#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the prioritisetransaction mining RPC.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.mininode import COIN, MAX_BLOCK_SIZE class PrioritiseTransactionTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 2 self.txouts = gen_return_txouts() def setup_network(self): self.nodes = [] self.is_network_split = False self.nodes.append(start_node(0, self.options.tmpdir, ["-printpriority=1"])) self.nodes.append(start_node(1, self.options.tmpdir, ["-printpriority=1"])) # TODO move this to extra_args when Bitcoin #10198 gets backported connect_nodes(self.nodes[0], 1) # TODO remove this when Bitcoin #10198 gets backported self.relayfee = self.nodes[0].getnetworkinfo()['relayfee'] def run_test(self): utxo_count = 90 utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count) base_fee = self.relayfee*100 # our transactions are smaller than 100kb txids = [] # Create 3 batches of transactions at 3 different fee rate levels range_size = utxo_count // 3 for i in range(3): txids.append([]) start_range = i * range_size end_range = start_range + range_size txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee) # Make sure that the size of each group of transactions exceeds # MAX_BLOCK_SIZE -- otherwise the test needs to be revised to create # more transactions. mempool = self.nodes[0].getrawmempool(True) sizes = [0, 0, 0] for i in range(3): for j in txids[i]: assert(j in mempool) sizes[i] += mempool[j]['size'] assert(sizes[i] > MAX_BLOCK_SIZE) # Fail => raise utxo_count # add a fee delta to something in the cheapest bucket and make sure it gets mined # also check that a different entry in the cheapest bucket is NOT mined self.nodes[0].prioritisetransaction(txids[0][0], int(3*base_fee*COIN)) self.nodes[0].generate(1) mempool = self.nodes[0].getrawmempool() self.log.info("Assert that prioritised transaction was mined") assert(txids[0][0] not in mempool) assert(txids[0][1] in mempool) high_fee_tx = None for x in txids[2]: if x not in mempool: high_fee_tx = x # Something high-fee should have been mined! assert(high_fee_tx != None) # Add a prioritisation before a tx is in the mempool (de-prioritising a # high-fee transaction so that it's now low fee). self.nodes[0].prioritisetransaction(high_fee_tx, -int(2*base_fee*COIN)) # Add everything back to mempool self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # Check to make sure our high fee rate tx is back in the mempool mempool = self.nodes[0].getrawmempool() assert(high_fee_tx in mempool) # Now verify the modified-high feerate transaction isn't mined before # the other high fee transactions. Keep mining until our mempool has # decreased by all the high fee size that we calculated above. while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]): self.nodes[0].generate(1) # High fee transaction should not have been mined, but other high fee rate # transactions should have been. mempool = self.nodes[0].getrawmempool() self.log.info("Assert that de-prioritised transaction is still in mempool") assert(high_fee_tx in mempool) for x in txids[2]: if (x != high_fee_tx): assert(x not in mempool) # Create a free transaction. Should be rejected. utxo_list = self.nodes[0].listunspent() assert(len(utxo_list) > 0) utxo = utxo_list[0] inputs = [] outputs = {} inputs.append({"txid" : utxo["txid"], "vout" : utxo["vout"]}) outputs[self.nodes[0].getnewaddress()] = utxo["amount"] raw_tx = self.nodes[0].createrawtransaction(inputs, outputs) tx_hex = self.nodes[0].signrawtransaction(raw_tx)["hex"] tx_id = self.nodes[0].decoderawtransaction(tx_hex)["txid"] # This will raise an exception due to min relay fee not being met assert_raises_jsonrpc(-26, "66: insufficient priority", self.nodes[0].sendrawtransaction, tx2_hex) assert(tx2_id not in self.nodes[0].getrawmempool()) # This is a less than 1000-byte transaction, so just set the fee # to be the minimum for a 1000 byte transaction and check that it is # accepted. self.nodes[0].prioritisetransaction(tx_id, int(self.relayfee*COIN)) self.log.info("Assert that prioritised free transaction is accepted to mempool") assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id) assert(tx_id in self.nodes[0].getrawmempool()) # Test that calling prioritisetransaction is sufficient to trigger # getblocktemplate to (eventually) return a new block. mock_time = get_mocktime() self.nodes[0].setmocktime(mock_time) template = self.nodes[0].getblocktemplate() self.nodes[0].prioritisetransaction(tx_id, -int(self.relayfee*COIN)) self.nodes[0].setmocktime(mock_time+10) new_template = self.nodes[0].getblocktemplate() assert(template != new_template) if __name__ == '__main__': PrioritiseTransactionTest().main()