapKeyMetadata[pubkey.GetID()]); } return true; } bool CWallet::AddCryptedKey(const CPubKey &vchPubKey, const vector &vchCryptedSecret) { if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret)) return false; if (!fFileBacked) return true; { LOCK(cs_wallet); if (pwalletdbEncryption) return pwalletdbEncryption->WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); else return CWalletDB(strWalletFile).WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); } return false; } bool CWallet::LoadKeyMetadata(const CPubKey &pubkey, const CKeyMetadata &meta) { AssertLockHeld(cs_wallet); // mapKeyMetadata if (meta.nCreateTime && (!nTimeFirstKey || meta.nCreateTime < nTimeFirstKey)) nTimeFirstKey = meta.nCreateTime; mapKeyMetadata[pubkey.GetID()] = meta; return true; } bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret) { return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret); } bool CWallet::AddCScript(const CScript& redeemScript) { if (!CCryptoKeyStore::AddCScript(redeemScript)) return false; if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteCScript(Hash160(redeemScript), redeemScript); } bool CWallet::LoadCScript(const CScript& redeemScript) { /* A sanity check was added in pull #3843 to avoid adding redeemScripts * that never can be redeemed. However, old wallets may still contain * these. Do not add them to the wallet and warn. */ if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE) { std::string strAddr = CBitcoinAddress(CScriptID(redeemScript)).ToString(); LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n", __func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr); return true; } return CCryptoKeyStore::AddCScript(redeemScript); } bool CWallet::AddWatchOnly(const CScript &dest) { if (!CCryptoKeyStore::AddWatchOnly(dest)) return false; nTimeFirstKey = 1; // No birthday information for watch-only keys. NotifyWatchonlyChanged(true); if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteWatchOnly(dest); } bool CWallet::RemoveWatchOnly(const CScript &dest) { AssertLockHeld(cs_wallet); if (!CCryptoKeyStore::RemoveWatchOnly(dest)) return false; if (!HaveWatchOnly()) NotifyWatchonlyChanged(false); if (fFileBacked) if (!CWalletDB(strWalletFile).EraseWatchOnly(dest)) return false; return true; } bool CWallet::LoadWatchOnly(const CScript &dest) { return CCryptoKeyStore::AddWatchOnly(dest); } bool CWallet::Unlock(const SecureString& strWalletPassphrase, bool anonymizeOnly) { SecureString strWalletPassphraseFinal; if (!IsLocked()) { fWalletUnlockAnonymizeOnly = anonymizeOnly; return true; } // Verify KeePassIntegration if(strWalletPassphrase == "keepass" && GetBoolArg("-keepass", false)) { try { strWalletPassphraseFinal = keePassInt.retrievePassphrase(); } catch (std::exception& e) { LogPrintf("CWallet::Unlock could not retrieve passphrase from KeePass: Error: %s\n", e.what()); return false; } } else { strWalletPassphraseFinal = strWalletPassphrase; } CCrypter crypter; CKeyingMaterial vMasterKey; { LOCK(cs_wallet); BOOST_FOREACH(const MasterKeyMap::value_type& pMasterKey, mapMasterKeys) { if(!crypter.SetKeyFromPassphrase(strWalletPassphraseFinal, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey)) continue; // try another master key if (CCryptoKeyStore::Unlock(vMasterKey)) { fWalletUnlockAnonymizeOnly = anonymizeOnly; return true; } } } return false; } bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase) { bool fWasLocked = IsLocked(); bool bUseKeePass = false; SecureString strOldWalletPassphraseFinal; // Verify KeePassIntegration if(strOldWalletPassphrase == "keepass" && GetBoolArg("-keepass", false)) { bUseKeePass = true; try { strOldWalletPassphraseFinal = keePassInt.retrievePassphrase(); } catch (std::exception& e) { LogPrintf("CWallet::ChangeWalletPassphrase could not retrieve passphrase from KeePass: Error: %s\n", e.what()); return false; } } else { strOldWalletPassphraseFinal = strOldWalletPassphrase; } { LOCK(cs_wallet); Lock(); CCrypter crypter; CKeyingMaterial vMasterKey; BOOST_FOREACH(MasterKeyMap::value_type& pMasterKey, mapMasterKeys) { if(!crypter.SetKeyFromPassphrase(strOldWalletPassphraseFinal, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey)) return false; if (CCryptoKeyStore::Unlock(vMasterKey)) { int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime))); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2; if (pMasterKey.second.nDeriveIterations < 25000) pMasterKey.second.nDeriveIterations = 25000; LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Encrypt(vMasterKey, pMasterKey.second.vchCryptedKey)) return false; CWalletDB(strWalletFile).WriteMasterKey(pMasterKey.first, pMasterKey.second); if (fWasLocked) Lock(); // Update KeePass if necessary if(bUseKeePass) { LogPrintf("CWallet::ChangeWalletPassphrase - Updating KeePass with new passphrase"); try { keePassInt.updatePassphrase(strNewWalletPassphrase); } catch (std::exception& e) { LogPrintf("CWallet::ChangeWalletPassphrase - could not update passphrase in KeePass: Error: %s\n", e.what()); return false; } } return true; } } } return false; } void CWallet::SetBestChain(const CBlockLocator& loc) { CWalletDB walletdb(strWalletFile); walletdb.WriteBestBlock(loc); } bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit) { LOCK(cs_wallet); // nWalletVersion if (nWalletVersion >= nVersion) return true; // when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way if (fExplicit && nVersion > nWalletMaxVersion) nVersion = FEATURE_LATEST; nWalletVersion = nVersion; if (nVersion > nWalletMaxVersion) nWalletMaxVersion = nVersion; if (fFileBacked) { CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(strWalletFile); if (nWalletVersion > 40000) pwalletdb->WriteMinVersion(nWalletVersion); if (!pwalletdbIn) delete pwalletdb; } return true; } bool CWallet::SetMaxVersion(int nVersion) { LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion // cannot downgrade below current version if (nWalletVersion > nVersion) return false; nWalletMaxVersion = nVersion; return true; } set CWallet::GetConflicts(const uint256& txid) const { set result; AssertLockHeld(cs_wallet); std::map::const_iterator it = mapWallet.find(txid); if (it == mapWallet.end()) return result; const CWalletTx& wtx = it->second; std::pair range; BOOST_FOREACH(const CTxIn& txin, wtx.vin) { if (mapTxSpends.count(txin.prevout) <= 1) continue; // No conflict if zero or one spends range = mapTxSpends.equal_range(txin.prevout); for (TxSpends::const_iterator it = range.first; it != range.second; ++it) result.insert(it->second); } return result; } void CWallet::SyncMetaData(pair range) { // We want all the wallet transactions in range to have the same metadata as // the oldest (smallest nOrderPos). // So: find smallest nOrderPos: int nMinOrderPos = std::numeric_limits::max(); const CWalletTx* copyFrom = NULL; for (TxSpends::iterator it = range.first; it != range.second; ++it) { const uint256& hash = it->second; int n = mapWallet[hash].nOrderPos; if (n < nMinOrderPos) { nMinOrderPos = n; copyFrom = &mapWallet[hash]; } } // Now copy data from copyFrom to rest: for (TxSpends::iterator it = range.first; it != range.second; ++it) { const uint256& hash = it->second; CWalletTx* copyTo = &mapWallet[hash]; if (copyFrom == copyTo) continue; copyTo->mapValue = copyFrom->mapValue; copyTo->vOrderForm = copyFrom->vOrderForm; // fTimeReceivedIsTxTime not copied on purpose // nTimeReceived not copied on purpose copyTo->nTimeSmart = copyFrom->nTimeSmart; copyTo->fFromMe = copyFrom->fFromMe; copyTo->strFromAccount = copyFrom->strFromAccount; // nOrderPos not copied on purpose // cached members not copied on purpose } } /** * Outpoint is spent if any non-conflicted transaction * spends it: */ bool CWallet::IsSpent(const uint256& hash, unsigned int n) const { const COutPoint outpoint(hash, n); pair range; range = mapTxSpends.equal_range(outpoint); for (TxSpends::const_iterator it = range.first; it != range.second; ++it) { const uint256& wtxid = it->second; std::map::const_iterator mit = mapWallet.find(wtxid); if (mit != mapWallet.end() && mit->second.GetDepthInMainChain() >= 0) return true; // Spent } return false; } void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid) { mapTxSpends.insert(make_pair(outpoint, wtxid)); pair range; range = mapTxSpends.equal_range(outpoint); SyncMetaData(range); } void CWallet::AddToSpends(const uint256& wtxid) { assert(mapWallet.count(wtxid)); CWalletTx& thisTx = mapWallet[wtxid]; if (thisTx.IsCoinBase()) // Coinbases don't spend anything! return; BOOST_FOREACH(const CTxIn& txin, thisTx.vin) AddToSpends(txin.prevout, wtxid); } bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase) { if (IsCrypted()) return false; CKeyingMaterial vMasterKey; RandAddSeedPerfmon(); vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE); GetRandBytes(&vMasterKey[0], WALLET_CRYPTO_KEY_SIZE); CMasterKey kMasterKey; RandAddSeedPerfmon(); kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE); GetRandBytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE); CCrypter crypter; int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = 2500000 / ((double)(GetTimeMillis() - nStartTime)); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2; if (kMasterKey.nDeriveIterations < 25000) kMasterKey.nDeriveIterations = 25000; LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod)) return false; if (!crypter.Encrypt(vMasterKey, kMasterKey.vchCryptedKey)) return false; { LOCK(cs_wallet); mapMasterKeys[++nMasterKeyMaxID] = kMasterKey; if (fFileBacked) { assert(!pwalletdbEncryption); pwalletdbEncryption = new CWalletDB(strWalletFile); if (!pwalletdbEncryption->TxnBegin()) { delete pwalletdbEncryption; pwalletdbEncryption = NULL; return false; } pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey); } if (!EncryptKeys(vMasterKey)) { if (fFileBacked) { pwalletdbEncryption->TxnAbort(); delete pwalletdbEncryption; } // We now probably have half of our keys encrypted in memory, and half not... // die and let the user reload their unencrypted wallet. assert(false); } // Encryption was introduced in version 0.4.0 SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true); if (fFileBacked) { if (!pwalletdbEncryption->TxnCommit()) { delete pwalletdbEncryption; // We now have keys encrypted in memory, but not on disk... // die to avoid confusion and let the user reload their unencrypted wallet. assert(false); } delete pwalletdbEncryption; pwalletdbEncryption = NULL; } Lock(); Unlock(strWalletPassphrase); NewKeyPool(); Lock(); // Need to completely rewrite the wallet file; if we don't, bdb might keep // bits of the unencrypted private key in slack space in the database file. CDB::Rewrite(strWalletFile); // Update KeePass if necessary if(GetBoolArg("-keepass", false)) { LogPrintf("CWallet::EncryptWallet - Updating KeePass with new passphrase"); try { keePassInt.updatePassphrase(strWalletPassphrase); } catch (std::exception& e) { LogPrintf("CWallet::EncryptWallet - could not update passphrase in KeePass: Error: %s\n", e.what()); } } } NotifyStatusChanged(this); return true; } int64_t CWallet::IncOrderPosNext(CWalletDB *pwalletdb) { AssertLockHeld(cs_wallet); // nOrderPosNext int64_t nRet = nOrderPosNext++; if (pwalletdb) { pwalletdb->WriteOrderPosNext(nOrderPosNext); } else { CWalletDB(strWalletFile).WriteOrderPosNext(nOrderPosNext); } return nRet; } CWallet::TxItems CWallet::OrderedTxItems(std::list& acentries, std::string strAccount) { AssertLockHeld(cs_wallet); // mapWallet CWalletDB walletdb(strWalletFile); // First: get all CWalletTx and CAccountingEntry into a sorted-by-order multimap. TxItems txOrdered; // Note: maintaining indices in the database of (account,time) --> txid and (account, time) --> acentry // would make this much faster for applications that do this a lot. for (map::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { CWalletTx* wtx = &((*it).second); txOrdered.insert(make_pair(wtx->nOrderPos, TxPair(wtx, (CAccountingEntry*)0))); } acentries.clear(); walletdb.ListAccountCreditDebit(strAccount, acentries); BOOST_FOREACH(CAccountingEntry& entry, acentries) { txOrdered.insert(make_pair(entry.nOrderPos, TxPair((CWalletTx*)0, &entry))); } return txOrdered; } void CWallet::MarkDirty() { { LOCK(cs_wallet); BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) item.second.MarkDirty(); } } bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFromLoadWallet) { uint256 hash = wtxIn.GetHash(); if (fFromLoadWallet) { mapWallet[hash] = wtxIn; mapWallet[hash].BindWallet(this); AddToSpends(hash); } else { LOCK(cs_wallet); // Inserts only if not already there, returns tx inserted or tx found pair::iterator, bool> ret = mapWallet.insert(make_pair(hash, wtxIn)); CWalletTx& wtx = (*ret.first).second; wtx.BindWallet(this); bool fInsertedNew = ret.second; if (fInsertedNew) { wtx.nTimeReceived = GetAdjustedTime(); wtx.nOrderPos = IncOrderPosNext(); wtx.nTimeSmart = wtx.nTimeReceived; if (wtxIn.hashBlock != 0) { if (mapBlockIndex.count(wtxIn.hashBlock)) { int64_t latestNow = wtx.nTimeReceived; int64_t latestEntry = 0; { // Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future int64_t latestTolerated = latestNow + 300; std::list acentries; TxItems txOrdered = OrderedTxItems(acentries); for (TxItems::reverse_iterator it = txOrdered.rbegin(); it != txOrdered.rend(); ++it) { CWalletTx *const pwtx = (*it).second.first; if (pwtx == &wtx) continue; CAccountingEntry *const pacentry = (*it).second.second; int64_t nSmartTime; if (pwtx) { nSmartTime = pwtx->nTimeSmart; if (!nSmartTime) nSmartTime = pwtx->nTimeReceived; } else nSmartTime = pacentry->nTime; if (nSmartTime <= latestTolerated) { latestEntry = nSmartTime; if (nSmartTime > latestNow) latestNow = nSmartTime; break; } } } int64_t blocktime = mapBlockIndex[wtxIn.hashBlock]->GetBlockTime(); wtx.nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow)); } else LogPrintf("AddToWallet() : found %s in block %s not in index\n", wtxIn.GetHash().ToString(), wtxIn.hashBlock.ToString()); } AddToSpends(hash); } bool fUpdated = false; if (!fInsertedNew) { // Merge if (wtxIn.hashBlock != 0 && wtxIn.hashBlock != wtx.hashBlock) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } if (wtxIn.nIndex != -1 && (wtxIn.vMerkleBranch != wtx.vMerkleBranch || wtxIn.nIndex != wtx.nIndex)) { wtx.vMerkleBranch = wtxIn.vMerkleBranch; wtx.nIndex = wtxIn.nIndex; fUpdated = true; } if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe) { wtx.fFromMe = wtxIn.fFromMe; fUpdated = true; } } //// debug print LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : "")); // Write to disk if (fInsertedNew || fUpdated) if (!wtx.WriteToDisk()) return false; // Break debit/credit balance caches: wtx.MarkDirty(); // Notify UI of new or updated transaction NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED); // notify an external script when a wallet transaction comes in or is updated std::string strCmd = GetArg("-walletnotify", ""); if ( !strCmd.empty()) { boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } } return true; } /** * Add a transaction to the wallet, or update it. * pblock is optional, but should be provided if the transaction is known to be in a block. * If fUpdate is true, existing transactions will be updated. */ bool CWallet::AddToWalletIfInvolvingMe(const CTransaction& tx, const CBlock* pblock, bool fUpdate) { { AssertLockHeld(cs_wallet); bool fExisted = mapWallet.count(tx.GetHash()) != 0; if (fExisted && !fUpdate) return false; if (fExisted || IsMine(tx) || IsFromMe(tx)) { CWalletTx wtx(this,tx); // Get merkle branch if transaction was found in a block if (pblock) wtx.SetMerkleBranch(*pblock); return AddToWallet(wtx); } } return false; } void CWallet::SyncTransaction(const CTransaction& tx, const CBlock* pblock) { LOCK2(cs_main, cs_wallet); if (!AddToWalletIfInvolvingMe(tx, pblock, true)) return; // Not one of ours // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be // recomputed, also: BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (mapWallet.count(txin.prevout.hash)) mapWallet[txin.prevout.hash].MarkDirty(); } } void CWallet::EraseFromWallet(const uint256 &hash) { if (!fFileBacked) return; { LOCK(cs_wallet); if (mapWallet.erase(hash)) CWalletDB(strWalletFile).EraseTx(hash); } return; } isminetype CWallet::IsMine(const CTxIn &txin) const { { LOCK(cs_wallet); map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.vout.size()) return IsMine(prev.vout[txin.prevout.n]); } } return ISMINE_NO; } CAmount CWallet::GetDebit(const CTxIn &txin, const isminefilter& filter) const { { LOCK(cs_wallet); map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.vout.size()) if (IsMine(prev.vout[txin.prevout.n]) & filter) return prev.vout[txin.prevout.n].nValue; } } return 0; } // Recursively determine the rounds of a given input (How deep is the Darksend chain for a given input) int CWallet::GetRealInputDarksendRounds(CTxIn in, int rounds) const { static std::map mDenomWtxes; if(rounds >= 16) return 15; // 16 rounds max uint256 hash = in.prevout.hash; unsigned int nout = in.prevout.n; const CWalletTx* wtx = GetWalletTx(hash); if(wtx != NULL) { std::map::const_iterator mdwi = mDenomWtxes.find(hash); // not known yet, let's add it if(mdwi == mDenomWtxes.end()) { LogPrint("darksend", "GetInputDarksendRounds INSERTING %s\n", hash.ToString()); mDenomWtxes[hash] = CMutableTransaction(*wtx); } // found and it's not an initial value, just return it else if(mDenomWtxes[hash].vout[nout].nRounds != -10) { return mDenomWtxes[hash].vout[nout].nRounds; } // bounds check if(nout >= wtx->vout.size()) { // should never actually hit this LogPrint("darksend", "GetInputDarksendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, -4); return -4; } if(pwalletMain->IsCollateralAmount(wtx->vout[nout].nValue)) { mDenomWtxes[hash].vout[nout].nRounds = -3; LogPrint("darksend", "GetInputDarksendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } //make sure the final output is non-denominate if(/*rounds == 0 && */!IsDenominatedAmount(wtx->vout[nout].nValue)) //NOT DENOM { mDenomWtxes[hash].vout[nout].nRounds = -2; LogPrint("darksend", "GetInputDarksendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } bool fAllDenoms = true; BOOST_FOREACH(CTxOut out, wtx->vout) { fAllDenoms = fAllDenoms && IsDenominatedAmount(out.nValue); } // this one is denominated but there is another non-denominated output found in the same tx if(!fAllDenoms) { mDenomWtxes[hash].vout[nout].nRounds = 0; LogPrint("darksend", "GetInputDarksendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } int nShortest = -10; // an initial value, should be no way to get this by calculations bool fDenomFound = false; // only denoms here so let's look up BOOST_FOREACH(CTxIn in2, wtx->vin) { if(IsMine(in2)) { int n = GetRealInputDarksendRounds(in2, rounds+1); // denom found, find the shortest chain or initially assign nShortest with the first found value if(n >= 0 && (n < nShortest || nShortest == -10)) { nShortest = n; fDenomFound = true; } } } mDenomWtxes[hash].vout[nout].nRounds = fDenomFound ? (nShortest >= 15 ? 16 : nShortest + 1) // good, we a +1 to the shortest one but only 16 rounds max allowed : 0; // too bad, we are the fist one in that chain LogPrint("darksend", "GetInputDarksendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } return rounds-1; } // respect current settings int CWallet::GetInputDarksendRounds(CTxIn in) const { LOCK(cs_wallet); int realDarksendRounds = GetRealInputDarksendRounds(in, 0); return realDarksendRounds > nDarksendRounds ? nDarksendRounds : realDarksendRounds; } bool CWallet::IsDenominated(const CTxIn &txin) const { { LOCK(cs_wallet); map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.vout.size()) return IsDenominatedAmount(prev.vout[txin.prevout.n].nValue); } } return false; } bool CWallet::IsDenominated(const CTransaction& tx) const { /* Return false if ANY inputs are non-denom */ bool ret = true; BOOST_FOREACH(const CTxIn& txin, tx.vin) { if(!IsDenominated(txin)) { ret = false; } } return ret; } bool CWallet::IsDenominatedAmount(int64_t nInputAmount) const { BOOST_FOREACH(int64_t d, darkSendDenominations) if(nInputAmount == d) return true; return false; } bool CWallet::IsChange(const CTxOut& txout) const { // TODO: fix handling of 'change' outputs. The assumption is that any // payment to a script that is ours, but is not in the address book // is change. That assumption is likely to break when we implement multisignature // wallets that return change back into a multi-signature-protected address; // a better way of identifying which outputs are 'the send' and which are // 'the change' will need to be implemented (maybe extend CWalletTx to remember // which output, if any, was change). if (::IsMine(*this, txout.scriptPubKey)) { CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address)) return true; LOCK(cs_wallet); if (!mapAddressBook.count(address)) return true; } return false; } int64_t CWalletTx::GetTxTime() const { int64_t n = nTimeSmart; return n ? n : nTimeReceived; } int CWalletTx::GetRequestCount() const { // Returns -1 if it wasn't being tracked int nRequests = -1; { LOCK(pwallet->cs_wallet); if (IsCoinBase()) { // Generated block if (hashBlock != 0) { map::const_iterator mi = pwallet->mapRequestCount.find(hashBlock); if (mi != pwallet->mapRequestCount.end()) nRequests = (*mi).second; } } else { // Did anyone request this transaction? map::const_iterator mi = pwallet->mapRequestCount.find(GetHash()); if (mi != pwallet->mapRequestCount.end()) { nRequests = (*mi).second; // How about the block it's in? if (nRequests == 0 && hashBlock != 0) { map::const_iterator mi = pwallet->mapRequestCount.find(hashBlock); if (mi != pwallet->mapRequestCount.end()) nRequests = (*mi).second; else nRequests = 1; // If it's in someone else's block it must have got out } } } } return nRequests; } void CWalletTx::GetAmounts(list& listReceived, list& listSent, CAmount& nFee, string& strSentAccount, const isminefilter& filter) const { nFee = 0; listReceived.clear(); listSent.clear(); strSentAccount = strFromAccount; // Compute fee: CAmount nDebit = GetDebit(filter); if (nDebit > 0) // debit>0 means we signed/sent this transaction { CAmount nValueOut = GetValueOut(); nFee = nDebit - nValueOut; } // Sent/received. for (unsigned int i = 0; i < vout.size(); ++i) { const CTxOut& txout = vout[i]; isminetype fIsMine = pwallet->IsMine(txout); // Only need to handle txouts if AT LEAST one of these is true: // 1) they debit from us (sent) // 2) the output is to us (received) if (nDebit > 0) { // Don't report 'change' txouts if (pwallet->IsChange(txout)) continue; } else if (!(fIsMine & filter)) continue; // In either case, we need to get the destination address CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address)) { LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n", this->GetHash().ToString()); address = CNoDestination(); } COutputEntry output = {address, txout.nValue, (int)i}; // If we are debited by the transaction, add the output as a "sent" entry if (nDebit > 0) listSent.push_back(output); // If we are receiving the output, add it as a "received" entry if (fIsMine & filter) listReceived.push_back(output); } } void CWalletTx::GetAccountAmounts(const string& strAccount, CAmount& nReceived, CAmount& nSent, CAmount& nFee, const isminefilter& filter) const { nReceived = nSent = nFee = 0; CAmount allFee; string strSentAccount; list listReceived; list listSent; GetAmounts(listReceived, listSent, allFee, strSentAccount, filter); if (strAccount == strSentAccount) { BOOST_FOREACH(const COutputEntry& s, listSent) nSent += s.amount; nFee = allFee; } { LOCK(pwallet->cs_wallet); BOOST_FOREACH(const COutputEntry& r, listReceived) { if (pwallet->mapAddressBook.count(r.destination)) { map::const_iterator mi = pwallet->mapAddressBook.find(r.destination); if (mi != pwallet->mapAddressBook.end() && (*mi).second.name == strAccount) nReceived += r.amount; } else if (strAccount.empty()) { nReceived += r.amount; } } } } bool CWalletTx::WriteToDisk() { return CWalletDB(pwallet->strWalletFile).WriteTx(GetHash(), *this); } /** * Scan the block chain (starting in pindexStart) for transactions * from or to us. If fUpdate is true, found transactions that already * exist in the wallet will be updated. */ int CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate) { int ret = 0; int64_t nNow = GetTime(); CBlockIndex* pindex = pindexStart; { LOCK2(cs_main, cs_wallet); // no need to read and scan block, if block was created before // our wallet birthday (as adjusted for block time variability) while (pindex && nTimeFirstKey && (pindex->GetBlockTime() < (nTimeFirstKey - 7200))) pindex = chainActive.Next(pindex); ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup double dProgressStart = Checkpoints::GuessVerificationProgress(pindex, false); double dProgressTip = Checkpoints::GuessVerificationProgress(chainActive.Tip(), false); while (pindex) { if (pindex->nHeight % 100 == 0 && dProgressTip - dProgressStart > 0.0) ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((Checkpoints::GuessVerificationProgress(pindex, false) - dProgressStart) / (dProgressTip - dProgressStart) * 100)))); CBlock block; ReadBlockFromDisk(block, pindex); BOOST_FOREACH(CTransaction& tx, block.vtx) { if (AddToWalletIfInvolvingMe(tx, &block, fUpdate)) ret++; } pindex = chainActive.Next(pindex); if (GetTime() >= nNow + 60) { nNow = GetTime(); LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, Checkpoints::GuessVerificationProgress(pindex)); } } ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI } return ret; } void CWallet::ReacceptWalletTransactions() { LOCK2(cs_main, cs_wallet); BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) { const uint256& wtxid = item.first; CWalletTx& wtx = item.second; assert(wtx.GetHash() == wtxid); int nDepth = wtx.GetDepthInMainChain(); if (!wtx.IsCoinBase() && nDepth < 0) { // Try to add to memory pool LOCK(mempool.cs); wtx.AcceptToMemoryPool(false); } } } void CWalletTx::RelayWalletTransaction(std::string strCommand) { if (!IsCoinBase()) { if (GetDepthInMainChain() == 0) { uint256 hash = GetHash(); LogPrintf("Relaying wtx %s\n", hash.ToString()); if(strCommand == "ix"){ mapTxLockReq.insert(make_pair(hash, (CTransaction)*this)); CreateNewLock(((CTransaction)*this)); RelayTransactionLockReq((CTransaction)*this, true); } else { RelayTransaction((CTransaction)*this); } } } } set CWalletTx::GetConflicts() const { set result; if (pwallet != NULL) { uint256 myHash = GetHash(); result = pwallet->GetConflicts(myHash); result.erase(myHash); } return result; } void CWallet::ResendWalletTransactions() { // Do this infrequently and randomly to avoid giving away // that these are our transactions. if (GetTime() < nNextResend) return; bool fFirst = (nNextResend == 0); nNextResend = GetTime() + GetRand(30 * 60); if (fFirst) return; // Only do it if there's been a new block since last time if (nTimeBestReceived < nLastResend) return; nLastResend = GetTime(); // Rebroadcast any of our txes that aren't in a block yet LogPrintf("ResendWalletTransactions()\n"); { LOCK(cs_wallet); // Sort them in chronological order multimap mapSorted; BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) { CWalletTx& wtx = item.second; // Don't rebroadcast until it's had plenty of time that // it should have gotten in already by now. if (nTimeBestReceived - (int64_t)wtx.nTimeReceived > 5 * 60) mapSorted.insert(make_pair(wtx.nTimeReceived, &wtx)); } BOOST_FOREACH(PAIRTYPE(const unsigned int, CWalletTx*)& item, mapSorted) { CWalletTx& wtx = *item.second; wtx.RelayWalletTransaction(); } } } /** @} */ // end of mapWallet /** @defgroup Actions * * @{ */ CAmount CWallet::GetBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } CAmount CWallet::GetAnonymizableBalance() const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAnonymizableCredit(); } } return nTotal; } CAmount CWallet::GetAnonymizedBalance() const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAnonymizedCredit(); } } return nTotal; } // Note: calculated including unconfirmed, // that's ok as long as we use it for informational purposes only double CWallet::GetAverageAnonymizedRounds() const { if(fLiteMode) return 0; double fTotal = 0; double fCount = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; uint256 hash = (*it).first; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { CTxIn vin = CTxIn(hash, i); if(IsSpent(hash, i) || IsMine(pcoin->vout[i]) != ISMINE_SPENDABLE || !IsDenominated(vin)) continue; int rounds = GetInputDarksendRounds(vin); fTotal += (float)rounds; fCount += 1; } } } if(fCount == 0) return 0; return fTotal/fCount; } // Note: calculated including unconfirmed, // that's ok as long as we use it for informational purposes only CAmount CWallet::GetNormalizedAnonymizedBalance() const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; uint256 hash = (*it).first; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { CTxIn vin = CTxIn(hash, i); if(IsSpent(hash, i) || IsMine(pcoin->vout[i]) != ISMINE_SPENDABLE || !IsDenominated(vin)) continue; if (pcoin->GetDepthInMainChain() < 0) continue; int rounds = GetInputDarksendRounds(vin); nTotal += pcoin->vout[i].nValue * rounds / nDarksendRounds; } } } return nTotal; } CAmount CWallet::GetDenominatedBalance(bool unconfirmed) const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetDenominatedCredit(unconfirmed); } } return nTotal; } CAmount CWallet::GetUnconfirmedBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (!IsFinalTx(*pcoin) || (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0)) nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } CAmount CWallet::GetImmatureBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetImmatureCredit(); } } return nTotal; } CAmount CWallet::GetWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } CAmount CWallet::GetUnconfirmedWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (!IsFinalTx(*pcoin) || (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0)) nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } CAmount CWallet::GetImmatureWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetImmatureWatchOnlyCredit(); } } return nTotal; } /** * populate vCoins with vector of available COutputs. */ void CWallet::AvailableCoins(vector& vCoins, bool fOnlyConfirmed, const CCoinControl *coinControl, AvailableCoinsType coin_type, bool useIX) const { vCoins.clear(); { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const uint256& wtxid = it->first; const CWalletTx* pcoin = &(*it).second; if (!IsFinalTx(*pcoin)) continue; if (fOnlyConfirmed && !pcoin->IsTrusted()) continue; if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0) continue; int nDepth = pcoin->GetDepthInMainChain(false); // do not use IX for inputs that have less then 6 blockchain confirmations if (useIX && nDepth < 6) continue; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { bool found = false; if(coin_type == ONLY_DENOMINATED) { found = IsDenominatedAmount(pcoin->vout[i].nValue); } else if(coin_type == ONLY_NOT1000IFMN) { found = !(fMasterNode && pcoin->vout[i].nValue == 1000*COIN); } else if(coin_type == ONLY_NONDENOMINATED_NOT1000IFMN) { if (IsCollateralAmount(pcoin->vout[i].nValue)) continue; // do not use collateral amounts found = !IsDenominatedAmount(pcoin->vout[i].nValue); if(found && fMasterNode) found = pcoin->vout[i].nValue != 1000*COIN; // do not use Hot MN funds } else { found = true; } if(!found) continue; isminetype mine = IsMine(pcoin->vout[i]); if (!(IsSpent(wtxid, i)) && mine != ISMINE_NO && !IsLockedCoin((*it).first, i) && pcoin->vout[i].nValue > 0 && (!coinControl || !coinControl->HasSelected() || coinControl->IsSelected((*it).first, i))) vCoins.push_back(COutput(pcoin, i, nDepth, (mine & ISMINE_SPENDABLE) != ISMINE_NO)); } } } } static void ApproximateBestSubset(vector > >vValue, const CAmount& nTotalLower, const CAmount& nTargetValue, vector& vfBest, CAmount& nBest, int iterations = 1000) { vector vfIncluded; vfBest.assign(vValue.size(), true); nBest = nTotalLower; seed_insecure_rand(); for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++) { vfIncluded.assign(vValue.size(), false); CAmount nTotal = 0; bool fReachedTarget = false; for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++) { for (unsigned int i = 0; i < vValue.size(); i++) { //The solver here uses a randomized algorithm, //the randomness serves no real security purpose but is just //needed to prevent degenerate behavior and it is important //that the rng is fast. We do not use a constant random sequence, //because there may be some privacy improvement by making //the selection random. if (nPass == 0 ? insecure_rand()&1 : !vfIncluded[i]) { nTotal += vValue[i].first; vfIncluded[i] = true; if (nTotal >= nTargetValue) { fReachedTarget = true; if (nTotal < nBest) { nBest = nTotal; vfBest = vfIncluded; } nTotal -= vValue[i].first; vfIncluded[i] = false; } } } } } } // TODO: find appropriate place for this sort function // move denoms down bool less_then_denom (const COutput& out1, const COutput& out2) { const CWalletTx *pcoin1 = out1.tx; const CWalletTx *pcoin2 = out2.tx; bool found1 = false; bool found2 = false; BOOST_FOREACH(int64_t d, darkSendDenominations) // loop through predefined denoms { if(pcoin1->vout[out1.i].nValue == d) found1 = true; if(pcoin2->vout[out2.i].nValue == d) found2 = true; } return (!found1 && found2); } bool CWallet::SelectCoinsMinConf(const CAmount& nTargetValue, int nConfMine, int nConfTheirs, vector vCoins, set >& setCoinsRet, CAmount& nValueRet) const { setCoinsRet.clear(); nValueRet = 0; // List of values less than target pair > coinLowestLarger; coinLowestLarger.first = std::numeric_limits::max(); coinLowestLarger.second.first = NULL; vector > > vValue; CAmount nTotalLower = 0; random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt); // move denoms down on the list sort(vCoins.begin(), vCoins.end(), less_then_denom); // try to find nondenom first to prevent unneeded spending of mixed coins for (unsigned int tryDenom = 0; tryDenom < 2; tryDenom++) { if (fDebug) LogPrint("selectcoins", "tryDenom: %d\n", tryDenom); vValue.clear(); nTotalLower = 0; BOOST_FOREACH(const COutput &output, vCoins) { if (!output.fSpendable) continue; const CWalletTx *pcoin = output.tx; // if (fDebug) LogPrint("selectcoins", "value %s confirms %d\n", FormatMoney(pcoin->vout[output.i].nValue), output.nDepth); if (output.nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? nConfMine : nConfTheirs)) continue; int i = output.i; CAmount n = pcoin->vout[i].nValue; if (tryDenom == 0 && IsDenominatedAmount(n)) continue; // we don't want denom values on first run pair > coin = make_pair(n,make_pair(pcoin, i)); if (n == nTargetValue) { setCoinsRet.insert(coin.second); nValueRet += coin.first; return true; } else if (n < nTargetValue + CENT) { vValue.push_back(coin); nTotalLower += n; } else if (n < coinLowestLarger.first) { coinLowestLarger = coin; } } if (nTotalLower == nTargetValue) { for (unsigned int i = 0; i < vValue.size(); ++i) { setCoinsRet.insert(vValue[i].second); nValueRet += vValue[i].first; } return true; } if (nTotalLower < nTargetValue) { if (coinLowestLarger.second.first == NULL) // there is no input larger than nTargetValue { if (tryDenom == 0) // we didn't look at denom yet, let's do it continue; else // we looked at everything possible and didn't find anything, no luck return false; } setCoinsRet.insert(coinLowestLarger.second); nValueRet += coinLowestLarger.first; return true; } // nTotalLower > nTargetValue break; } // Solve subset sum by stochastic approximation sort(vValue.rbegin(), vValue.rend(), CompareValueOnly()); vector vfBest; CAmount nBest; ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest, 1000); if (nBest != nTargetValue && nTotalLower >= nTargetValue + CENT) ApproximateBestSubset(vValue, nTotalLower, nTargetValue + CENT, vfBest, nBest, 1000); // If we have a bigger coin and (either the stochastic approximation didn't find a good solution, // or the next bigger coin is closer), return the bigger coin if (coinLowestLarger.second.first && ((nBest != nTargetValue && nBest < nTargetValue + CENT) || coinLowestLarger.first <= nBest)) { setCoinsRet.insert(coinLowestLarger.second); nValueRet += coinLowestLarger.first; } else { string s = "CWallet::SelectCoinsMinConf best subset: "; for (unsigned int i = 0; i < vValue.size(); i++) { if (vfBest[i]) { setCoinsRet.insert(vValue[i].second); nValueRet += vValue[i].first; s += FormatMoney(vValue[i].first) + " "; } } LogPrintf("%s - total %s\n", s, FormatMoney(nBest)); } return true; } bool CWallet::SelectCoins(const CAmount& nTargetValue, set >& setCoinsRet, CAmount& nValueRet, const CCoinControl* coinControl, AvailableCoinsType coin_type, bool useIX) const { // Note: this function should never be used for "always free" tx types like dstx vector vCoins; AvailableCoins(vCoins, true, coinControl, coin_type, useIX); // coin control -> return all selected outputs (we want all selected to go into the transaction for sure) if (coinControl && coinControl->HasSelected()) { BOOST_FOREACH(const COutput& out, vCoins) { if(!out.fSpendable) continue; if(coin_type == ONLY_DENOMINATED) { CTxIn vin = CTxIn(out.tx->GetHash(),out.i); int rounds = GetInputDarksendRounds(vin); // make sure it's actually anonymized if(rounds < nDarksendRounds) continue; } nValueRet += out.tx->vout[out.i].nValue; setCoinsRet.insert(make_pair(out.tx, out.i)); } return (nValueRet >= nTargetValue); } //if we're doing only denominated, we need to round up to the nearest .1DRK if(coin_type == ONLY_DENOMINATED) { // Make outputs by looping through denominations, from large to small BOOST_FOREACH(int64_t v, darkSendDenominations) { BOOST_FOREACH(const COutput& out, vCoins) { if(out.tx->vout[out.i].nValue == v //make sure it's the denom we're looking for && nValueRet + out.tx->vout[out.i].nValue < nTargetValue + (0.1*COIN)+100 //round the amount up to .1DRK over ){ CTxIn vin = CTxIn(out.tx->GetHash(),out.i); int rounds = GetInputDarksendRounds(vin); // make sure it's actually anonymized if(rounds < nDarksendRounds) continue; nValueRet += out.tx->vout[out.i].nValue; setCoinsRet.insert(make_pair(out.tx, out.i)); } } } return (nValueRet >= nTargetValue); } return (SelectCoinsMinConf(nTargetValue, 1, 6, vCoins, setCoinsRet, nValueRet) || SelectCoinsMinConf(nTargetValue, 1, 1, vCoins, setCoinsRet, nValueRet) || (bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue, 0, 1, vCoins, setCoinsRet, nValueRet))); } struct CompareByPriority { bool operator()(const COutput& t1, const COutput& t2) const { return t1.Priority() > t2.Priority(); } }; bool CWallet::SelectCoinsByDenominations(int nDenom, int64_t nValueMin, int64_t nValueMax, std::vector& vCoinsRet, std::vector& vCoinsRet2, int64_t& nValueRet, int nDarksendRoundsMin, int nDarksendRoundsMax) { vCoinsRet.clear(); nValueRet = 0; vCoinsRet2.clear(); vector vCoins; AvailableCoins(vCoins, true, NULL, ONLY_DENOMINATED); std::random_shuffle(vCoins.rbegin(), vCoins.rend()); //keep track of each denomination that we have bool fFound100 = false; bool fFound10 = false; bool fFound1 = false; bool fFoundDot1 = false; //Check to see if any of the denomination are off, in that case mark them as fulfilled if(!(nDenom & (1 << 0))) fFound100 = true; if(!(nDenom & (1 << 1))) fFound10 = true; if(!(nDenom & (1 << 2))) fFound1 = true; if(!(nDenom & (1 << 3))) fFoundDot1 = true; BOOST_FOREACH(const COutput& out, vCoins) { // masternode-like input should not be selected by AvailableCoins now anyway //if(out.tx->vout[out.i].nValue == 1000*COIN) continue; if(nValueRet + out.tx->vout[out.i].nValue <= nValueMax){ bool fAccepted = false; // Function returns as follows: // // bit 0 - 100DRK+1 ( bit on if present ) // bit 1 - 10DRK+1 // bit 2 - 1DRK+1 // bit 3 - .1DRK+1 CTxIn vin = CTxIn(out.tx->GetHash(),out.i); int rounds = GetInputDarksendRounds(vin); if(rounds >= nDarksendRoundsMax) continue; if(rounds < nDarksendRoundsMin) continue; if(fFound100 && fFound10 && fFound1 && fFoundDot1){ //if fulfilled //we can return this for submission if(nValueRet >= nValueMin){ //random reduce the max amount we'll submit for anonymity nValueMax -= (rand() % (nValueMax/5)); //on average use 50% of the inputs or less int r = (rand() % (int)vCoins.size()); if((int)vCoinsRet.size() > r) return true; } //Denomination criterion has been met, we can take any matching denominations if((nDenom & (1 << 0)) && out.tx->vout[out.i].nValue == ((100*COIN) +100000)) {fAccepted = true;} else if((nDenom & (1 << 1)) && out.tx->vout[out.i].nValue == ((10*COIN)+10000)) {fAccepted = true;} else if((nDenom & (1 << 2)) && out.tx->vout[out.i].nValue == ((1*COIN) +1000)) {fAccepted = true;} else if((nDenom & (1 << 3)) && out.tx->vout[out.i].nValue == ((.1*COIN)+100)) {fAccepted = true;} } else { //Criterion has not been satisfied, we will only take 1 of each until it is. if((nDenom & (1 << 0)) && out.tx->vout[out.i].nValue == ((100*COIN) +100000)) {fAccepted = true; fFound100 = true;} else if((nDenom & (1 << 1)) && out.tx->vout[out.i].nValue == ((10*COIN)+10000)) {fAccepted = true; fFound10 = true;} else if((nDenom & (1 << 2)) && out.tx->vout[out.i].nValue == ((1*COIN) +1000)) {fAccepted = true; fFound1 = true;} else if((nDenom & (1 << 3)) && out.tx->vout[out.i].nValue == ((.1*COIN)+100)) {fAccepted = true; fFoundDot1 = true;} } if(!fAccepted) continue; vin.prevPubKey = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey nValueRet += out.tx->vout[out.i].nValue; vCoinsRet.push_back(vin); vCoinsRet2.push_back(out); } } return (nValueRet >= nValueMin && fFound100 && fFound10 && fFound1 && fFoundDot1); } bool CWallet::SelectCoinsDark(CAmount nValueMin, CAmount nValueMax, std::vector& setCoinsRet, CAmount& nValueRet, int nDarksendRoundsMin, int nDarksendRoundsMax) const { CCoinControl *coinControl=NULL; setCoinsRet.clear(); nValueRet = 0; vector vCoins; AvailableCoins(vCoins, true, coinControl, nDarksendRoundsMin < 0 ? ONLY_NONDENOMINATED_NOT1000IFMN : ONLY_DENOMINATED); set > setCoinsRet2; //order the array so largest nondenom are first, then denominations, then very small inputs. sort(vCoins.rbegin(), vCoins.rend(), CompareByPriority()); BOOST_FOREACH(const COutput& out, vCoins) { //do not allow inputs less than 1 CENT if(out.tx->vout[out.i].nValue < CENT) continue; //do not allow collaterals to be selected if(IsCollateralAmount(out.tx->vout[out.i].nValue)) continue; if(fMasterNode && out.tx->vout[out.i].nValue == 1000*COIN) continue; //masternode input if(nValueRet + out.tx->vout[out.i].nValue <= nValueMax){ CTxIn vin = CTxIn(out.tx->GetHash(),out.i); int rounds = GetInputDarksendRounds(vin); if(rounds >= nDarksendRoundsMax) continue; if(rounds < nDarksendRoundsMin) continue; vin.prevPubKey = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey nValueRet += out.tx->vout[out.i].nValue; setCoinsRet.push_back(vin); setCoinsRet2.insert(make_pair(out.tx, out.i)); } } // if it's more than min, we're good to return if(nValueRet >= nValueMin) return true; return false; } bool CWallet::SelectCoinsCollateral(std::vector& setCoinsRet, int64_t& nValueRet) const { vector vCoins; //printf(" selecting coins for collateral\n"); AvailableCoins(vCoins); //printf("found coins %d\n", (int)vCoins.size()); set > setCoinsRet2; BOOST_FOREACH(const COutput& out, vCoins) { // collateral inputs will always be a multiple of DARSEND_COLLATERAL, up to five if(IsCollateralAmount(out.tx->vout[out.i].nValue)) { CTxIn vin = CTxIn(out.tx->GetHash(),out.i); vin.prevPubKey = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey nValueRet += out.tx->vout[out.i].nValue; setCoinsRet.push_back(vin); setCoinsRet2.insert(make_pair(out.tx, out.i)); return true; } } return false; } int CWallet::CountInputsWithAmount(int64_t nInputAmount) { int64_t nTotal = 0; { LOCK(cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()){ int nDepth = pcoin->GetDepthInMainChain(false); for (unsigned int i = 0; i < pcoin->vout.size(); i++) { COutput out = COutput(pcoin, i, nDepth, true); CTxIn vin = CTxIn(out.tx->GetHash(), out.i); if(out.tx->vout[out.i].nValue != nInputAmount) continue; if(!IsDenominatedAmount(pcoin->vout[i].nValue)) continue; if(IsSpent(out.tx->GetHash(), i) || IsMine(pcoin->vout[i]) != ISMINE_SPENDABLE || !IsDenominated(vin)) continue; nTotal++; } } } } return nTotal; } bool CWallet::HasCollateralInputs(bool fOnlyConfirmed) const { vector vCoins; AvailableCoins(vCoins, fOnlyConfirmed); int nFound = 0; BOOST_FOREACH(const COutput& out, vCoins) if(IsCollateralAmount(out.tx->vout[out.i].nValue)) nFound++; return nFound > 0; } bool CWallet::IsCollateralAmount(int64_t nInputAmount) const { return nInputAmount != 0 && nInputAmount % DARKSEND_COLLATERAL == 0 && nInputAmount < DARKSEND_COLLATERAL * 5 && nInputAmount > DARKSEND_COLLATERAL; } bool CWallet::CreateCollateralTransaction(CMutableTransaction& txCollateral, std::string& strReason) { /* To doublespend a collateral transaction, it will require a fee higher than this. So there's still a significant cost. */ CAmount nFeeRet = 0.001*COIN; txCollateral.vin.clear(); txCollateral.vout.clear(); CReserveKey reservekey(this); CAmount nValueIn2 = 0; std::vector vCoinsCollateral; if (!SelectCoinsCollateral(vCoinsCollateral, nValueIn2)) { strReason = "Error: Darksend requires a collateral transaction and could not locate an acceptable input!"; return false; } // make our change address CScript scriptChange; CPubKey vchPubKey; assert(reservekey.GetReservedKey(vchPubKey)); // should never fail, as we just unlocked scriptChange = GetScriptForDestination(vchPubKey.GetID()); reservekey.KeepKey(); BOOST_FOREACH(CTxIn v, vCoinsCollateral) txCollateral.vin.push_back(v); if(nValueIn2 - DARKSEND_COLLATERAL - nFeeRet > 0) { //pay collateral charge in fees CTxOut vout3 = CTxOut(nValueIn2 - DARKSEND_COLLATERAL, scriptChange); txCollateral.vout.push_back(vout3); } int vinNumber = 0; BOOST_FOREACH(CTxIn v, txCollateral.vin) { if(!SignSignature(*this, v.prevPubKey, txCollateral, vinNumber, int(SIGHASH_ALL|SIGHASH_ANYONECANPAY))) { BOOST_FOREACH(CTxIn v, vCoinsCollateral) UnlockCoin(v.prevout); strReason = "CDarksendPool::Sign - Unable to sign collateral transaction! \n"; return false; } vinNumber++; } return true; } bool CWallet::GetBudgetSystemCollateralTX(CTransaction& tx, uint256 hash, bool useIX) { CWalletTx wtx; if(GetBudgetSystemCollateralTX(wtx, hash, useIX)){ tx = (CTransaction)wtx; return true; } return false; } bool CWallet::GetBudgetSystemCollateralTX(CWalletTx& tx, uint256 hash, bool useIX) { // make our change address CReserveKey reservekey(pwalletMain); CScript scriptChange; scriptChange << OP_RETURN << ToByteVector(hash); int64_t nFeeRet = 0; std::string strFail = ""; vector< pair > vecSend; vecSend.push_back(make_pair(scriptChange, BUDGET_FEE_TX)); CCoinControl *coinControl=NULL; bool success = CreateTransaction(vecSend, tx, reservekey, nFeeRet, strFail, coinControl, ALL_COINS, useIX, (CAmount)0); if(!success){ LogPrintf("GetBudgetSystemCollateralTX: Error - %s\n", strFail); return false; } return true; } bool CWallet::ConvertList(std::vector vCoins, std::vector& vecAmounts) { BOOST_FOREACH(CTxIn i, vCoins){ if (mapWallet.count(i.prevout.hash)) { CWalletTx& wtx = mapWallet[i.prevout.hash]; if(i.prevout.n < wtx.vout.size()){ vecAmounts.push_back(wtx.vout[i.prevout.n].nValue); } } else { LogPrintf("ConvertList -- Couldn't find transaction\n"); } } return true; } bool CWallet::CreateTransaction(const vector >& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, CAmount& nFeeRet, std::string& strFailReason, const CCoinControl* coinControl, AvailableCoinsType coin_type, bool useIX, CAmount nFeePay) { if(useIX && nFeePay < CENT) nFeePay = CENT; CAmount nValue = 0; BOOST_FOREACH (const PAIRTYPE(CScript, CAmount)& s, vecSend) { if (nValue < 0) { strFailReason = _("Transaction amounts must be positive"); return false; } nValue += s.second; } if (vecSend.empty() || nValue < 0) { strFailReason = _("Transaction amounts must be positive"); return false; } wtxNew.fTimeReceivedIsTxTime = true; wtxNew.BindWallet(this); CMutableTransaction txNew; { LOCK2(cs_main, cs_wallet); { nFeeRet = 0; if(nFeePay > 0) nFeeRet = nFeePay; while (true) { txNew.vin.clear(); txNew.vout.clear(); wtxNew.fFromMe = true; CAmount nTotalValue = nValue + nFeeRet; double dPriority = 0; // vouts to the payees BOOST_FOREACH (const PAIRTYPE(CScript, CAmount)& s, vecSend) { CTxOut txout(s.second, s.first); if (txout.IsDust(::minRelayTxFee)) { strFailReason = _("Transaction amount too small"); return false; } txNew.vout.push_back(txout); } // Choose coins to use set > setCoins; CAmount nValueIn = 0; if (!SelectCoins(nTotalValue, setCoins, nValueIn, coinControl, coin_type, useIX)) { if(coin_type == ALL_COINS) { strFailReason = _("Insufficient funds."); } else if (coin_type == ONLY_NOT1000IFMN) { strFailReason = _("Unable to locate enough funds for this transaction that are not equal 1000 DASH."); } else if (coin_type == ONLY_NONDENOMINATED_NOT1000IFMN) { strFailReason = _("Unable to locate enough Darksend non-denominated funds for this transaction that are not equal 1000 DASH."); } else { strFailReason = _("Unable to locate enough Darksend denominated funds for this transaction."); strFailReason += " " + _("Darksend uses exact denominated amounts to send funds, you might simply need to anonymize some more coins."); } if(useIX){ strFailReason += " " + _("InstantX requires inputs with at least 6 confirmations, you might need to wait a few minutes and try again."); } return false; } BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins) { CAmount nCredit = pcoin.first->vout[pcoin.second].nValue; //The coin age after the next block (depth+1) is used instead of the current, //reflecting an assumption the user would accept a bit more delay for //a chance at a free transaction. //But mempool inputs might still be in the mempool, so their age stays 0 int age = pcoin.first->GetDepthInMainChain(); if (age != 0) age += 1; dPriority += (double)nCredit * age; } CAmount nChange = nValueIn - nValue - nFeeRet; //over pay for denominated transactions if(coin_type == ONLY_DENOMINATED) { nFeeRet += nChange; nChange = 0; wtxNew.mapValue["DS"] = "1"; } if (nChange > 0) { // Fill a vout to ourself // TODO: pass in scriptChange instead of reservekey so // change transaction isn't always pay-to-dash-address CScript scriptChange; // coin control: send change to custom address if (coinControl && !boost::get(&coinControl->destChange)) scriptChange = GetScriptForDestination(coinControl->destChange); // no coin control: send change to newly generated address else { // Note: We use a new key here to keep it from being obvious which side is the change. // The drawback is that by not reusing a previous key, the change may be lost if a // backup is restored, if the backup doesn't have the new private key for the change. // If we reused the old key, it would be possible to add code to look for and // rediscover unknown transactions that were written with keys of ours to recover // post-backup change. // Reserve a new key pair from key pool CPubKey vchPubKey; bool ret; ret = reservekey.GetReservedKey(vchPubKey); assert(ret); // should never fail, as we just unlocked scriptChange = GetScriptForDestination(vchPubKey.GetID()); } CTxOut newTxOut(nChange, scriptChange); // Never create dust outputs; if we would, just // add the dust to the fee. if (newTxOut.IsDust(::minRelayTxFee)) { nFeeRet += nChange; nChange = 0; reservekey.ReturnKey(); } else { // Insert change txn at random position: vector::iterator position = txNew.vout.begin()+GetRandInt(txNew.vout.size()+1); txNew.vout.insert(position, newTxOut); } } else reservekey.ReturnKey(); // Fill vin BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins) txNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second)); // BIP69 https://github.com/kristovatlas/bips/blob/master/bip-0069.mediawiki sort(txNew.vin.begin(), txNew.vin.end()); sort(txNew.vout.begin(), txNew.vout.end()); // Sign int nIn = 0; BOOST_FOREACH(const CTxIn& vin, txNew.vin) if (!SignSignature(*this, mapWallet[vin.prevout.hash], txNew, nIn++)) { strFailReason = _("Signing transaction failed"); return false; } // Embed the constructed transaction data in wtxNew. *static_cast(&wtxNew) = CTransaction(txNew); // Limit size unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION); if (nBytes >= MAX_STANDARD_TX_SIZE) { strFailReason = _("Transaction too large"); return false; } dPriority = wtxNew.ComputePriority(dPriority, nBytes); // Can we complete this as a free transaction? if (fSendFreeTransactions && nBytes <= MAX_FREE_TRANSACTION_CREATE_SIZE) { // Not enough fee: enough priority? double dPriorityNeeded = mempool.estimatePriority(nTxConfirmTarget); // Not enough mempool history to estimate: use hard-coded AllowFree. if (dPriorityNeeded <= 0 && AllowFree(dPriority)) break; // Small enough, and priority high enough, to send for free if (dPriorityNeeded > 0 && dPriority >= dPriorityNeeded) break; } CAmount nFeeNeeded = max(nFeePay, GetMinimumFee(nBytes, nTxConfirmTarget, mempool)); // If we made it here and we aren't even able to meet the relay fee on the next pass, give up // because we must be at the maximum allowed fee. if (nFeeNeeded < ::minRelayTxFee.GetFee(nBytes)) { strFailReason = _("Transaction too large for fee policy"); return false; } if (nFeeRet >= nFeeNeeded) // Done, enough fee included break; // Include more fee and try again. nFeeRet = nFeeNeeded; continue; } } } return true; } bool CWallet::CreateTransaction(CScript scriptPubKey, const CAmount& nValue, CWalletTx& wtxNew, CReserveKey& reservekey, CAmount& nFeeRet, std::string& strFailReason, const CCoinControl* coinControl, AvailableCoinsType coin_type, bool useIX, CAmount nFeePay) { vector< pair > vecSend; vecSend.push_back(make_pair(scriptPubKey, nValue)); return CreateTransaction(vecSend, wtxNew, reservekey, nFeeRet, strFailReason, coinControl, coin_type, useIX, nFeePay); } /** * Call after CreateTransaction unless you want to abort */ bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey, std::string strCommand) { { LOCK2(cs_main, cs_wallet); LogPrintf("CommitTransaction:\n%s", wtxNew.ToString()); { // This is only to keep the database open to defeat the auto-flush for the // duration of this scope. This is the only place where this optimization // maybe makes sense; please don't do it anywhere else. CWalletDB* pwalletdb = fFileBacked ? new CWalletDB(strWalletFile,"r") : NULL; // Take key pair from key pool so it won't be used again reservekey.KeepKey(); // Add tx to wallet, because if it has change it's also ours, // otherwise just for transaction history. AddToWallet(wtxNew); // Notify that old coins are spent set updated_hahes; BOOST_FOREACH(const CTxIn& txin, wtxNew.vin) { // notify only once if(updated_hahes.find(txin.prevout.hash) != updated_hahes.end()) continue; CWalletTx &coin = mapWallet[txin.prevout.hash]; coin.BindWallet(this); NotifyTransactionChanged(this, txin.prevout.hash, CT_UPDATED); updated_hahes.insert(txin.prevout.hash); } if (fFileBacked) delete pwalletdb; } // Track how many getdata requests our transaction gets mapRequestCount[wtxNew.GetHash()] = 0; // Broadcast if (!wtxNew.AcceptToMemoryPool(false)) { // This must not fail. The transaction has already been signed and recorded. LogPrintf("CommitTransaction() : Error: Transaction not valid\n"); return false; } wtxNew.RelayWalletTransaction(strCommand); } return true; } CAmount CWallet::GetMinimumFee(unsigned int nTxBytes, unsigned int nConfirmTarget, const CTxMemPool& pool) { // payTxFee is user-set "I want to pay this much" CAmount nFeeNeeded = payTxFee.GetFee(nTxBytes); // user selected total at least (default=true) if (fPayAtLeastCustomFee && nFeeNeeded > 0 && nFeeNeeded < payTxFee.GetFeePerK()) nFeeNeeded = payTxFee.GetFeePerK(); // User didn't set: use -txconfirmtarget to estimate... if (nFeeNeeded == 0) nFeeNeeded = pool.estimateFee(nConfirmTarget).GetFee(nTxBytes); // ... unless we don't have enough mempool data, in which case fall // back to a hard-coded fee if (nFeeNeeded == 0) nFeeNeeded = minTxFee.GetFee(nTxBytes); // prevent user from paying a non-sense fee (like 1 satoshi): 0 < fee < minRelayFee if (nFeeNeeded < ::minRelayTxFee.GetFee(nTxBytes)) nFeeNeeded = ::minRelayTxFee.GetFee(nTxBytes); // But always obey the maximum if (nFeeNeeded > maxTxFee) nFeeNeeded = maxTxFee; return nFeeNeeded; } int64_t CWallet::GetTotalValue(std::vector vCoins) { int64_t nTotalValue = 0; CWalletTx wtx; BOOST_FOREACH(CTxIn i, vCoins){ if (mapWallet.count(i.prevout.hash)) { CWalletTx& wtx = mapWallet[i.prevout.hash]; if(i.prevout.n < wtx.vout.size()){ nTotalValue += wtx.vout[i.prevout.n].nValue; } } else { LogPrintf("GetTotalValue -- Couldn't find transaction\n"); } } return nTotalValue; } string CWallet::PrepareDarksendDenominate(int minRounds, int maxRounds) { if (IsLocked()) return _("Error: Wallet locked, unable to create transaction!"); if(darkSendPool.GetState() != POOL_STATUS_ERROR && darkSendPool.GetState() != POOL_STATUS_SUCCESS) if(darkSendPool.GetEntriesCount() > 0) return _("Error: You already have pending entries in the Darksend pool"); // ** find the coins we'll use std::vector vCoins; std::vector vCoinsResult; std::vector vCoins2; int64_t nValueIn = 0; CReserveKey reservekey(this); /* Select the coins we'll use if minRounds >= 0 it means only denominated inputs are going in and coming out */ if(minRounds >= 0){ if (!SelectCoinsByDenominations(darkSendPool.sessionDenom, 0.1*COIN, DARKSEND_POOL_MAX, vCoins, vCoins2, nValueIn, minRounds, maxRounds)) return _("Error: Can't select current denominated inputs"); } LogPrintf("PrepareDarksendDenominate - preparing darksend denominate . Got: %d \n", nValueIn); { LOCK(cs_wallet); BOOST_FOREACH(CTxIn v, vCoins) LockCoin(v.prevout); } int64_t nValueLeft = nValueIn; std::vector vOut; /* TODO: Front load with needed denominations (e.g. .1, 1 ) */ // Make outputs by looping through denominations: try to add every needed denomination, repeat up to 5-10 times. // This way we can be pretty sure that it should have at least one of each needed denomination. // NOTE: No need to randomize order of inputs because they were // initially shuffled in CWallet::SelectCoinsByDenominations already. int nStep = 0; int nStepsMax = 5 + GetRandInt(5); while(nStep < nStepsMax) { BOOST_FOREACH(int64_t v, darkSendDenominations){ // only use the ones that are approved bool fAccepted = false; if((darkSendPool.sessionDenom & (1 << 0)) && v == ((100*COIN) +100000)) {fAccepted = true;} else if((darkSendPool.sessionDenom & (1 << 1)) && v == ((10*COIN) +10000)) {fAccepted = true;} else if((darkSendPool.sessionDenom & (1 << 2)) && v == ((1*COIN) +1000)) {fAccepted = true;} else if((darkSendPool.sessionDenom & (1 << 3)) && v == ((.1*COIN) +100)) {fAccepted = true;} if(!fAccepted) continue; // try to add it if(nValueLeft - v >= 0) { // Note: this relies on a fact that both vectors MUST have same size std::vector::iterator it = vCoins.begin(); std::vector::iterator it2 = vCoins2.begin(); while(it2 != vCoins2.end()) { // we have matching inputs if((*it2).tx->vout[(*it2).i].nValue == v) { // add new input in resulting vector vCoinsResult.push_back(*it); // remove corresponting items from initial vectors vCoins.erase(it); vCoins2.erase(it2); CScript scriptChange; CPubKey vchPubKey; // use a unique change address assert(reservekey.GetReservedKey(vchPubKey)); // should never fail, as we just unlocked scriptChange = GetScriptForDestination(vchPubKey.GetID()); reservekey.KeepKey(); // add new output CTxOut o(v, scriptChange); vOut.push_back(o); // subtract denomination amount nValueLeft -= v; break; } ++it; ++it2; } } } nStep++; if(nValueLeft == 0) break; } { // unlock unused coins LOCK(cs_wallet); BOOST_FOREACH(CTxIn v, vCoins) UnlockCoin(v.prevout); } if(darkSendPool.GetDenominations(vOut) != darkSendPool.sessionDenom) { // unlock used coins on failure LOCK(cs_wallet); BOOST_FOREACH(CTxIn v, vCoinsResult) UnlockCoin(v.prevout); return "Error: can't make current denominated outputs"; } // We also do not care about full amount as long as we have right denominations, just pass what we found darkSendPool.SendDarksendDenominate(vCoinsResult, vOut, nValueIn - nValueLeft); return ""; } DBErrors CWallet::LoadWallet(bool& fFirstRunRet) { if (!fFileBacked) return DB_LOAD_OK; fFirstRunRet = false; DBErrors nLoadWalletRet = CWalletDB(strWalletFile,"cr+").LoadWallet(this); if (nLoadWalletRet == DB_NEED_REWRITE) { if (CDB::Rewrite(strWalletFile, "\x04pool")) { LOCK(cs_wallet); setKeyPool.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // the requires a new key. } } if (nLoadWalletRet != DB_LOAD_OK) return nLoadWalletRet; fFirstRunRet = !vchDefaultKey.IsValid(); uiInterface.LoadWallet(this); return DB_LOAD_OK; } DBErrors CWallet::ZapWalletTx(std::vector& vWtx) { if (!fFileBacked) return DB_LOAD_OK; DBErrors nZapWalletTxRet = CWalletDB(strWalletFile,"cr+").ZapWalletTx(this, vWtx); if (nZapWalletTxRet == DB_NEED_REWRITE) { if (CDB::Rewrite(strWalletFile, "\x04pool")) { LOCK(cs_wallet); setKeyPool.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nZapWalletTxRet != DB_LOAD_OK) return nZapWalletTxRet; return DB_LOAD_OK; } bool CWallet::SetAddressBook(const CTxDestination& address, const string& strName, const string& strPurpose) { bool fUpdated = false; { LOCK(cs_wallet); // mapAddressBook std::map::iterator mi = mapAddressBook.find(address); fUpdated = mi != mapAddressBook.end(); mapAddressBook[address].name = strName; if (!strPurpose.empty()) /* update purpose only if requested */ mapAddressBook[address].purpose = strPurpose; } NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO, strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) ); if (!fFileBacked) return false; if (!strPurpose.empty() && !CWalletDB(strWalletFile).WritePurpose(CBitcoinAddress(address).ToString(), strPurpose)) return false; return CWalletDB(strWalletFile).WriteName(CBitcoinAddress(address).ToString(), strName); } bool CWallet::DelAddressBook(const CTxDestination& address) { { LOCK(cs_wallet); // mapAddressBook if(fFileBacked) { // Delete destdata tuples associated with address std::string strAddress = CBitcoinAddress(address).ToString(); BOOST_FOREACH(const PAIRTYPE(string, string) &item, mapAddressBook[address].destdata) { CWalletDB(strWalletFile).EraseDestData(strAddress, item.first); } } mapAddressBook.erase(address); } NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address) != ISMINE_NO, "", CT_DELETED); if (!fFileBacked) return false; CWalletDB(strWalletFile).ErasePurpose(CBitcoinAddress(address).ToString()); return CWalletDB(strWalletFile).EraseName(CBitcoinAddress(address).ToString()); } bool CWallet::SetDefaultKey(const CPubKey &vchPubKey) { if (fFileBacked) { if (!CWalletDB(strWalletFile).WriteDefaultKey(vchPubKey)) return false; } vchDefaultKey = vchPubKey; return true; } /** * Mark old keypool keys as used, * and generate all new keys */ bool CWallet::NewKeyPool() { { LOCK(cs_wallet); CWalletDB walletdb(strWalletFile); BOOST_FOREACH(int64_t nIndex, setKeyPool) walletdb.ErasePool(nIndex); setKeyPool.clear(); if (IsLocked()) return false; int64_t nKeys = max(GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0); for (int i = 0; i < nKeys; i++) { int64_t nIndex = i+1; walletdb.WritePool(nIndex, CKeyPool(GenerateNewKey())); setKeyPool.insert(nIndex); } LogPrintf("CWallet::NewKeyPool wrote %d new keys\n", nKeys); } return true; } bool CWallet::TopUpKeyPool(unsigned int kpSize) { { LOCK(cs_wallet); if (IsLocked()) return false; CWalletDB walletdb(strWalletFile); // Top up key pool unsigned int nTargetSize; if (kpSize > 0) nTargetSize = kpSize; else nTargetSize = max(GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0); while (setKeyPool.size() < (nTargetSize + 1)) { int64_t nEnd = 1; if (!setKeyPool.empty()) nEnd = *(--setKeyPool.end()) + 1; if (!walletdb.WritePool(nEnd, CKeyPool(GenerateNewKey()))) throw runtime_error("TopUpKeyPool() : writing generated key failed"); setKeyPool.insert(nEnd); LogPrintf("keypool added key %d, size=%u\n", nEnd, setKeyPool.size()); double dProgress = 100.f * nEnd / (nTargetSize + 1); std::string strMsg = strprintf(_("Loading wallet... (%3.2f %%)"), dProgress); uiInterface.InitMessage(strMsg); } } return true; } void CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool) { nIndex = -1; keypool.vchPubKey = CPubKey(); { LOCK(cs_wallet); if (!IsLocked()) TopUpKeyPool(); // Get the oldest key if(setKeyPool.empty()) return; CWalletDB walletdb(strWalletFile); nIndex = *(setKeyPool.begin()); setKeyPool.erase(setKeyPool.begin()); if (!walletdb.ReadPool(nIndex, keypool)) throw runtime_error("ReserveKeyFromKeyPool() : read failed"); if (!HaveKey(keypool.vchPubKey.GetID())) throw runtime_error("ReserveKeyFromKeyPool() : unknown key in key pool"); assert(keypool.vchPubKey.IsValid()); LogPrintf("keypool reserve %d\n", nIndex); } } void CWallet::KeepKey(int64_t nIndex) { // Remove from key pool if (fFileBacked) { CWalletDB walletdb(strWalletFile); walletdb.ErasePool(nIndex); } LogPrintf("keypool keep %d\n", nIndex); } void CWallet::ReturnKey(int64_t nIndex) { // Return to key pool { LOCK(cs_wallet); setKeyPool.insert(nIndex); } LogPrintf("keypool return %d\n", nIndex); } bool CWallet::GetKeyFromPool(CPubKey& result) { int64_t nIndex = 0; CKeyPool keypool; { LOCK(cs_wallet); ReserveKeyFromKeyPool(nIndex, keypool); if (nIndex == -1) { if (IsLocked()) return false; result = GenerateNewKey(); return true; } KeepKey(nIndex); result = keypool.vchPubKey; } return true; } int64_t CWallet::GetOldestKeyPoolTime() { int64_t nIndex = 0; CKeyPool keypool; ReserveKeyFromKeyPool(nIndex, keypool); if (nIndex == -1) return GetTime(); ReturnKey(nIndex); return keypool.nTime; } std::map CWallet::GetAddressBalances() { map balances; { LOCK(cs_wallet); BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet) { CWalletTx *pcoin = &walletEntry.second; if (!IsFinalTx(*pcoin) || !pcoin->IsTrusted()) continue; if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0) continue; int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? 0 : 1)) continue; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { CTxDestination addr; if (!IsMine(pcoin->vout[i])) continue; if(!ExtractDestination(pcoin->vout[i].scriptPubKey, addr)) continue; CAmount n = IsSpent(walletEntry.first, i) ? 0 : pcoin->vout[i].nValue; if (!balances.count(addr)) balances[addr] = 0; balances[addr] += n; } } } return balances; } set< set > CWallet::GetAddressGroupings() { AssertLockHeld(cs_wallet); // mapWallet set< set > groupings; set grouping; BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet) { CWalletTx *pcoin = &walletEntry.second; if (pcoin->vin.size() > 0) { bool any_mine = false; // group all input addresses with each other BOOST_FOREACH(CTxIn txin, pcoin->vin) { CTxDestination address; if(!IsMine(txin)) /* If this input isn't mine, ignore it */ continue; if(!ExtractDestination(mapWallet[txin.prevout.hash].vout[txin.prevout.n].scriptPubKey, address)) continue; grouping.insert(address); any_mine = true; } // group change with input addresses if (any_mine) { BOOST_FOREACH(CTxOut txout, pcoin->vout) if (IsChange(txout)) { CTxDestination txoutAddr; if(!ExtractDestination(txout.scriptPubKey, txoutAddr)) continue; grouping.insert(txoutAddr); } } if (grouping.size() > 0) { groupings.insert(grouping); grouping.clear(); } } // group lone addrs by themselves for (unsigned int i = 0; i < pcoin->vout.size(); i++) if (IsMine(pcoin->vout[i])) { CTxDestination address; if(!ExtractDestination(pcoin->vout[i].scriptPubKey, address)) continue; grouping.insert(address); groupings.insert(grouping); grouping.clear(); } } set< set* > uniqueGroupings; // a set of pointers to groups of addresses map< CTxDestination, set* > setmap; // map addresses to the unique group containing it BOOST_FOREACH(set grouping, groupings) { // make a set of all the groups hit by this new group set< set* > hits; map< CTxDestination, set* >::iterator it; BOOST_FOREACH(CTxDestination address, grouping) if ((it = setmap.find(address)) != setmap.end()) hits.insert((*it).second); // merge all hit groups into a new single group and delete old groups set* merged = new set(grouping); BOOST_FOREACH(set* hit, hits) { merged->insert(hit->begin(), hit->end()); uniqueGroupings.erase(hit); delete hit; } uniqueGroupings.insert(merged); // update setmap BOOST_FOREACH(CTxDestination element, *merged) setmap[element] = merged; } set< set > ret; BOOST_FOREACH(set* uniqueGrouping, uniqueGroupings) { ret.insert(*uniqueGrouping); delete uniqueGrouping; } return ret; } set CWallet::GetAccountAddresses(string strAccount) const { LOCK(cs_wallet); set result; BOOST_FOREACH(const PAIRTYPE(CTxDestination, CAddressBookData)& item, mapAddressBook) { const CTxDestination& address = item.first; const string& strName = item.second.name; if (strName == strAccount) result.insert(address); } return result; } bool CReserveKey::GetReservedKey(CPubKey& pubkey) { if (nIndex == -1) { CKeyPool keypool; pwallet->ReserveKeyFromKeyPool(nIndex, keypool); if (nIndex != -1) vchPubKey = keypool.vchPubKey; else { return false; } } assert(vchPubKey.IsValid()); pubkey = vchPubKey; return true; } void CReserveKey::KeepKey() { if (nIndex != -1) pwallet->KeepKey(nIndex); nIndex = -1; vchPubKey = CPubKey(); } void CReserveKey::ReturnKey() { if (nIndex != -1) pwallet->ReturnKey(nIndex); nIndex = -1; vchPubKey = CPubKey(); } void CWallet::GetAllReserveKeys(set& setAddress) const { setAddress.clear(); CWalletDB walletdb(strWalletFile); LOCK2(cs_main, cs_wallet); BOOST_FOREACH(const int64_t& id, setKeyPool) { CKeyPool keypool; if (!walletdb.ReadPool(id, keypool)) throw runtime_error("GetAllReserveKeyHashes() : read failed"); assert(keypool.vchPubKey.IsValid()); CKeyID keyID = keypool.vchPubKey.GetID(); if (!HaveKey(keyID)) throw runtime_error("GetAllReserveKeyHashes() : unknown key in key pool"); setAddress.insert(keyID); } } bool CWallet::UpdatedTransaction(const uint256 &hashTx) { { LOCK(cs_wallet); // Only notify UI if this transaction is in this wallet map::const_iterator mi = mapWallet.find(hashTx); if (mi != mapWallet.end()){ NotifyTransactionChanged(this, hashTx, CT_UPDATED); return true; } } return false; } void CWallet::LockCoin(COutPoint& output) { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.insert(output); } void CWallet::UnlockCoin(COutPoint& output) { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.erase(output); } void CWallet::UnlockAllCoins() { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.clear(); } bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const { AssertLockHeld(cs_wallet); // setLockedCoins COutPoint outpt(hash, n); return (setLockedCoins.count(outpt) > 0); } void CWallet::ListLockedCoins(std::vector& vOutpts) { AssertLockHeld(cs_wallet); // setLockedCoins for (std::set::iterator it = setLockedCoins.begin(); it != setLockedCoins.end(); it++) { COutPoint outpt = (*it); vOutpts.push_back(outpt); } } /** @} */ // end of Actions class CAffectedKeysVisitor : public boost::static_visitor { private: const CKeyStore &keystore; std::vector &vKeys; public: CAffectedKeysVisitor(const CKeyStore &keystoreIn, std::vector &vKeysIn) : keystore(keystoreIn), vKeys(vKeysIn) {} void Process(const CScript &script) { txnouttype type; std::vector vDest; int nRequired; if (ExtractDestinations(script, type, vDest, nRequired)) { BOOST_FOREACH(const CTxDestination &dest, vDest) boost::apply_visitor(*this, dest); } } void operator()(const CKeyID &keyId) { if (keystore.HaveKey(keyId)) vKeys.push_back(keyId); } void operator()(const CScriptID &scriptId) { CScript script; if (keystore.GetCScript(scriptId, script)) Process(script); } void operator()(const CNoDestination &none) {} }; void CWallet::GetKeyBirthTimes(std::map &mapKeyBirth) const { AssertLockHeld(cs_wallet); // mapKeyMetadata mapKeyBirth.clear(); // get birth times for keys with metadata for (std::map::const_iterator it = mapKeyMetadata.begin(); it != mapKeyMetadata.end(); it++) if (it->second.nCreateTime) mapKeyBirth[it->first] = it->second.nCreateTime; // map in which we'll infer heights of other keys CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganised; use a 144-block safety margin std::map mapKeyFirstBlock; std::set setKeys; GetKeys(setKeys); BOOST_FOREACH(const CKeyID &keyid, setKeys) { if (mapKeyBirth.count(keyid) == 0) mapKeyFirstBlock[keyid] = pindexMax; } setKeys.clear(); // if there are no such keys, we're done if (mapKeyFirstBlock.empty()) return; // find first block that affects those keys, if there are any left std::vector vAffected; for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); it++) { // iterate over all wallet transactions... const CWalletTx &wtx = (*it).second; BlockMap::const_iterator blit = mapBlockIndex.find(wtx.hashBlock); if (blit != mapBlockIndex.end() && chainActive.Contains(blit->second)) { // ... which are already in a block int nHeight = blit->second->nHeight; BOOST_FOREACH(const CTxOut &txout, wtx.vout) { // iterate over all their outputs CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey); BOOST_FOREACH(const CKeyID &keyid, vAffected) { // ... and all their affected keys std::map::iterator rit = mapKeyFirstBlock.find(keyid); if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight) rit->second = blit->second; } vAffected.clear(); } } } // Extract block timestamps for those keys for (std::map::const_iterator it = mapKeyFirstBlock.begin(); it != mapKeyFirstBlock.end(); it++) mapKeyBirth[it->first] = it->second->GetBlockTime() - 7200; // block times can be 2h off } bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { if (boost::get(&dest)) return false; mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteDestData(CBitcoinAddress(dest).ToString(), key, value); } bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key) { if (!mapAddressBook[dest].destdata.erase(key)) return false; if (!fFileBacked) return true; return CWalletDB(strWalletFile).EraseDestData(CBitcoinAddress(dest).ToString(), key); } bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); return true; } bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const { std::map::const_iterator i = mapAddressBook.find(dest); if(i != mapAddressBook.end()) { CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key); if(j != i->second.destdata.end()) { if(value) *value = j->second; return true; } } return false; } CKeyPool::CKeyPool() { nTime = GetTime(); } CKeyPool::CKeyPool(const CPubKey& vchPubKeyIn) { nTime = GetTime(); vchPubKey = vchPubKeyIn; } CWalletKey::CWalletKey(int64_t nExpires) { nTimeCreated = (nExpires ? GetTime() : 0); nTimeExpires = nExpires; } int CMerkleTx::SetMerkleBranch(const CBlock& block) { AssertLockHeld(cs_main); CBlock blockTmp; // Update the tx's hashBlock hashBlock = block.GetHash(); // Locate the transaction for (nIndex = 0; nIndex < (int)block.vtx.size(); nIndex++) if (block.vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == (int)block.vtx.size()) { vMerkleBranch.clear(); nIndex = -1; LogPrintf("ERROR: SetMerkleBranch() : couldn't find tx in block\n"); return 0; } // Fill in merkle branch vMerkleBranch = block.GetMerkleBranch(nIndex); // Is the tx in a block that's in the main chain BlockMap::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; const CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) return 0; return chainActive.Height() - pindex->nHeight + 1; } int CMerkleTx::GetDepthInMainChainINTERNAL(const CBlockIndex* &pindexRet) const { if (hashBlock == 0 || nIndex == -1) return 0; AssertLockHeld(cs_main); // Find the block it claims to be in BlockMap::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) return 0; // Make sure the merkle branch connects to this block if (!fMerkleVerified) { if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot) return 0; fMerkleVerified = true; } pindexRet = pindex; return chainActive.Height() - pindex->nHeight + 1; } int CMerkleTx::GetDepthInMainChain(const CBlockIndex* &pindexRet, bool enableIX) const { AssertLockHeld(cs_main); int nResult = GetDepthInMainChainINTERNAL(pindexRet); if (nResult == 0 && !mempool.exists(GetHash())) return -1; // Not in chain, not in mempool if(enableIX){ if (nResult < 6){ int signatures = GetTransactionLockSignatures(); if(signatures >= INSTANTX_SIGNATURES_REQUIRED){ return nInstantXDepth+nResult; } } } return nResult; } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return max(0, (COINBASE_MATURITY+1) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(bool fLimitFree, bool fRejectInsaneFee, bool ignoreFees) { CValidationState state; return ::AcceptToMemoryPool(mempool, state, *this, fLimitFree, NULL, fRejectInsaneFee, ignoreFees); } int CMerkleTx::GetTransactionLockSignatures() const { if(fLargeWorkForkFound || fLargeWorkInvalidChainFound) return -2; if(!IsSporkActive(SPORK_2_INSTANTX)) return -3; if(!fEnableInstantX) return -1; //compile consessus vote std::map::iterator i = mapTxLocks.find(GetHash()); if (i != mapTxLocks.end()){ return (*i).second.CountSignatures(); } return -1; } bool CMerkleTx::IsTransactionLockTimedOut() const { if(!fEnableInstantX) return 0; //compile consessus vote std::map::iterator i = mapTxLocks.find(GetHash()); if (i != mapTxLocks.end()){ return GetTime() > (*i).second.nTimeout; } return false; }