// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Copyright (c) 2014-2015 The Darkcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "main.h" #include "addrman.h" #include "alert.h" #include "chainparams.h" #include "checkpoints.h" #include "checkqueue.h" #include "init.h" #include "instantx.h" #include "darksend.h" #include "masternodeman.h" #include "net.h" #include "txdb.h" #include "txmempool.h" #include "ui_interface.h" #include "util.h" #include "spork.h" #include #include #include #include #include using namespace std; using namespace boost; #if defined(NDEBUG) # error "Darkcoin cannot be compiled without assertions." #endif // // Global state // CCriticalSection cs_main; CTxMemPool mempool; map mapBlockIndex; CChain chainActive; CChain chainMostWork; int64_t nTimeBestReceived = 0; int nScriptCheckThreads = 0; bool fImporting = false; bool fReindex = false; bool fBenchmark = false; bool fTxIndex = false; bool fLargeWorkForkFound = false; bool fLargeWorkInvalidChainFound = false; unsigned int nCoinCacheSize = 5000; /** Fees smaller than this (in satoshi) are considered zero fee (for transaction creation) */ int64_t CTransaction::nMinTxFee = 10000; // Override with -mintxfee /** Fees smaller than this (in satoshi) are considered zero fee (for relaying and mining) */ int64_t CTransaction::nMinRelayTxFee = 1000; struct COrphanBlock { uint256 hashBlock; uint256 hashPrev; vector vchBlock; }; map mapOrphanBlocks; multimap mapOrphanBlocksByPrev; struct COrphanTx { CTransaction tx; NodeId fromPeer; }; map mapOrphanTransactions; map > mapOrphanTransactionsByPrev; void EraseOrphansFor(NodeId peer); // Constant stuff for coinbase transactions we create: CScript COINBASE_FLAGS; const string strMessageMagic = "DarkCoin Signed Message:\n"; // Internal stuff namespace { struct CBlockIndexWorkComparator { bool operator()(CBlockIndex *pa, CBlockIndex *pb) { // First sort by most total work, ... if (pa->nChainWork > pb->nChainWork) return false; if (pa->nChainWork < pb->nChainWork) return true; // ... then by earliest time received, ... if (pa->nSequenceId < pb->nSequenceId) return false; if (pa->nSequenceId > pb->nSequenceId) return true; // Use pointer address as tie breaker (should only happen with blocks // loaded from disk, as those all have id 0). if (pa < pb) return false; if (pa > pb) return true; // Identical blocks. return false; } }; CBlockIndex *pindexBestInvalid; // may contain all CBlockIndex*'s that have validness >=BLOCK_VALID_TRANSACTIONS, and must contain those who aren't failed set setBlockIndexValid; CCriticalSection cs_LastBlockFile; CBlockFileInfo infoLastBlockFile; int nLastBlockFile = 0; // Every received block is assigned a unique and increasing identifier, so we // know which one to give priority in case of a fork. CCriticalSection cs_nBlockSequenceId; // Blocks loaded from disk are assigned id 0, so start the counter at 1. uint32_t nBlockSequenceId = 1; // Sources of received blocks, to be able to send them reject messages or ban // them, if processing happens afterwards. Protected by cs_main. map mapBlockSource; // Blocks that are in flight, and that are in the queue to be downloaded. // Protected by cs_main. struct QueuedBlock { uint256 hash; int64_t nTime; // Time of "getdata" request in microseconds. int nQueuedBefore; // Number of blocks in flight at the time of request. }; map::iterator> > mapBlocksInFlight; map::iterator> > mapBlocksToDownload; } ////////////////////////////////////////////////////////////////////////////// // // dispatching functions // // These functions dispatch to one or all registered wallets namespace { struct CMainSignals { // Notifies listeners of updated transaction data (passing hash, transaction, and optionally the block it is found in. boost::signals2::signal SyncTransaction; // Notifies listeners of an erased transaction (currently disabled, requires transaction replacement). boost::signals2::signal EraseTransaction; // Notifies listeners of an updated transaction without new data (for now: a coinbase potentially becoming visible). boost::signals2::signal UpdatedTransaction; // Notifies listeners of a new active block chain. boost::signals2::signal SetBestChain; // Notifies listeners about an inventory item being seen on the network. boost::signals2::signal Inventory; // Tells listeners to broadcast their data. boost::signals2::signal Broadcast; } g_signals; } void RegisterWallet(CWalletInterface* pwalletIn) { g_signals.SyncTransaction.connect(boost::bind(&CWalletInterface::SyncTransaction, pwalletIn, _1, _2, _3)); g_signals.EraseTransaction.connect(boost::bind(&CWalletInterface::EraseFromWallet, pwalletIn, _1)); g_signals.UpdatedTransaction.connect(boost::bind(&CWalletInterface::UpdatedTransaction, pwalletIn, _1)); g_signals.SetBestChain.connect(boost::bind(&CWalletInterface::SetBestChain, pwalletIn, _1)); g_signals.Inventory.connect(boost::bind(&CWalletInterface::Inventory, pwalletIn, _1)); g_signals.Broadcast.connect(boost::bind(&CWalletInterface::ResendWalletTransactions, pwalletIn)); } void UnregisterWallet(CWalletInterface* pwalletIn) { g_signals.Broadcast.disconnect(boost::bind(&CWalletInterface::ResendWalletTransactions, pwalletIn)); g_signals.Inventory.disconnect(boost::bind(&CWalletInterface::Inventory, pwalletIn, _1)); g_signals.SetBestChain.disconnect(boost::bind(&CWalletInterface::SetBestChain, pwalletIn, _1)); g_signals.UpdatedTransaction.disconnect(boost::bind(&CWalletInterface::UpdatedTransaction, pwalletIn, _1)); g_signals.EraseTransaction.disconnect(boost::bind(&CWalletInterface::EraseFromWallet, pwalletIn, _1)); g_signals.SyncTransaction.disconnect(boost::bind(&CWalletInterface::SyncTransaction, pwalletIn, _1, _2, _3)); } void UnregisterAllWallets() { g_signals.Broadcast.disconnect_all_slots(); g_signals.Inventory.disconnect_all_slots(); g_signals.SetBestChain.disconnect_all_slots(); g_signals.UpdatedTransaction.disconnect_all_slots(); g_signals.EraseTransaction.disconnect_all_slots(); g_signals.SyncTransaction.disconnect_all_slots(); } void SyncWithWallets(const uint256 &hash, const CTransaction &tx, const CBlock *pblock) { g_signals.SyncTransaction(hash, tx, pblock); } ////////////////////////////////////////////////////////////////////////////// // // Registration of network node signals. // namespace { struct CBlockReject { unsigned char chRejectCode; string strRejectReason; uint256 hashBlock; }; // Maintain validation-specific state about nodes, protected by cs_main, instead // by CNode's own locks. This simplifies asynchronous operation, where // processing of incoming data is done after the ProcessMessage call returns, // and we're no longer holding the node's locks. struct CNodeState { // Accumulated misbehaviour score for this peer. int nMisbehavior; // Whether this peer should be disconnected and banned. bool fShouldBan; // String name of this peer (debugging/logging purposes). std::string name; // List of asynchronously-determined block rejections to notify this peer about. std::vector rejects; list vBlocksInFlight; int nBlocksInFlight; list vBlocksToDownload; int nBlocksToDownload; int64_t nLastBlockReceive; int64_t nLastBlockProcess; CNodeState() { nMisbehavior = 0; fShouldBan = false; nBlocksToDownload = 0; nBlocksInFlight = 0; nLastBlockReceive = 0; nLastBlockProcess = 0; } }; // Map maintaining per-node state. Requires cs_main. map mapNodeState; // Requires cs_main. CNodeState *State(NodeId pnode) { map::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) return NULL; return &it->second; } int GetHeight() { LOCK(cs_main); return chainActive.Height(); } void InitializeNode(NodeId nodeid, const CNode *pnode) { LOCK(cs_main); CNodeState &state = mapNodeState.insert(std::make_pair(nodeid, CNodeState())).first->second; state.name = pnode->addrName; } void FinalizeNode(NodeId nodeid) { LOCK(cs_main); CNodeState *state = State(nodeid); BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight) mapBlocksInFlight.erase(entry.hash); BOOST_FOREACH(const uint256& hash, state->vBlocksToDownload) mapBlocksToDownload.erase(hash); EraseOrphansFor(nodeid); mapNodeState.erase(nodeid); } // Requires cs_main. void MarkBlockAsReceived(const uint256 &hash, NodeId nodeFrom = -1) { map::iterator> >::iterator itToDownload = mapBlocksToDownload.find(hash); if (itToDownload != mapBlocksToDownload.end()) { CNodeState *state = State(itToDownload->second.first); state->vBlocksToDownload.erase(itToDownload->second.second); state->nBlocksToDownload--; mapBlocksToDownload.erase(itToDownload); } map::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; if (itInFlight->second.first == nodeFrom) state->nLastBlockReceive = GetTimeMicros(); mapBlocksInFlight.erase(itInFlight); } } // Requires cs_main. bool AddBlockToQueue(NodeId nodeid, const uint256 &hash) { if (mapBlocksToDownload.count(hash) || mapBlocksInFlight.count(hash)) return false; CNodeState *state = State(nodeid); if (state == NULL) return false; list::iterator it = state->vBlocksToDownload.insert(state->vBlocksToDownload.end(), hash); state->nBlocksToDownload++; if (state->nBlocksToDownload > 5000) Misbehaving(nodeid, 10); mapBlocksToDownload[hash] = std::make_pair(nodeid, it); return true; } // Requires cs_main. void MarkBlockAsInFlight(NodeId nodeid, const uint256 &hash) { CNodeState *state = State(nodeid); assert(state != NULL); // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); QueuedBlock newentry = {hash, GetTimeMicros(), state->nBlocksInFlight}; if (state->nBlocksInFlight == 0) state->nLastBlockReceive = newentry.nTime; // Reset when a first request is sent. list::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), newentry); state->nBlocksInFlight++; mapBlocksInFlight[hash] = std::make_pair(nodeid, it); } } bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == NULL) return false; stats.nMisbehavior = state->nMisbehavior; return true; } void RegisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.GetHeight.connect(&GetHeight); nodeSignals.ProcessMessages.connect(&ProcessMessages); nodeSignals.SendMessages.connect(&SendMessages); nodeSignals.InitializeNode.connect(&InitializeNode); nodeSignals.FinalizeNode.connect(&FinalizeNode); } void UnregisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.GetHeight.disconnect(&GetHeight); nodeSignals.ProcessMessages.disconnect(&ProcessMessages); nodeSignals.SendMessages.disconnect(&SendMessages); nodeSignals.InitializeNode.disconnect(&InitializeNode); nodeSignals.FinalizeNode.disconnect(&FinalizeNode); } ////////////////////////////////////////////////////////////////////////////// // // CChain implementation // CBlockIndex *CChain::SetTip(CBlockIndex *pindex) { if (pindex == NULL) { vChain.clear(); return NULL; } vChain.resize(pindex->nHeight + 1); while (pindex && vChain[pindex->nHeight] != pindex) { vChain[pindex->nHeight] = pindex; pindex = pindex->pprev; } return pindex; } CBlockLocator CChain::GetLocator(const CBlockIndex *pindex) const { int nStep = 1; std::vector vHave; vHave.reserve(32); if (!pindex) pindex = Tip(); while (pindex) { vHave.push_back(pindex->GetBlockHash()); // Stop when we have added the genesis block. if (pindex->nHeight == 0) break; // Exponentially larger steps back, plus the genesis block. int nHeight = std::max(pindex->nHeight - nStep, 0); // In case pindex is not in this chain, iterate pindex->pprev to find blocks. while (pindex->nHeight > nHeight && !Contains(pindex)) pindex = pindex->pprev; // If pindex is in this chain, use direct height-based access. if (pindex->nHeight > nHeight) pindex = (*this)[nHeight]; if (vHave.size() > 10) nStep *= 2; } return CBlockLocator(vHave); } CBlockIndex *CChain::FindFork(const CBlockLocator &locator) const { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, locator.vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (Contains(pindex)) return pindex; } } return Genesis(); } CCoinsViewCache *pcoinsTip = NULL; CBlockTreeDB *pblocktree = NULL; ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // bool AddOrphanTx(const CTransaction& tx, NodeId peer) { uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return false; // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 10,000 orphans, each of which is at most 5,000 bytes big is // at most 500 megabytes of orphans: unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION); if (sz > 5000) { LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString()); return false; } mapOrphanTransactions[hash].tx = tx; mapOrphanTransactions[hash].fromPeer = peer; BOOST_FOREACH(const CTxIn& txin, tx.vin) mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash); LogPrint("mempool", "stored orphan tx %s (mapsz %u prevsz %u)\n", hash.ToString(), mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size()); return true; } void static EraseOrphanTx(uint256 hash) { map::iterator it = mapOrphanTransactions.find(hash); if (it == mapOrphanTransactions.end()) return; BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin) { map >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash); if (itPrev == mapOrphanTransactionsByPrev.end()) continue; itPrev->second.erase(hash); if (itPrev->second.empty()) mapOrphanTransactionsByPrev.erase(itPrev); } mapOrphanTransactions.erase(it); } void EraseOrphansFor(NodeId peer) { int nErased = 0; map::iterator iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { map::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid if (maybeErase->second.fromPeer == peer) { EraseOrphanTx(maybeErase->second.tx.GetHash()); ++nErased; } } if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer); } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { unsigned int nEvicted = 0; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: uint256 randomhash = GetRandHash(); map::iterator it = mapOrphanTransactions.lower_bound(randomhash); if (it == mapOrphanTransactions.end()) it = mapOrphanTransactions.begin(); EraseOrphanTx(it->first); ++nEvicted; } return nEvicted; } bool IsStandardTx(const CTransaction& tx, string& reason) { AssertLockHeld(cs_main); if (tx.nVersion > CTransaction::CURRENT_VERSION || tx.nVersion < 1) { reason = "version"; return false; } // Treat non-final transactions as non-standard to prevent a specific type // of double-spend attack, as well as DoS attacks. (if the transaction // can't be mined, the attacker isn't expending resources broadcasting it) // Basically we don't want to propagate transactions that can't included in // the next block. // // However, IsFinalTx() is confusing... Without arguments, it uses // chainActive.Height() to evaluate nLockTime; when a block is accepted, chainActive.Height() // is set to the value of nHeight in the block. However, when IsFinalTx() // is called within CBlock::AcceptBlock(), the height of the block *being* // evaluated is what is used. Thus if we want to know if a transaction can // be part of the *next* block, we need to call IsFinalTx() with one more // than chainActive.Height(). // // Timestamps on the other hand don't get any special treatment, because we // can't know what timestamp the next block will have, and there aren't // timestamp applications where it matters. if (!IsFinalTx(tx, chainActive.Height() + 1)) { reason = "non-final"; return false; } // Extremely large transactions with lots of inputs can cost the network // almost as much to process as they cost the sender in fees, because // computing signature hashes is O(ninputs*txsize). Limiting transactions // to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks. unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION); if (sz >= MAX_STANDARD_TX_SIZE) { reason = "tx-size"; return false; } BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed // keys. (remember the 520 byte limit on redeemScript size) That works // out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)=1624 // bytes of scriptSig, which we round off to 1650 bytes for some minor // future-proofing. That's also enough to spend a 20-of-20 // CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not // considered standard) if (txin.scriptSig.size() > 1650) { reason = "scriptsig-size"; return false; } if (!txin.scriptSig.IsPushOnly()) { reason = "scriptsig-not-pushonly"; return false; } if (!txin.scriptSig.HasCanonicalPushes()) { reason = "scriptsig-non-canonical-push"; return false; } } unsigned int nDataOut = 0; txnouttype whichType; BOOST_FOREACH(const CTxOut& txout, tx.vout) { if (!::IsStandard(txout.scriptPubKey, whichType)) { reason = "scriptpubkey"; return false; } if (whichType == TX_NULL_DATA) nDataOut++; else if (txout.IsDust(CTransaction::nMinRelayTxFee)) { reason = "dust"; return false; } } // only one OP_RETURN txout is permitted if (nDataOut > 1) { reason = "multi-op-return"; return false; } return true; } bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime) { AssertLockHeld(cs_main); // Time based nLockTime implemented in 0.1.6 if (tx.nLockTime == 0) return true; if (nBlockHeight == 0) nBlockHeight = chainActive.Height(); if (nBlockTime == 0) nBlockTime = GetAdjustedTime(); if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime)) return true; BOOST_FOREACH(const CTxIn& txin, tx.vin) if (!txin.IsFinal()) return false; return true; } // // Check transaction inputs, and make sure any // pay-to-script-hash transactions are evaluating IsStandard scripts // // Why bother? To avoid denial-of-service attacks; an attacker // can submit a standard HASH... OP_EQUAL transaction, // which will get accepted into blocks. The redemption // script can be anything; an attacker could use a very // expensive-to-check-upon-redemption script like: // DUP CHECKSIG DROP ... repeated 100 times... OP_1 // bool AreInputsStandard(const CTransaction& tx, CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) return true; // Coinbases don't use vin normally for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut& prev = mapInputs.GetOutputFor(tx.vin[i]); vector > vSolutions; txnouttype whichType; // get the scriptPubKey corresponding to this input: const CScript& prevScript = prev.scriptPubKey; if (!Solver(prevScript, whichType, vSolutions)) return false; int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions); if (nArgsExpected < 0) return false; // Transactions with extra stuff in their scriptSigs are // non-standard. Note that this EvalScript() call will // be quick, because if there are any operations // beside "push data" in the scriptSig the // IsStandard() call returns false vector > stack; if (!EvalScript(stack, tx.vin[i].scriptSig, tx, i, false, 0)) return false; if (whichType == TX_SCRIPTHASH) { if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); vector > vSolutions2; txnouttype whichType2; if (!Solver(subscript, whichType2, vSolutions2)) return false; if (whichType2 == TX_SCRIPTHASH) return false; int tmpExpected; tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2); if (tmpExpected < 0) return false; nArgsExpected += tmpExpected; } if (stack.size() != (unsigned int)nArgsExpected) return false; } return true; } unsigned int GetLegacySigOpCount(const CTransaction& tx) { unsigned int nSigOps = 0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } BOOST_FOREACH(const CTxOut& txout, tx.vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } unsigned int GetP2SHSigOpCount(const CTransaction& tx, CCoinsViewCache& inputs) { if (tx.IsCoinBase()) return 0; unsigned int nSigOps = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]); if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig); } return nSigOps; } int CMerkleTx::SetMerkleBranch(const CBlock* pblock) { AssertLockHeld(cs_main); CBlock blockTmp; if (pblock == NULL) { CCoins coins; if (pcoinsTip->GetCoins(GetHash(), coins)) { CBlockIndex *pindex = chainActive[coins.nHeight]; if (pindex) { if (!ReadBlockFromDisk(blockTmp, pindex)) return 0; pblock = &blockTmp; } } } if (pblock) { // Update the tx's hashBlock hashBlock = pblock->GetHash(); // Locate the transaction for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++) if (pblock->vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == (int)pblock->vtx.size()) { vMerkleBranch.clear(); nIndex = -1; LogPrintf("ERROR: SetMerkleBranch() : couldn't find tx in block\n"); return 0; } // Fill in merkle branch vMerkleBranch = pblock->GetMerkleBranch(nIndex); } // Is the tx in a block that's in the main chain map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) return 0; return chainActive.Height() - pindex->nHeight + 1; } int GetInputAge(CTxIn& vin) { // Fetch previous transactions (inputs): CCoinsView viewDummy; CCoinsViewCache view(viewDummy); { LOCK(mempool.cs); CCoinsViewCache &viewChain = *pcoinsTip; CCoinsViewMemPool viewMempool(viewChain, mempool); view.SetBackend(viewMempool); // temporarily switch cache backend to db+mempool view const uint256& prevHash = vin.prevout.hash; CCoins coins; view.GetCoins(prevHash, coins); // this is certainly allowed to fail view.SetBackend(viewDummy); // switch back to avoid locking mempool for too long } if(!view.HaveCoins(vin.prevout.hash)) return -1; const CCoins &coins = view.GetCoins(vin.prevout.hash); return (chainActive.Tip()->nHeight+1) - coins.nHeight; } bool CheckTransaction(const CTransaction& tx, CValidationState &state) { // Basic checks that don't depend on any context if (tx.vin.empty()) return state.DoS(10, error("CheckTransaction() : vin empty"), REJECT_INVALID, "bad-txns-vin-empty"); if (tx.vout.empty()) return state.DoS(10, error("CheckTransaction() : vout empty"), REJECT_INVALID, "bad-txns-vout-empty"); // Size limits if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return state.DoS(100, error("CheckTransaction() : size limits failed"), REJECT_INVALID, "bad-txns-oversize"); // Check for negative or overflow output values int64_t nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, tx.vout) { if (txout.nValue < 0) return state.DoS(100, error("CheckTransaction() : txout.nValue negative"), REJECT_INVALID, "bad-txns-vout-negative"); if (txout.nValue > MAX_MONEY) return state.DoS(100, error("CheckTransaction() : txout.nValue too high"), REJECT_INVALID, "bad-txns-vout-toolarge"); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return state.DoS(100, error("CheckTransaction() : txout total out of range"), REJECT_INVALID, "bad-txns-txouttotal-toolarge"); } // Check for duplicate inputs set vInOutPoints; BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (vInOutPoints.count(txin.prevout)) return state.DoS(100, error("CheckTransaction() : duplicate inputs"), REJECT_INVALID, "bad-txns-inputs-duplicate"); vInOutPoints.insert(txin.prevout); } if (tx.IsCoinBase()) { if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) return state.DoS(100, error("CheckTransaction() : coinbase script size"), REJECT_INVALID, "bad-cb-length"); } else { BOOST_FOREACH(const CTxIn& txin, tx.vin) if (txin.prevout.IsNull()) return state.DoS(10, error("CheckTransaction() : prevout is null"), REJECT_INVALID, "bad-txns-prevout-null"); } return true; } int64_t GetMinFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree, enum GetMinFee_mode mode) { // Base fee is either nMinTxFee or nMinRelayTxFee int64_t nBaseFee = (mode == GMF_RELAY) ? tx.nMinRelayTxFee : tx.nMinTxFee; int64_t nMinFee = (1 + (int64_t)nBytes / 1000) * nBaseFee; if (fAllowFree) { // There is a free transaction area in blocks created by most miners, // * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000 // to be considered to fall into this category. We don't want to encourage sending // multiple transactions instead of one big transaction to avoid fees. // * If we are creating a transaction we allow transactions up to 1,000 bytes // to be considered safe and assume they can likely make it into this section. if (nBytes < (mode == GMF_SEND ? 1000 : (DEFAULT_BLOCK_PRIORITY_SIZE - 1000))) nMinFee = 0; } // This code can be removed after enough miners have upgraded to version 0.9. // Until then, be safe when sending and require a fee if any output // is less than CENT: if (nMinFee < nBaseFee && mode == GMF_SEND) { BOOST_FOREACH(const CTxOut& txout, tx.vout) if (txout.nValue < CENT) nMinFee = nBaseFee; } if (!MoneyRange(nMinFee)) nMinFee = MAX_MONEY; return nMinFee; } bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree, bool* pfMissingInputs, bool fRejectInsaneFee, bool ignoreFees) { AssertLockHeld(cs_main); if (pfMissingInputs) *pfMissingInputs = false; if (!CheckTransaction(tx, state)) return error("AcceptToMemoryPool: : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (tx.IsCoinBase()) return state.DoS(100, error("AcceptToMemoryPool: : coinbase as individual tx"), REJECT_INVALID, "coinbase"); // Rather not work on nonstandard transactions (unless -testnet/-regtest) string reason; if (Params().NetworkID() == CChainParams::MAIN && !IsStandardTx(tx, reason)) return state.DoS(0, error("AcceptToMemoryPool : nonstandard transaction: %s", reason), REJECT_NONSTANDARD, reason); // is it already in the memory pool? uint256 hash = tx.GetHash(); if (pool.exists(hash)) return false; // ----------- instantX transaction scanning ----------- BOOST_FOREACH(const CTxIn& in, tx.vin){ if(mapLockedInputs.count(in.prevout)){ if(mapLockedInputs[in.prevout] != tx.GetHash()){ return state.DoS(0, error("AcceptToMemoryPool : conflicts with existing transaction lock: %s", reason), REJECT_INVALID, "tx-lock-conflict"); } } } // Check for conflicts with in-memory transactions { LOCK(pool.cs); // protect pool.mapNextTx for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (pool.mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; } } } { CCoinsView dummy; CCoinsViewCache view(dummy); { LOCK(pool.cs); CCoinsViewMemPool viewMemPool(*pcoinsTip, pool); view.SetBackend(viewMemPool); // do we already have it? if (view.HaveCoins(hash)) return false; // do all inputs exist? // Note that this does not check for the presence of actual outputs (see the next check for that), // only helps filling in pfMissingInputs (to determine missing vs spent). BOOST_FOREACH(const CTxIn txin, tx.vin) { if (!view.HaveCoins(txin.prevout.hash)) { if (pfMissingInputs) *pfMissingInputs = true; return false; } } // are the actual inputs available? if (!view.HaveInputs(tx)) return state.Invalid(error("AcceptToMemoryPool : inputs already spent"), REJECT_DUPLICATE, "bad-txns-inputs-spent"); // Bring the best block into scope view.GetBestBlock(); // we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool view.SetBackend(dummy); } // Check for non-standard pay-to-script-hash in inputs if (Params().NetworkID() == CChainParams::MAIN && !AreInputsStandard(tx, view)) return error("AcceptToMemoryPool: : nonstandard transaction input"); // Note: if you modify this code to accept non-standard transactions, then // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. int64_t nValueIn = view.GetValueIn(tx); int64_t nValueOut = tx.GetValueOut(); int64_t nFees = nValueIn-nValueOut; double dPriority = view.GetPriority(tx, chainActive.Height()); CTxMemPoolEntry entry(tx, nFees, GetTime(), dPriority, chainActive.Height()); unsigned int nSize = entry.GetTxSize(); // Don't accept it if it can't get into a block if(!ignoreFees){ int64_t txMinFee = GetMinFee(tx, nSize, true, GMF_RELAY); if (fLimitFree && nFees < txMinFee) return state.DoS(0, error("AcceptToMemoryPool : not enough fees %s, %d < %d", hash.ToString(), nFees, txMinFee), REJECT_INSUFFICIENTFEE, "insufficient fee"); // Continuously rate-limit free transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make others' transactions take longer to confirm. if (fLimitFree && nFees < CTransaction::nMinRelayTxFee) { static CCriticalSection csFreeLimiter; static double dFreeCount; static int64_t nLastTime; int64_t nNow = GetTime(); LOCK(csFreeLimiter); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000) return state.DoS(0, error("AcceptToMemoryPool : free transaction rejected by rate limiter"), REJECT_INSUFFICIENTFEE, "insufficient priority"); LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } } if (fRejectInsaneFee && nFees > CTransaction::nMinRelayTxFee * 10000) return error("AcceptToMemoryPool: : insane fees %s, %d > %d", hash.ToString(), nFees, CTransaction::nMinRelayTxFee * 10000); // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. if (!CheckInputs(tx, state, view, true, SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC | SCRIPT_VERIFY_DERSIG)) { return error("AcceptToMemoryPool: : ConnectInputs failed %s", hash.ToString()); } // Store transaction in memory pool.addUnchecked(hash, entry); } g_signals.SyncTransaction(hash, tx, NULL); return true; } bool AcceptableInputs(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool ignoreFees) { AssertLockHeld(cs_main); if (!CheckTransaction(tx, state)) return error("AcceptToMemoryPool: : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (tx.IsCoinBase()) return state.DoS(100, error("AcceptToMemoryPool: : coinbase as individual tx"), REJECT_INVALID, "coinbase"); // is it already in the memory pool? uint256 hash = tx.GetHash(); if (pool.exists(hash)) return false; // Check for conflicts with in-memory transactions { LOCK(pool.cs); // protect pool.mapNextTx for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (pool.mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; } } } { CCoinsView dummy; CCoinsViewCache view(dummy); { LOCK(pool.cs); CCoinsViewMemPool viewMemPool(*pcoinsTip, pool); view.SetBackend(viewMemPool); // do we already have it? if (view.HaveCoins(hash)) return false; // do all inputs exist? // Note that this does not check for the presence of actual outputs (see the next check for that), // only helps filling in pfMissingInputs (to determine missing vs spent). BOOST_FOREACH(const CTxIn txin, tx.vin) { if (!view.HaveCoins(txin.prevout.hash)) { return false; } } // are the actual inputs available? if (!view.HaveInputs(tx)) return state.Invalid(error("AcceptToMemoryPool : inputs already spent"), REJECT_DUPLICATE, "bad-txns-inputs-spent"); // Bring the best block into scope view.GetBestBlock(); // we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool view.SetBackend(dummy); } // Don't accept it if it can't get into a block if(!ignoreFees){ int64_t nValueIn = view.GetValueIn(tx); int64_t nValueOut = tx.GetValueOut(); int64_t nFees = nValueIn-nValueOut; double dPriority = view.GetPriority(tx, chainActive.Height()); CTxMemPoolEntry entry(tx, nFees, GetTime(), dPriority, chainActive.Height()); unsigned int nSize = entry.GetTxSize(); int64_t txMinFee = GetMinFee(tx, nSize, true, GMF_RELAY); if (nFees < txMinFee) return state.DoS(0, error("AcceptToMemoryPool : not enough fees %s, %d < %d", hash.ToString(), nFees, txMinFee), REJECT_INSUFFICIENTFEE, "insufficient fee"); // Continuously rate-limit free transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make others' transactions take longer to confirm. if (nFees < CTransaction::nMinRelayTxFee) { static CCriticalSection csFreeLimiter; static double dFreeCount; static int64_t nLastTime; int64_t nNow = GetTime(); LOCK(csFreeLimiter); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000) return state.DoS(0, error("AcceptToMemoryPool : free transaction rejected by rate limiter"), REJECT_INSUFFICIENTFEE, "insufficient priority"); LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } } // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. if (!CheckInputs(tx, state, view, false, SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC)) { return error("AcceptToMemoryPool: : ConnectInputs failed %s", hash.ToString()); } } return true; } int CMerkleTx::GetDepthInMainChainINTERNAL(CBlockIndex* &pindexRet) const { if (hashBlock == 0 || nIndex == -1) return 0; AssertLockHeld(cs_main); // Find the block it claims to be in map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) return 0; // Make sure the merkle branch connects to this block if (!fMerkleVerified) { if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot) return 0; fMerkleVerified = true; } pindexRet = pindex; return chainActive.Height() - pindex->nHeight + 1; } int CMerkleTx::GetTransactionLockSignatures() const { if(fLargeWorkForkFound || fLargeWorkInvalidChainFound) return -2; if(!IsSporkActive(SPORK_2_INSTANTX)) return -3; if(nInstantXDepth == 0) return -1; //compile consessus vote std::map::iterator i = mapTxLocks.find(GetHash()); if (i != mapTxLocks.end()){ return (*i).second.CountSignatures(); } return -1; } bool CMerkleTx::IsTransactionLockTimedOut() const { if(nInstantXDepth == 0) return 0; //compile consessus vote std::map::iterator i = mapTxLocks.find(GetHash()); if (i != mapTxLocks.end()){ return GetTime() > (*i).second.nTimeout; } return false; } int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet, bool enableIX) const { AssertLockHeld(cs_main); int nResult = GetDepthInMainChainINTERNAL(pindexRet); if (nResult == 0 && !mempool.exists(GetHash())) return -1; // Not in chain, not in mempool if(enableIX){ if (nResult < 6){ int signatures = GetTransactionLockSignatures(); if(signatures >= INSTANTX_SIGNATURES_REQUIRED){ return nInstantXDepth+nResult; } } } return nResult; } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return max(0, COINBASE_MATURITY - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(bool fLimitFree) { CValidationState state; return ::AcceptToMemoryPool(mempool, state, *this, fLimitFree, NULL); } // Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow) { CBlockIndex *pindexSlow = NULL; { LOCK(cs_main); { if (mempool.lookup(hash, txOut)) { return true; } } if (fTxIndex) { CDiskTxPos postx; if (pblocktree->ReadTxIndex(hash, postx)) { CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION); CBlockHeader header; try { file >> header; fseek(file, postx.nTxOffset, SEEK_CUR); file >> txOut; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } hashBlock = header.GetHash(); if (txOut.GetHash() != hash) return error("%s : txid mismatch", __func__); return true; } } if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it int nHeight = -1; { CCoinsViewCache &view = *pcoinsTip; CCoins coins; if (view.GetCoins(hash, coins)) nHeight = coins.nHeight; } if (nHeight > 0) pindexSlow = chainActive[nHeight]; } } if (pindexSlow) { CBlock block; if (ReadBlockFromDisk(block, pindexSlow)) { BOOST_FOREACH(const CTransaction &tx, block.vtx) { if (tx.GetHash() == hash) { txOut = tx; hashBlock = pindexSlow->GetBlockHash(); return true; } } } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos) { // Open history file to append CAutoFile fileout = CAutoFile(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (!fileout) return error("WriteBlockToDisk : OpenBlockFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(block); fileout << FLATDATA(Params().MessageStart()) << nSize; // Write block long fileOutPos = ftell(fileout); if (fileOutPos < 0) return error("WriteBlockToDisk : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << block; // Flush stdio buffers and commit to disk before returning fflush(fileout); if (!IsInitialBlockDownload()) FileCommit(fileout); return true; } bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos) { block.SetNull(); // Open history file to read CAutoFile filein = CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (!filein) return error("ReadBlockFromDisk : OpenBlockFile failed"); // Read block try { filein >> block; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits)) return error("ReadBlockFromDisk : Errors in block header"); return true; } bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex) { if (!ReadBlockFromDisk(block, pindex->GetBlockPos())) return false; if (block.GetHash() != pindex->GetBlockHash()) return error("ReadBlockFromDisk(CBlock&, CBlockIndex*) : GetHash() doesn't match index"); return true; } uint256 static GetOrphanRoot(const uint256& hash) { map::iterator it = mapOrphanBlocks.find(hash); if (it == mapOrphanBlocks.end()) return hash; // Work back to the first block in the orphan chain do { map::iterator it2 = mapOrphanBlocks.find(it->second->hashPrev); if (it2 == mapOrphanBlocks.end()) return it->first; it = it2; } while(true); } // Remove a random orphan block (which does not have any dependent orphans). void static PruneOrphanBlocks() { if (mapOrphanBlocksByPrev.size() <= (size_t)std::max((int64_t)0, GetArg("-maxorphanblocks", DEFAULT_MAX_ORPHAN_BLOCKS))) return; // Pick a random orphan block. int pos = insecure_rand() % mapOrphanBlocksByPrev.size(); std::multimap::iterator it = mapOrphanBlocksByPrev.begin(); while (pos--) it++; // As long as this block has other orphans depending on it, move to one of those successors. do { std::multimap::iterator it2 = mapOrphanBlocksByPrev.find(it->second->hashBlock); if (it2 == mapOrphanBlocksByPrev.end()) break; it = it2; } while(1); uint256 hash = it->second->hashBlock; delete it->second; mapOrphanBlocksByPrev.erase(it); mapOrphanBlocks.erase(hash); } double ConvertBitsToDouble(unsigned int nBits) { int nShift = (nBits >> 24) & 0xff; double dDiff = (double)0x0000ffff / (double)(nBits & 0x00ffffff); while (nShift < 29) { dDiff *= 256.0; nShift++; } while (nShift > 29) { dDiff /= 256.0; nShift--; } return dDiff; } int64_t GetBlockValue(int nBits, int nHeight, int64_t nFees) { double dDiff = (double)0x0000ffff / (double)(nBits & 0x00ffffff); /* fixed bug caused diff to not be correctly calculated */ if(nHeight > 4500 || TestNet()) dDiff = ConvertBitsToDouble(nBits); int64_t nSubsidy = 0; if(nHeight >= 5465) { if((nHeight >= 17000 && dDiff > 75) || nHeight >= 24000) { // GPU/ASIC difficulty calc // 2222222/(((x+2600)/9)^2) nSubsidy = (2222222.0 / (pow((dDiff+2600.0)/9.0,2.0))); if (nSubsidy > 25) nSubsidy = 25; if (nSubsidy < 5) nSubsidy = 5; } else { // CPU mining calc nSubsidy = (11111.0 / (pow((dDiff+51.0)/6.0,2.0))); if (nSubsidy > 500) nSubsidy = 500; if (nSubsidy < 25) nSubsidy = 25; } } else { nSubsidy = (1111.0 / (pow((dDiff+1.0),2.0))); if (nSubsidy > 500) nSubsidy = 500; if (nSubsidy < 1) nSubsidy = 1; } // LogPrintf("height %u diff %4.2f reward %i \n", nHeight, dDiff, nSubsidy); nSubsidy *= COIN; if(TestNet()){ for(int i = 46200; i <= nHeight; i += 210240) nSubsidy -= nSubsidy/14; } else { // yearly decline of production by 7.1% per year, projected 21.3M coins max by year 2050. for(int i = 210240; i <= nHeight; i += 210240) nSubsidy -= nSubsidy/14; } return nSubsidy + nFees; } int64_t GetMasternodePayment(int nHeight, int64_t blockValue) { int64_t ret = blockValue/5; // start at 20% if(TestNet()) { if(nHeight > 46000) ret += blockValue / 20; //25% - 2014-10-07 if(nHeight > 46000+((576*1)*1)) ret += blockValue / 20; //30% - 2014-10-08 if(nHeight > 46000+((576*1)*2)) ret += blockValue / 20; //35% - 2014-10-09 if(nHeight > 46000+((576*1)*3)) ret += blockValue / 20; //40% - 2014-10-10 if(nHeight > 46000+((576*1)*4)) ret += blockValue / 20; //45% - 2014-10-11 if(nHeight > 46000+((576*1)*5)) ret += blockValue / 20; //50% - 2014-10-12 if(nHeight > 46000+((576*1)*6)) ret += blockValue / 20; //55% - 2014-10-13 if(nHeight > 46000+((576*1)*7)) ret += blockValue / 20; //60% - 2014-10-14 } if(nHeight > 158000) ret += blockValue / 20; // 158000 - 25.0% - 2014-10-24 if(nHeight > 158000+((576*30)* 1)) ret += blockValue / 20; // 175280 - 30.0% - 2014-11-25 if(nHeight > 158000+((576*30)* 2)) ret += blockValue / 20; // 192560 - 35.0% - 2014-12-26 if(nHeight > 158000+((576*30)* 3)) ret += blockValue / 40; // 209840 - 37.5% - 2015-01-26 if(nHeight > 158000+((576*30)* 4)) ret += blockValue / 40; // 227120 - 40.0% - 2015-02-27 if(nHeight > 158000+((576*30)* 5)) ret += blockValue / 40; // 244400 - 42.5% - 2015-03-30 if(nHeight > 158000+((576*30)* 6)) ret += blockValue / 40; // 261680 - 45.0% - 2015-05-01 if(nHeight > 158000+((576*30)* 7)) ret += blockValue / 40; // 278960 - 47.5% - 2015-06-01 if(nHeight > 158000+((576*30)* 9)) ret += blockValue / 40; // 313520 - 50.0% - 2015-08-03 if(nHeight > 158000+((576*30)*11)) ret += blockValue / 40; // 348080 - 52.5% - 2015-10-05 if(nHeight > 158000+((576*30)*13)) ret += blockValue / 40; // 382640 - 55.0% - 2015-12-07 if(nHeight > 158000+((576*30)*15)) ret += blockValue / 40; // 417200 - 57.5% - 2016-02-08 if(nHeight > 158000+((576*30)*17)) ret += blockValue / 40; // 451760 - 60.0% - 2016-04-11 return ret; } static const int64_t nTargetTimespan = 24 * 60 * 60; // Darkcoin: 1 day static const int64_t nTargetSpacing = 2.5 * 60; // Darkcoin: 2.5 minutes static const int64_t nInterval = nTargetTimespan / nTargetSpacing; // 576 blocks // // minimum amount of work that could possibly be required nTime after // minimum work required was nBase // unsigned int ComputeMinWork(unsigned int nBase, int64_t nTime) { const CBigNum &bnLimit = Params().ProofOfWorkLimit(); // Testnet has min-difficulty blocks // after nTargetSpacing*2 time between blocks: if (TestNet() && nTime > nTargetSpacing*2) return bnLimit.GetCompact(); CBigNum bnResult; bnResult.SetCompact(nBase); while (nTime > 0 && bnResult < bnLimit) { // Maximum 400% adjustment... bnResult *= 4; // ... in best-case exactly 4-times-normal target time nTime -= nTargetTimespan*4; } if (bnResult > bnLimit) bnResult = bnLimit; return bnResult.GetCompact(); } unsigned int static KimotoGravityWell(const CBlockIndex* pindexLast, const CBlockHeader *pblock, uint64_t TargetBlocksSpacingSeconds, uint64_t PastBlocksMin, uint64_t PastBlocksMax) { const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; const CBlockHeader *BlockCreating = pblock; BlockCreating = BlockCreating; uint64_t PastBlocksMass = 0; int64_t PastRateActualSeconds = 0; int64_t PastRateTargetSeconds = 0; double PastRateAdjustmentRatio = double(1); CBigNum PastDifficultyAverage; CBigNum PastDifficultyAveragePrev; double EventHorizonDeviation; double EventHorizonDeviationFast; double EventHorizonDeviationSlow; if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || (uint64_t)BlockLastSolved->nHeight < PastBlocksMin) { return Params().ProofOfWorkLimit().GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } PastBlocksMass++; if (i == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); } else { PastDifficultyAverage = ((CBigNum().SetCompact(BlockReading->nBits) - PastDifficultyAveragePrev) / i) + PastDifficultyAveragePrev; } PastDifficultyAveragePrev = PastDifficultyAverage; PastRateActualSeconds = BlockLastSolved->GetBlockTime() - BlockReading->GetBlockTime(); PastRateTargetSeconds = TargetBlocksSpacingSeconds * PastBlocksMass; PastRateAdjustmentRatio = double(1); if (PastRateActualSeconds < 0) { PastRateActualSeconds = 0; } if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { PastRateAdjustmentRatio = double(PastRateTargetSeconds) / double(PastRateActualSeconds); } EventHorizonDeviation = 1 + (0.7084 * pow((double(PastBlocksMass)/double(28.2)), -1.228)); EventHorizonDeviationFast = EventHorizonDeviation; EventHorizonDeviationSlow = 1 / EventHorizonDeviation; if (PastBlocksMass >= PastBlocksMin) { if ((PastRateAdjustmentRatio <= EventHorizonDeviationSlow) || (PastRateAdjustmentRatio >= EventHorizonDeviationFast)) { assert(BlockReading); break; } } if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } CBigNum bnNew(PastDifficultyAverage); if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { bnNew *= PastRateActualSeconds; bnNew /= PastRateTargetSeconds; } if (bnNew > Params().ProofOfWorkLimit()) { bnNew = Params().ProofOfWorkLimit(); } return bnNew.GetCompact(); } unsigned int static DarkGravityWave(const CBlockIndex* pindexLast, const CBlockHeader *pblock) { /* current difficulty formula, darkcoin - DarkGravity v3, written by Evan Duffield - evan@darkcoin.io */ const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; const CBlockHeader *BlockCreating = pblock; BlockCreating = BlockCreating; int64_t nActualTimespan = 0; int64_t LastBlockTime = 0; int64_t PastBlocksMin = 24; int64_t PastBlocksMax = 24; int64_t CountBlocks = 0; CBigNum PastDifficultyAverage; CBigNum PastDifficultyAveragePrev; if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || BlockLastSolved->nHeight < PastBlocksMin) { return Params().ProofOfWorkLimit().GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } CountBlocks++; if(CountBlocks <= PastBlocksMin) { if (CountBlocks == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); } else { PastDifficultyAverage = ((PastDifficultyAveragePrev * CountBlocks)+(CBigNum().SetCompact(BlockReading->nBits))) / (CountBlocks+1); } PastDifficultyAveragePrev = PastDifficultyAverage; } if(LastBlockTime > 0){ int64_t Diff = (LastBlockTime - BlockReading->GetBlockTime()); nActualTimespan += Diff; } LastBlockTime = BlockReading->GetBlockTime(); if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } CBigNum bnNew(PastDifficultyAverage); int64_t _nTargetTimespan = CountBlocks*nTargetSpacing; if (nActualTimespan < _nTargetTimespan/3) nActualTimespan = _nTargetTimespan/3; if (nActualTimespan > _nTargetTimespan*3) nActualTimespan = _nTargetTimespan*3; // Retarget bnNew *= nActualTimespan; bnNew /= _nTargetTimespan; if (bnNew > Params().ProofOfWorkLimit()){ bnNew = Params().ProofOfWorkLimit(); } return bnNew.GetCompact(); } unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock) { unsigned int retarget = DIFF_DGW; if (!TestNet()) { if (pindexLast->nHeight + 1 >= 34140) retarget = DIFF_DGW; else if (pindexLast->nHeight + 1 >= 15200) retarget = DIFF_KGW; else retarget = DIFF_BTC; } else { if (pindexLast->nHeight + 1 >= 2000) retarget = DIFF_DGW; else retarget = DIFF_BTC; } // Default Bitcoin style retargeting if (retarget == DIFF_BTC) { unsigned int nProofOfWorkLimit = Params().ProofOfWorkLimit().GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % nInterval != 0) { // Special difficulty rule for testnet: if (TestNet()) { // If the new block's timestamp is more than 2* 10 minutes // then allow mining of a min-difficulty block. if (pblock->nTime > pindexLast->nTime + nTargetSpacing*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % nInterval != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Darkcoin: This fixes an issue where a 51% attack can change difficulty at will. // Go back the full period unless it's the first retarget after genesis. // Code courtesy of Art Forz. int blockstogoback = nInterval-1; if ((pindexLast->nHeight+1) != nInterval) blockstogoback = nInterval; // Go back by what we want to be 14 days worth of blocks const CBlockIndex* pindexFirst = pindexLast; for (int i = 0; pindexFirst && i < blockstogoback; i++) pindexFirst = pindexFirst->pprev; assert(pindexFirst); // Limit adjustment step int64_t nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime(); LogPrintf(" nActualTimespan = %d before bounds\n", nActualTimespan); if (nActualTimespan < nTargetTimespan/4) nActualTimespan = nTargetTimespan/4; if (nActualTimespan > nTargetTimespan*4) nActualTimespan = nTargetTimespan*4; // Retarget CBigNum bnNew; bnNew.SetCompact(pindexLast->nBits); bnNew *= nActualTimespan; bnNew /= nTargetTimespan; if (bnNew > Params().ProofOfWorkLimit()) bnNew = Params().ProofOfWorkLimit(); /// debug print LogPrintf("GetNextWorkRequired RETARGET\n"); LogPrintf("nTargetTimespan = %d nActualTimespan = %d\n", nTargetTimespan, nActualTimespan); LogPrintf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString()); LogPrintf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString()); return bnNew.GetCompact(); } // Retarget using Kimoto Gravity Wave else if (retarget == DIFF_KGW) { static const uint64_t blocksTargetSpacing = 2.5 * 60; // 2.5 minutes static const unsigned int timeDaySeconds = 60 * 60 * 24; uint64_t pastSecondsMin = timeDaySeconds * 0.025; uint64_t pastSecondsMax = timeDaySeconds * 7; uint64_t pastBlocksMin = pastSecondsMin / blocksTargetSpacing; uint64_t pastBlocksMax = pastSecondsMax / blocksTargetSpacing; return KimotoGravityWell(pindexLast, pblock, blocksTargetSpacing, pastBlocksMin, pastBlocksMax); } // Retarget using Dark Gravity Wave 3 else if (retarget == DIFF_DGW) { return DarkGravityWave(pindexLast, pblock); } return DarkGravityWave(pindexLast, pblock); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { CBigNum bnTarget; bnTarget.SetCompact(nBits); // Check range if (bnTarget <= 0 || bnTarget > Params().ProofOfWorkLimit()) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget.getuint256()) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } bool IsInitialBlockDownload() { LOCK(cs_main); if (fImporting || fReindex || chainActive.Height() < Checkpoints::GetTotalBlocksEstimate()) return true; static int64_t nLastUpdate; static CBlockIndex* pindexLastBest; if (chainActive.Tip() != pindexLastBest) { pindexLastBest = chainActive.Tip(); nLastUpdate = GetTime(); } return (GetTime() - nLastUpdate < 10 && chainActive.Tip()->GetBlockTime() < GetTime() - 6 * 60 * 60); // ~144 blocks behind -> 2 x fork detection time } CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL; void CheckForkWarningConditions() { AssertLockHeld(cs_main); // Before we get past initial download, we cannot reliably alert about forks // (we assume we don't get stuck on a fork before the last checkpoint) if (IsInitialBlockDownload()) return; // If our best fork is no longer within 72 blocks (+/- 3 hours if no one mines it) // of our head, drop it if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72) pindexBestForkTip = NULL; if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (chainActive.Tip()->GetBlockWork() * 6).getuint256())) { if (!fLargeWorkForkFound && pindexBestForkBase) { if(pindexBestForkBase->phashBlock){ std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") + pindexBestForkBase->phashBlock->ToString() + std::string("'"); CAlert::Notify(warning, true); } } if (pindexBestForkTip && pindexBestForkBase) { if(pindexBestForkBase->phashBlock){ LogPrintf("CheckForkWarningConditions: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n", pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(), pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString()); fLargeWorkForkFound = true; } } else { LogPrintf("CheckForkWarningConditions: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n"); fLargeWorkInvalidChainFound = true; } } else { fLargeWorkForkFound = false; fLargeWorkInvalidChainFound = false; } } void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip) { AssertLockHeld(cs_main); // If we are on a fork that is sufficiently large, set a warning flag CBlockIndex* pfork = pindexNewForkTip; CBlockIndex* plonger = chainActive.Tip(); while (pfork && pfork != plonger) { while (plonger && plonger->nHeight > pfork->nHeight) plonger = plonger->pprev; if (pfork == plonger) break; pfork = pfork->pprev; } // We define a condition which we should warn the user about as a fork of at least 7 blocks // who's tip is within 72 blocks (+/- 3 hours if no one mines it) of ours // We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network // hash rate operating on the fork. // or a chain that is entirely longer than ours and invalid (note that this should be detected by both) // We define it this way because it allows us to only store the highest fork tip (+ base) which meets // the 7-block condition and from this always have the most-likely-to-cause-warning fork if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) && pindexNewForkTip->nChainWork - pfork->nChainWork > (pfork->GetBlockWork() * 7).getuint256() && chainActive.Height() - pindexNewForkTip->nHeight < 72) { pindexBestForkTip = pindexNewForkTip; pindexBestForkBase = pfork; } CheckForkWarningConditions(); } // Requires cs_main. void Misbehaving(NodeId pnode, int howmuch) { if (howmuch == 0) return; CNodeState *state = State(pnode); if (state == NULL) return; state->nMisbehavior += howmuch; if (state->nMisbehavior >= GetArg("-banscore", 100)) { LogPrintf("Misbehaving: %s (%d -> %d) BAN THRESHOLD EXCEEDED\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior); state->fShouldBan = true; } else LogPrintf("Misbehaving: %s (%d -> %d)\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior); } void static InvalidChainFound(CBlockIndex* pindexNew) { if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork) { pindexBestInvalid = pindexNew; // The current code doesn't actually read the BestInvalidWork entry in // the block database anymore, as it is derived from the flags in block // index entry. We only write it for backward compatibility. pblocktree->WriteBestInvalidWork(CBigNum(pindexBestInvalid->nChainWork)); uiInterface.NotifyBlocksChanged(); } LogPrintf("InvalidChainFound: invalid block=%s height=%d log2_work=%.8g date=%s\n", pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexNew->GetBlockTime())); LogPrintf("InvalidChainFound: current best=%s height=%d log2_work=%.8g date=%s\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime())); CheckForkWarningConditions(); } void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) { int nDoS = 0; if (state.IsInvalid(nDoS)) { std::map::iterator it = mapBlockSource.find(pindex->GetBlockHash()); if (it != mapBlockSource.end() && State(it->second)) { CBlockReject reject = {state.GetRejectCode(), state.GetRejectReason(), pindex->GetBlockHash()}; State(it->second)->rejects.push_back(reject); if (nDoS > 0) Misbehaving(it->second, nDoS); } } if (!state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex)); setBlockIndexValid.erase(pindex); InvalidChainFound(pindex); } } void UpdateTime(CBlockHeader& block, const CBlockIndex* pindexPrev) { block.nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); // Updating time can change work required on testnet: if (TestNet()) block.nBits = GetNextWorkRequired(pindexPrev, &block); } void UpdateCoins(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight, const uint256 &txhash) { bool ret; // mark inputs spent if (!tx.IsCoinBase()) { BOOST_FOREACH(const CTxIn &txin, tx.vin) { CCoins &coins = inputs.GetCoins(txin.prevout.hash); CTxInUndo undo; ret = coins.Spend(txin.prevout, undo); assert(ret); txundo.vprevout.push_back(undo); } } // add outputs ret = inputs.SetCoins(txhash, CCoins(tx, nHeight)); assert(ret); } bool CScriptCheck::operator()() const { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; if (!VerifyScript(scriptSig, scriptPubKey, *ptxTo, nIn, nFlags, nHashType)) return error("CScriptCheck() : %s VerifySignature failed", ptxTo->GetHash().ToString()); return true; } bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType) { return CScriptCheck(txFrom, txTo, nIn, flags, nHashType)(); } bool CheckInputs(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, std::vector *pvChecks) { if (!tx.IsCoinBase()) { if (pvChecks) pvChecks->reserve(tx.vin.size()); // This doesn't trigger the DoS code on purpose; if it did, it would make it easier // for an attacker to attempt to split the network. if (!inputs.HaveInputs(tx)) return state.Invalid(error("CheckInputs() : %s inputs unavailable", tx.GetHash().ToString())); // While checking, GetBestBlock() refers to the parent block. // This is also true for mempool checks. CBlockIndex *pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second; int nSpendHeight = pindexPrev->nHeight + 1; int64_t nValueIn = 0; int64_t nFees = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins &coins = inputs.GetCoins(prevout.hash); // If prev is coinbase, check that it's matured if (coins.IsCoinBase()) { if (nSpendHeight - coins.nHeight < COINBASE_MATURITY) return state.Invalid( error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins.nHeight), REJECT_INVALID, "bad-txns-premature-spend-of-coinbase"); } // Check for negative or overflow input values nValueIn += coins.vout[prevout.n].nValue; if (!MoneyRange(coins.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return state.DoS(100, error("CheckInputs() : txin values out of range"), REJECT_INVALID, "bad-txns-inputvalues-outofrange"); } if (nValueIn < tx.GetValueOut()) return state.DoS(100, error("CheckInputs() : %s value in < value out", tx.GetHash().ToString()), REJECT_INVALID, "bad-txns-in-belowout"); // Tally transaction fees int64_t nTxFee = nValueIn - tx.GetValueOut(); if (nTxFee < 0) return state.DoS(100, error("CheckInputs() : %s nTxFee < 0", tx.GetHash().ToString()), REJECT_INVALID, "bad-txns-fee-negative"); nFees += nTxFee; if (!MoneyRange(nFees)) return state.DoS(100, error("CheckInputs() : nFees out of range"), REJECT_INVALID, "bad-txns-fee-outofrange"); // The first loop above does all the inexpensive checks. // Only if ALL inputs pass do we perform expensive ECDSA signature checks. // Helps prevent CPU exhaustion attacks. // Skip ECDSA signature verification when connecting blocks // before the last block chain checkpoint. This is safe because block merkle hashes are // still computed and checked, and any change will be caught at the next checkpoint. if (fScriptChecks) { for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins &coins = inputs.GetCoins(prevout.hash); // Verify signature CScriptCheck check(coins, tx, i, flags, 0); if (pvChecks) { pvChecks->push_back(CScriptCheck()); check.swap(pvChecks->back()); } else if (!check()) { if (flags & SCRIPT_VERIFY_STRICTENC) { // For now, check whether the failure was caused by non-canonical // encodings or not; if so, don't trigger DoS protection. CScriptCheck check(coins, tx, i, flags & (~SCRIPT_VERIFY_STRICTENC), 0); if (check()) return state.Invalid(false, REJECT_NONSTANDARD, "non-canonical"); } return state.DoS(100,false, REJECT_NONSTANDARD, "non-canonical"); } } } } return true; } bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean) { assert(pindex->GetBlockHash() == view.GetBestBlock()); if (pfClean) *pfClean = false; bool fClean = true; CBlockUndo blockUndo; CDiskBlockPos pos = pindex->GetUndoPos(); if (pos.IsNull()) return error("DisconnectBlock() : no undo data available"); if (!blockUndo.ReadFromDisk(pos, pindex->pprev->GetBlockHash())) return error("DisconnectBlock() : failure reading undo data"); if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) return error("DisconnectBlock() : block and undo data inconsistent"); // undo transactions in reverse order for (int i = block.vtx.size() - 1; i >= 0; i--) { const CTransaction &tx = block.vtx[i]; uint256 hash = tx.GetHash(); // Check that all outputs are available and match the outputs in the block itself // exactly. Note that transactions with only provably unspendable outputs won't // have outputs available even in the block itself, so we handle that case // specially with outsEmpty. CCoins outsEmpty; CCoins &outs = view.HaveCoins(hash) ? view.GetCoins(hash) : outsEmpty; outs.ClearUnspendable(); CCoins outsBlock = CCoins(tx, pindex->nHeight); // The CCoins serialization does not serialize negative numbers. // No network rules currently depend on the version here, so an inconsistency is harmless // but it must be corrected before txout nversion ever influences a network rule. if (outsBlock.nVersion < 0) outs.nVersion = outsBlock.nVersion; if (outs != outsBlock) fClean = fClean && error("DisconnectBlock() : added transaction mismatch? database corrupted"); // remove outputs outs = CCoins(); // restore inputs if (i > 0) { // not coinbases const CTxUndo &txundo = blockUndo.vtxundo[i-1]; if (txundo.vprevout.size() != tx.vin.size()) return error("DisconnectBlock() : transaction and undo data inconsistent"); for (unsigned int j = tx.vin.size(); j-- > 0;) { const COutPoint &out = tx.vin[j].prevout; const CTxInUndo &undo = txundo.vprevout[j]; CCoins coins; view.GetCoins(out.hash, coins); // this can fail if the prevout was already entirely spent if (undo.nHeight != 0) { // undo data contains height: this is the last output of the prevout tx being spent if (!coins.IsPruned()) fClean = fClean && error("DisconnectBlock() : undo data overwriting existing transaction"); coins = CCoins(); coins.fCoinBase = undo.fCoinBase; coins.nHeight = undo.nHeight; coins.nVersion = undo.nVersion; } else { if (coins.IsPruned()) fClean = fClean && error("DisconnectBlock() : undo data adding output to missing transaction"); } if (coins.IsAvailable(out.n)) fClean = fClean && error("DisconnectBlock() : undo data overwriting existing output"); if (coins.vout.size() < out.n+1) coins.vout.resize(out.n+1); coins.vout[out.n] = undo.txout; if (!view.SetCoins(out.hash, coins)) return error("DisconnectBlock() : cannot restore coin inputs"); } } } // move best block pointer to prevout block view.SetBestBlock(pindex->pprev->GetBlockHash()); if (pfClean) { *pfClean = fClean; return true; } else { return fClean; } } void static FlushBlockFile(bool fFinalize = false) { LOCK(cs_LastBlockFile); CDiskBlockPos posOld(nLastBlockFile, 0); FILE *fileOld = OpenBlockFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, infoLastBlockFile.nSize); FileCommit(fileOld); fclose(fileOld); } fileOld = OpenUndoFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, infoLastBlockFile.nUndoSize); FileCommit(fileOld); fclose(fileOld); } } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize); static CCheckQueue scriptcheckqueue(128); void ThreadScriptCheck() { RenameThread("darkcoin-scriptch"); scriptcheckqueue.Thread(); } bool ConnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool fJustCheck) { AssertLockHeld(cs_main); // Check it again in case a previous version let a bad block in if (!CheckBlock(block, state, !fJustCheck, !fJustCheck)) return false; // verify that the view's current state corresponds to the previous block uint256 hashPrevBlock = pindex->pprev == NULL ? uint256(0) : pindex->pprev->GetBlockHash(); assert(hashPrevBlock == view.GetBestBlock()); // Special case for the genesis block, skipping connection of its transactions // (its coinbase is unspendable) if (block.GetHash() == Params().HashGenesisBlock()) { view.SetBestBlock(pindex->GetBlockHash()); return true; } bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate(); // Do not allow blocks that contain transactions which 'overwrite' older transactions, // unless those are already completely spent. // If such overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- even after // being sent to another address. // See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information. // This logic is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. // This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC. // Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the // two in the chain that violate it. This prevents exploiting the issue against nodes in their // initial block download. bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash. !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) || (pindex->nHeight==91880 && pindex->GetBlockHash() == uint256("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721"))); if (fEnforceBIP30) { for (unsigned int i = 0; i < block.vtx.size(); i++) { uint256 hash = block.GetTxHash(i); if (view.HaveCoins(hash) && !view.GetCoins(hash).IsPruned()) return state.DoS(100, error("ConnectBlock() : tried to overwrite transaction"), REJECT_INVALID, "bad-txns-BIP30"); } } // BIP16 didn't become active until Apr 1 2012 int64_t nBIP16SwitchTime = 1333238400; bool fStrictPayToScriptHash = (pindex->nTime >= nBIP16SwitchTime); unsigned int flags = SCRIPT_VERIFY_NOCACHE | (fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE); if (block.nVersion >= 3 && ((!TestNet() && CBlockIndex::IsSuperMajority(3, pindex->pprev, 750, 1000)) || (TestNet() && CBlockIndex::IsSuperMajority(3, pindex->pprev, 51, 100)))) { flags |= SCRIPT_VERIFY_DERSIG; } CBlockUndo blockundo; CCheckQueueControl control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL); int64_t nStart = GetTimeMicros(); int64_t nFees = 0; int nInputs = 0; unsigned int nSigOps = 0; CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size())); std::vector > vPos; vPos.reserve(block.vtx.size()); for (unsigned int i = 0; i < block.vtx.size(); i++) { const CTransaction &tx = block.vtx[i]; nInputs += tx.vin.size(); nSigOps += GetLegacySigOpCount(tx); if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("ConnectBlock() : too many sigops"), REJECT_INVALID, "bad-blk-sigops"); if (!tx.IsCoinBase()) { if (!view.HaveInputs(tx)) return state.DoS(100, error("ConnectBlock() : inputs missing/spent"), REJECT_INVALID, "bad-txns-inputs-missingorspent"); if (fStrictPayToScriptHash) { // Add in sigops done by pay-to-script-hash inputs; // this is to prevent a "rogue miner" from creating // an incredibly-expensive-to-validate block. nSigOps += GetP2SHSigOpCount(tx, view); if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("ConnectBlock() : too many sigops"), REJECT_INVALID, "bad-blk-sigops"); } nFees += view.GetValueIn(tx)-tx.GetValueOut(); std::vector vChecks; if (!CheckInputs(tx, state, view, fScriptChecks, flags, nScriptCheckThreads ? &vChecks : NULL)) return false; control.Add(vChecks); } CTxUndo txundo; UpdateCoins(tx, state, view, txundo, pindex->nHeight, block.GetTxHash(i)); if (!tx.IsCoinBase()) blockundo.vtxundo.push_back(txundo); vPos.push_back(std::make_pair(block.GetTxHash(i), pos)); pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION); } int64_t nTime = GetTimeMicros() - nStart; if (fBenchmark) LogPrintf("- Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin)\n", (unsigned)block.vtx.size(), 0.001 * nTime, 0.001 * nTime / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * nTime / (nInputs-1)); if (block.vtx[0].GetValueOut() > GetBlockValue(pindex->pprev->nBits, pindex->pprev->nHeight, nFees)) return state.DoS(100, error("ConnectBlock() : coinbase pays too much (actual=%d vs limit=%d)", block.vtx[0].GetValueOut(), GetBlockValue(pindex->pprev->nBits, pindex->pprev->nHeight, nFees)), REJECT_INVALID, "bad-cb-amount"); if (!control.Wait()) return state.DoS(100, false); int64_t nTime2 = GetTimeMicros() - nStart; if (fBenchmark) LogPrintf("- Verify %u txins: %.2fms (%.3fms/txin)\n", nInputs - 1, 0.001 * nTime2, nInputs <= 1 ? 0 : 0.001 * nTime2 / (nInputs-1)); if (fJustCheck) return true; // Write undo information to disk if (pindex->GetUndoPos().IsNull() || (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) { if (pindex->GetUndoPos().IsNull()) { CDiskBlockPos pos; if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40)) return error("ConnectBlock() : FindUndoPos failed"); if (!blockundo.WriteToDisk(pos, pindex->pprev->GetBlockHash())) return state.Abort(_("Failed to write undo data")); // update nUndoPos in block index pindex->nUndoPos = pos.nPos; pindex->nStatus |= BLOCK_HAVE_UNDO; } pindex->nStatus = (pindex->nStatus & ~BLOCK_VALID_MASK) | BLOCK_VALID_SCRIPTS; CDiskBlockIndex blockindex(pindex); if (!pblocktree->WriteBlockIndex(blockindex)) return state.Abort(_("Failed to write block index")); } if (fTxIndex) if (!pblocktree->WriteTxIndex(vPos)) return state.Abort(_("Failed to write transaction index")); // add this block to the view's block chain bool ret; ret = view.SetBestBlock(pindex->GetBlockHash()); assert(ret); // Watch for transactions paying to me for (unsigned int i = 0; i < block.vtx.size(); i++) g_signals.SyncTransaction(block.GetTxHash(i), block.vtx[i], &block); return true; } // Update the on-disk chain state. bool static WriteChainState(CValidationState &state) { static int64_t nLastWrite = 0; if (!IsInitialBlockDownload() || pcoinsTip->GetCacheSize() > nCoinCacheSize || GetTimeMicros() > nLastWrite + 600*1000000) { // Typical CCoins structures on disk are around 100 bytes in size. // Pushing a new one to the database can cause it to be written // twice (once in the log, and once in the tables). This is already // an overestimation, as most will delete an existing entry or // overwrite one. Still, use a conservative safety factor of 2. if (!CheckDiskSpace(100 * 2 * 2 * pcoinsTip->GetCacheSize())) return state.Error("out of disk space"); FlushBlockFile(); pblocktree->Sync(); if (!pcoinsTip->Flush()) return state.Abort(_("Failed to write to coin database")); nLastWrite = GetTimeMicros(); } return true; } // Update chainActive and related internal data structures. void static UpdateTip(CBlockIndex *pindexNew) { chainActive.SetTip(pindexNew); // Update best block in wallet (so we can detect restored wallets) bool fIsInitialDownload = IsInitialBlockDownload(); if ((chainActive.Height() % 20160) == 0 || (!fIsInitialDownload && (chainActive.Height() % 144) == 0)) g_signals.SetBestChain(chainActive.GetLocator()); // New best block nTimeBestReceived = GetTime(); mempool.AddTransactionsUpdated(1); LogPrintf("UpdateTip: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), Checkpoints::GuessVerificationProgress(chainActive.Tip())); // Check the version of the last 100 blocks to see if we need to upgrade: if (!fIsInitialDownload) { int nUpgraded = 0; const CBlockIndex* pindex = chainActive.Tip(); for (int i = 0; i < 100 && pindex != NULL; i++) { if (pindex->nVersion > CBlock::CURRENT_VERSION) ++nUpgraded; pindex = pindex->pprev; } if (nUpgraded > 0) LogPrintf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, (int)CBlock::CURRENT_VERSION); if (nUpgraded > 100/2) // strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user: strMiscWarning = _("Warning: This version is obsolete, upgrade required!"); } } // Disconnect chainActive's tip. bool static DisconnectTip(CValidationState &state) { CBlockIndex *pindexDelete = chainActive.Tip(); assert(pindexDelete); mempool.check(pcoinsTip); // Read block from disk. CBlock block; if (!ReadBlockFromDisk(block, pindexDelete)) return state.Abort(_("Failed to read block")); // Apply the block atomically to the chain state. int64_t nStart = GetTimeMicros(); { CCoinsViewCache view(*pcoinsTip, true); if (!DisconnectBlock(block, state, pindexDelete, view)) return error("DisconnectTip() : DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString()); assert(view.Flush()); } if (fBenchmark) LogPrintf("- Disconnect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Write the chain state to disk, if necessary. if (!WriteChainState(state)) return false; // Resurrect mempool transactions from the disconnected block. BOOST_FOREACH(const CTransaction &tx, block.vtx) { // ignore validation errors in resurrected transactions list removed; CValidationState stateDummy; if (!tx.IsCoinBase()) if (!AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL)) mempool.remove(tx, removed, true); } mempool.check(pcoinsTip); // Update chainActive and related variables. UpdateTip(pindexDelete->pprev); // Let wallets know transactions went from 1-confirmed to // 0-confirmed or conflicted: BOOST_FOREACH(const CTransaction &tx, block.vtx) { SyncWithWallets(tx.GetHash(), tx, NULL); } return true; } // Connect a new block to chainActive. bool static ConnectTip(CValidationState &state, CBlockIndex *pindexNew) { assert(pindexNew->pprev == chainActive.Tip()); mempool.check(pcoinsTip); // Read block from disk. CBlock block; if (!ReadBlockFromDisk(block, pindexNew)) return state.Abort(_("Failed to read block")); // Apply the block atomically to the chain state. int64_t nStart = GetTimeMicros(); { CCoinsViewCache view(*pcoinsTip, true); CInv inv(MSG_BLOCK, pindexNew->GetBlockHash()); if (!ConnectBlock(block, state, pindexNew, view)) { if (state.IsInvalid()) InvalidBlockFound(pindexNew, state); return error("ConnectTip() : ConnectBlock %s failed", pindexNew->GetBlockHash().ToString()); } mapBlockSource.erase(inv.hash); assert(view.Flush()); } if (fBenchmark) LogPrintf("- Connect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Write the chain state to disk, if necessary. if (!WriteChainState(state)) return false; // Remove conflicting transactions from the mempool. list txConflicted; BOOST_FOREACH(const CTransaction &tx, block.vtx) { list unused; mempool.remove(tx, unused); mempool.removeConflicts(tx, txConflicted); } mempool.check(pcoinsTip); // Update chainActive & related variables. UpdateTip(pindexNew); // Tell wallet about transactions that went from mempool // to conflicted: BOOST_FOREACH(const CTransaction &tx, txConflicted) { SyncWithWallets(tx.GetHash(), tx, NULL); } // ... and about transactions that got confirmed: BOOST_FOREACH(const CTransaction &tx, block.vtx) { SyncWithWallets(tx.GetHash(), tx, &block); } return true; } bool DisconnectBlocksAndReprocess(int blocks) { LOCK(cs_main); CValidationState state; LogPrintf("DisconnectBlocksAndReprocess: Got command to replay %d blocks", blocks); for(int i = 0; i <= blocks; i++) DisconnectTip(state); return true; } /* DisconnectBlockAndInputs Remove conflicting blocks for successful InstantX transaction locks This should be very rare (Probably will never happen) */ bool DisconnectBlockAndInputs(CValidationState &state, CTransaction txLock) { // All modifications to the coin state will be done in this cache. // Only when all have succeeded, we push it to pcoinsTip. CCoinsViewCache view(*pcoinsTip, true); CBlockIndex* BlockReading = chainActive.Tip(); CBlockIndex* pindexNew = NULL; bool foundConflictingTx = false; //remove anything conflicting in the memory pool list txConflicted; mempool.removeConflicts(txLock, txConflicted); // List of what to disconnect (typically nothing) vector vDisconnect; for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0 && !foundConflictingTx && i < 6; i++) { vDisconnect.push_back(BlockReading); pindexNew = BlockReading->pprev; //new best block CBlock block; if (!ReadBlockFromDisk(block, BlockReading)) return state.Abort(_("Failed to read block")); // Queue memory transactions to resurrect. // We only do this for blocks after the last checkpoint (reorganisation before that // point should only happen with -reindex/-loadblock, or a misbehaving peer. BOOST_FOREACH(const CTransaction& tx, block.vtx){ if (!tx.IsCoinBase()){ BOOST_FOREACH(const CTxIn& in1, txLock.vin){ BOOST_FOREACH(const CTxIn& in2, tx.vin){ if(in1.prevout == in2.prevout) foundConflictingTx = true; } } } } if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } if(!foundConflictingTx) { LogPrintf("DisconnectBlockAndInputs: Can't find a conflicting transaction to inputs\n"); return false; } if (vDisconnect.size() > 0) { LogPrintf("REORGANIZE: Disconnect Conflicting Blocks %lli blocks; %s..\n", vDisconnect.size(), pindexNew->GetBlockHash().ToString().c_str()); BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) { LogPrintf(" -- disconnect %s\n", pindex->GetBlockHash().ToString().c_str()); DisconnectTip(state); } } return true; } // Make chainMostWork correspond to the chain with the most work in it, that isn't // known to be invalid (it's however far from certain to be valid). void static FindMostWorkChain() { CBlockIndex *pindexNew = NULL; // In case the current best is invalid, do not consider it. while (chainMostWork.Tip() && (chainMostWork.Tip()->nStatus & BLOCK_FAILED_MASK)) { setBlockIndexValid.erase(chainMostWork.Tip()); chainMostWork.SetTip(chainMostWork.Tip()->pprev); } do { // Find the best candidate header. { std::set::reverse_iterator it = setBlockIndexValid.rbegin(); if (it == setBlockIndexValid.rend()) return; pindexNew = *it; } // Check whether all blocks on the path between the currently active chain and the candidate are valid. // Just going until the active chain is an optimization, as we know all blocks in it are valid already. CBlockIndex *pindexTest = pindexNew; bool fInvalidAncestor = false; while (pindexTest && !chainActive.Contains(pindexTest)) { if (pindexTest->nStatus & BLOCK_FAILED_MASK) { // Candidate has an invalid ancestor, remove entire chain from the set. if (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork) pindexBestInvalid = pindexNew; CBlockIndex *pindexFailed = pindexNew; while (pindexTest != pindexFailed) { pindexFailed->nStatus |= BLOCK_FAILED_CHILD; setBlockIndexValid.erase(pindexFailed); pindexFailed = pindexFailed->pprev; } fInvalidAncestor = true; break; } pindexTest = pindexTest->pprev; } if (fInvalidAncestor) continue; break; } while(true); // Check whether it's actually an improvement. if (chainMostWork.Tip() && !CBlockIndexWorkComparator()(chainMostWork.Tip(), pindexNew)) return; // We have a new best. chainMostWork.SetTip(pindexNew); } // Try to activate to the most-work chain (thereby connecting it). bool ActivateBestChain(CValidationState &state) { LOCK(cs_main); CBlockIndex *pindexOldTip = chainActive.Tip(); bool fComplete = false; while (!fComplete) { FindMostWorkChain(); fComplete = true; // Check whether we have something to do. if (chainMostWork.Tip() == NULL) break; // Disconnect active blocks which are no longer in the best chain. while (chainActive.Tip() && !chainMostWork.Contains(chainActive.Tip())) { if (!DisconnectTip(state)) return false; } // Connect new blocks. while (!chainActive.Contains(chainMostWork.Tip())) { CBlockIndex *pindexConnect = chainMostWork[chainActive.Height() + 1]; if (!ConnectTip(state, pindexConnect)) { if (state.IsInvalid()) { // The block violates a consensus rule. if (!state.CorruptionPossible()) InvalidChainFound(chainMostWork.Tip()); fComplete = false; state = CValidationState(); break; } else { // A system error occurred (disk space, database error, ...). return false; } } } } if (chainActive.Tip() != pindexOldTip) { std::string strCmd = GetArg("-blocknotify", ""); if (!IsInitialBlockDownload() && !strCmd.empty()) { boost::replace_all(strCmd, "%s", chainActive.Tip()->GetBlockHash().GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } } return true; } bool AddToBlockIndex(CBlock& block, CValidationState& state, const CDiskBlockPos& pos) { // Check for duplicate uint256 hash = block.GetHash(); if (mapBlockIndex.count(hash)) return state.Invalid(error("AddToBlockIndex() : %s already exists", hash.ToString()), 0, "duplicate"); // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(block); assert(pindexNew); { LOCK(cs_nBlockSequenceId); pindexNew->nSequenceId = nBlockSequenceId++; } map::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); map::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; } pindexNew->nTx = block.vtx.size(); pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + pindexNew->GetBlockWork().getuint256(); pindexNew->nChainTx = (pindexNew->pprev ? pindexNew->pprev->nChainTx : 0) + pindexNew->nTx; pindexNew->nFile = pos.nFile; pindexNew->nDataPos = pos.nPos; pindexNew->nUndoPos = 0; pindexNew->nStatus = BLOCK_VALID_TRANSACTIONS | BLOCK_HAVE_DATA; setBlockIndexValid.insert(pindexNew); if (!pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew))) return state.Abort(_("Failed to write block index")); // New best? if (!ActivateBestChain(state)) return false; LOCK(cs_main); if (pindexNew == chainActive.Tip()) { // Clear fork warning if its no longer applicable CheckForkWarningConditions(); // Notify UI to display prev block's coinbase if it was ours static uint256 hashPrevBestCoinBase; g_signals.UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = block.GetTxHash(0); } else CheckForkWarningConditionsOnNewFork(pindexNew); if (!pblocktree->Flush()) return state.Abort(_("Failed to sync block index")); uiInterface.NotifyBlocksChanged(); return true; } bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false) { bool fUpdatedLast = false; LOCK(cs_LastBlockFile); if (fKnown) { if (nLastBlockFile != pos.nFile) { nLastBlockFile = pos.nFile; infoLastBlockFile.SetNull(); pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); fUpdatedLast = true; } } else { while (infoLastBlockFile.nSize + nAddSize >= MAX_BLOCKFILE_SIZE) { LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, infoLastBlockFile.ToString()); FlushBlockFile(true); nLastBlockFile++; infoLastBlockFile.SetNull(); pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); // check whether data for the new file somehow already exist; can fail just fine fUpdatedLast = true; } pos.nFile = nLastBlockFile; pos.nPos = infoLastBlockFile.nSize; } infoLastBlockFile.nSize += nAddSize; infoLastBlockFile.AddBlock(nHeight, nTime); if (!fKnown) { unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; unsigned int nNewChunks = (infoLastBlockFile.nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenBlockFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } } if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile)) return state.Abort(_("Failed to write file info")); if (fUpdatedLast) pblocktree->WriteLastBlockFile(nLastBlockFile); return true; } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); unsigned int nNewSize; if (nFile == nLastBlockFile) { pos.nPos = infoLastBlockFile.nUndoSize; nNewSize = (infoLastBlockFile.nUndoSize += nAddSize); if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile)) return state.Abort(_("Failed to write block info")); } else { CBlockFileInfo info; if (!pblocktree->ReadBlockFileInfo(nFile, info)) return state.Abort(_("Failed to read block info")); pos.nPos = info.nUndoSize; nNewSize = (info.nUndoSize += nAddSize); if (!pblocktree->WriteBlockFileInfo(nFile, info)) return state.Abort(_("Failed to write block info")); } unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenUndoFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } return true; } bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW, bool fCheckMerkleRoot) { // These are checks that are independent of context // that can be verified before saving an orphan block. // Size limits if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return state.DoS(100, error("CheckBlock() : size limits failed"), REJECT_INVALID, "bad-blk-length"); // Check proof of work matches claimed amount if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits)) return state.DoS(50, error("CheckBlock() : proof of work failed"), REJECT_INVALID, "high-hash"); // Check timestamp if (block.GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60) return state.Invalid(error("CheckBlock() : block timestamp too far in the future"), REJECT_INVALID, "time-too-new"); // First transaction must be coinbase, the rest must not be if (block.vtx.empty() || !block.vtx[0].IsCoinBase()) return state.DoS(100, error("CheckBlock() : first tx is not coinbase"), REJECT_INVALID, "bad-cb-missing"); for (unsigned int i = 1; i < block.vtx.size(); i++) if (block.vtx[i].IsCoinBase()) return state.DoS(100, error("CheckBlock() : more than one coinbase"), REJECT_INVALID, "bad-cb-multiple"); // ----------- instantX transaction scanning ----------- if(IsSporkActive(SPORK_3_INSTANTX_BLOCK_FILTERING)){ BOOST_FOREACH(const CTransaction& tx, block.vtx){ if (!tx.IsCoinBase()){ //only reject blocks when it's based on complete consensus BOOST_FOREACH(const CTxIn& in, tx.vin){ if(mapLockedInputs.count(in.prevout)){ if(mapLockedInputs[in.prevout] != tx.GetHash()){ LogPrintf("CheckBlock() : found conflicting transaction with transaction lock %s %s\n", mapLockedInputs[in.prevout].ToString().c_str(), tx.GetHash().ToString().c_str()); return state.DoS(0, error("CheckBlock() : found conflicting transaction with transaction lock"), REJECT_INVALID, "conflicting-tx-ix"); } } } } } } else { LogPrintf("CheckBlock() : skipping transaction locking checks\n"); } // ----------- masternode payments ----------- bool MasternodePayments = false; if(TestNet()){ if(block.nTime > START_MASTERNODE_PAYMENTS_TESTNET) MasternodePayments = true; } else { if(block.nTime > START_MASTERNODE_PAYMENTS) MasternodePayments = true; } if(!IsSporkActive(SPORK_1_MASTERNODE_PAYMENTS_ENFORCEMENT)){ MasternodePayments = false; if(fDebug) LogPrintf("CheckBlock() : Masternode payment enforcement is off\n"); } if(MasternodePayments) { LOCK2(cs_main, mempool.cs); CBlockIndex *pindex = chainActive.Tip(); if(pindex != NULL){ if(pindex->GetBlockHash() == block.hashPrevBlock){ int64_t masternodePaymentAmount = GetMasternodePayment(pindex->nHeight+1, block.vtx[0].GetValueOut()); bool fIsInitialDownload = IsInitialBlockDownload(); // If we don't already have its previous block, skip masternode payment step if (!fIsInitialDownload && pindex != NULL) { bool foundPaymentAmount = false; bool foundPayee = false; bool foundPaymentAndPayee = false; CScript payee; if(!masternodePayments.GetBlockPayee(chainActive.Tip()->nHeight+1, payee) || payee == CScript()){ foundPayee = true; //doesn't require a specific payee foundPaymentAmount = true; foundPaymentAndPayee = true; LogPrintf("CheckBlock() : Using non-specific masternode payments %d\n", chainActive.Tip()->nHeight+1); } for (unsigned int i = 0; i < block.vtx[0].vout.size(); i++) { if(block.vtx[0].vout[i].nValue == masternodePaymentAmount ) foundPaymentAmount = true; if(block.vtx[0].vout[i].scriptPubKey == payee ) foundPayee = true; if(block.vtx[0].vout[i].nValue == masternodePaymentAmount && block.vtx[0].vout[i].scriptPubKey == payee) foundPaymentAndPayee = true; } if(!foundPaymentAndPayee) { CTxDestination address1; ExtractDestination(payee, address1); CBitcoinAddress address2(address1); LogPrintf("CheckBlock() : Couldn't find masternode payment(%d|%d) or payee(%d|%s) nHeight %d. \n", foundPaymentAmount, masternodePaymentAmount, foundPayee, address2.ToString().c_str(), chainActive.Tip()->nHeight+1); if(!RegTest()) return state.DoS(100, error("CheckBlock() : Couldn't find masternode payment or payee")); } else { LogPrintf("CheckBlock() : Found masternode payment %d\n", chainActive.Tip()->nHeight+1); } } else { LogPrintf("CheckBlock() : Is initial download, skipping masternode payment check %d\n", chainActive.Tip()->nHeight+1); } } else { LogPrintf("CheckBlock() : Skipping masternode payment check - nHeight %d Hash %s\n", chainActive.Tip()->nHeight+1, block.GetHash().ToString().c_str()); } } else { LogPrintf("CheckBlock() : pindex is null, skipping masternode payment check\n"); } } else { LogPrintf("CheckBlock() : skipping masternode payment checks\n"); } // Check transactions BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!CheckTransaction(tx, state)) return error("CheckBlock() : CheckTransaction failed"); // Build the merkle tree already. We need it anyway later, and it makes the // block cache the transaction hashes, which means they don't need to be // recalculated many times during this block's validation. block.BuildMerkleTree(); // Check for duplicate txids. This is caught by ConnectInputs(), // but catching it earlier avoids a potential DoS attack: set uniqueTx; for (unsigned int i = 0; i < block.vtx.size(); i++) { uniqueTx.insert(block.GetTxHash(i)); } if (uniqueTx.size() != block.vtx.size()) return state.DoS(100, error("CheckBlock() : duplicate transaction"), REJECT_INVALID, "bad-txns-duplicate", true); unsigned int nSigOps = 0; BOOST_FOREACH(const CTransaction& tx, block.vtx) { nSigOps += GetLegacySigOpCount(tx); } if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"), REJECT_INVALID, "bad-blk-sigops", true); // Check merkle root if (fCheckMerkleRoot && block.hashMerkleRoot != block.vMerkleTree.back()) return state.DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"), REJECT_INVALID, "bad-txnmrklroot", true); return true; } bool AcceptBlock(CBlock& block, CValidationState& state, CDiskBlockPos* dbp) { AssertLockHeld(cs_main); // Check for duplicate uint256 hash = block.GetHash(); if (mapBlockIndex.count(hash)) return state.Invalid(error("AcceptBlock() : block already in mapBlockIndex"), 0, "duplicate"); // Get prev block index CBlockIndex* pindexPrev = NULL; int nHeight = 0; if (hash != Params().HashGenesisBlock()) { map::iterator mi = mapBlockIndex.find(block.hashPrevBlock); if (mi == mapBlockIndex.end()) return state.DoS(10, error("AcceptBlock() : prev block not found"), 0, "bad-prevblk"); pindexPrev = (*mi).second; nHeight = pindexPrev->nHeight+1; if(TestNet()) { if (block.nBits != GetNextWorkRequired(pindexPrev, &block)) return state.DoS(100, error("AcceptBlock() : incorrect proof of work"), REJECT_INVALID, "bad-diffbits"); } else { // Check proof of work (Here for the architecture issues with DGW v1 and v2) if(nHeight <= 68589){ unsigned int nBitsNext = GetNextWorkRequired(pindexPrev, &block); double n1 = ConvertBitsToDouble(block.nBits); double n2 = ConvertBitsToDouble(nBitsNext); if (abs(n1-n2) > n1*0.5) return state.DoS(100, error("AcceptBlock() : incorrect proof of work (DGW pre-fork) - %f", abs(n1-n2)), REJECT_INVALID, "bad-diffbits"); } else { if (block.nBits != GetNextWorkRequired(pindexPrev, &block)) return state.DoS(100, error("AcceptBlock() : incorrect proof of work"), REJECT_INVALID, "bad-diffbits"); } } // Check timestamp against prev if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast()) return state.Invalid(error("AcceptBlock() : block's timestamp is too early"), REJECT_INVALID, "time-too-old"); // Check that all transactions are finalized BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!IsFinalTx(tx, nHeight, block.GetBlockTime())) return state.DoS(10, error("AcceptBlock() : contains a non-final transaction"), REJECT_INVALID, "bad-txns-nonfinal"); // Check that the block chain matches the known block chain up to a checkpoint if (!Checkpoints::CheckBlock(nHeight, hash)) return state.DoS(100, error("AcceptBlock() : rejected by checkpoint lock-in at %d", nHeight), REJECT_CHECKPOINT, "checkpoint mismatch"); // Don't accept any forks from the main chain prior to last checkpoint CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex); if (pcheckpoint && nHeight < pcheckpoint->nHeight) return state.DoS(100, error("AcceptBlock() : forked chain older than last checkpoint (height %d)", nHeight)); // Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded: if (block.nVersion < 2) { if ((!TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 950, 1000)) || (TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 75, 100))) { return state.Invalid(error("AcceptBlock() : rejected nVersion=1 block"), REJECT_OBSOLETE, "bad-version"); } } // Reject block.nVersion=2 blocks when 95% (75% on testnet) of the network has upgraded: if (block.nVersion < 3) { if ((!TestNet() && CBlockIndex::IsSuperMajority(3, pindexPrev, 950, 1000)) || (TestNet() && CBlockIndex::IsSuperMajority(3, pindexPrev, 75, 100))) { return state.Invalid(error("AcceptBlock() : rejected nVersion=2 block"), REJECT_OBSOLETE, "bad-version"); } } // Enforce block.nVersion=2 rule that the coinbase starts with serialized block height if (block.nVersion >= 2) { // if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet): if ((!TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 750, 1000)) || (TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 51, 100))) { CScript expect = CScript() << nHeight; if (block.vtx[0].vin[0].scriptSig.size() < expect.size() || !std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) return state.DoS(100, error("AcceptBlock() : block height mismatch in coinbase"), REJECT_INVALID, "bad-cb-height"); } } } // Write block to history file try { unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; if (dbp != NULL) blockPos = *dbp; if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.nTime, dbp != NULL)) return error("AcceptBlock() : FindBlockPos failed"); if (dbp == NULL) if (!WriteBlockToDisk(block, blockPos)) return state.Abort(_("Failed to write block")); if (!AddToBlockIndex(block, state, blockPos)) return error("AcceptBlock() : AddToBlockIndex failed"); } catch(std::runtime_error &e) { return state.Abort(_("System error: ") + e.what()); } // Relay inventory, but don't relay old inventory during initial block download int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate(); if (chainActive.Tip()->GetBlockHash() == hash) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (chainActive.Height() > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate)) pnode->PushInventory(CInv(MSG_BLOCK, hash)); } return true; } bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck) { unsigned int nFound = 0; for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++) { if (pstart->nVersion >= minVersion) ++nFound; pstart = pstart->pprev; } return (nFound >= nRequired); } int64_t CBlockIndex::GetMedianTime() const { AssertLockHeld(cs_main); const CBlockIndex* pindex = this; for (int i = 0; i < nMedianTimeSpan/2; i++) { if (!chainActive.Next(pindex)) return GetBlockTime(); pindex = chainActive.Next(pindex); } return pindex->GetMedianTimePast(); } void PushGetBlocks(CNode* pnode, CBlockIndex* pindexBegin, uint256 hashEnd) { AssertLockHeld(cs_main); // Filter out duplicate requests if (pindexBegin == pnode->pindexLastGetBlocksBegin && hashEnd == pnode->hashLastGetBlocksEnd) return; pnode->pindexLastGetBlocksBegin = pindexBegin; pnode->hashLastGetBlocksEnd = hashEnd; pnode->PushMessage("getblocks", chainActive.GetLocator(pindexBegin), hashEnd); } bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp) { AssertLockHeld(cs_main); /* block-a-block std::string s = "0000000234ebe01657601a9ed22f9e4459789d4b966b3b7f8f7cc90d1c039ee6"; if(pblock->GetHash().ToString() == s){ printf("Nope, get outta here!\n"); return false; } */ // Check for duplicate uint256 hash = pblock->GetHash(); if (mapBlockIndex.count(hash)) return state.Invalid(error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString()), 0, "duplicate"); if (mapOrphanBlocks.count(hash)) return state.Invalid(error("ProcessBlock() : already have block (orphan) %s", hash.ToString()), 0, "duplicate"); // Preliminary checks if (!CheckBlock(*pblock, state)) return error("ProcessBlock() : CheckBlock FAILED"); CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex); if (pcheckpoint && pblock->hashPrevBlock != (chainActive.Tip() ? chainActive.Tip()->GetBlockHash() : uint256(0))) { // Extra checks to prevent "fill up memory by spamming with bogus blocks" int64_t deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime; if (deltaTime < 0) { return state.DoS(100, error("ProcessBlock() : block with timestamp before last checkpoint"), REJECT_CHECKPOINT, "time-too-old"); } CBigNum bnNewBlock; bnNewBlock.SetCompact(pblock->nBits); CBigNum bnRequired; bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime)); if (bnNewBlock > bnRequired) { return state.DoS(100, error("ProcessBlock() : block with too little proof-of-work"), REJECT_INVALID, "bad-diffbits"); } } // If we don't already have its previous block, shunt it off to holding area until we get it if (pblock->hashPrevBlock != 0 && !mapBlockIndex.count(pblock->hashPrevBlock)) { LogPrintf("ProcessBlock: ORPHAN BLOCK %lu, prev=%s\n", (unsigned long)mapOrphanBlocks.size(), pblock->hashPrevBlock.ToString()); // Accept orphans as long as there is a node to request its parents from if (pfrom) { PruneOrphanBlocks(); COrphanBlock* pblock2 = new COrphanBlock(); { CDataStream ss(SER_DISK, CLIENT_VERSION); ss << *pblock; pblock2->vchBlock = std::vector(ss.begin(), ss.end()); } pblock2->hashBlock = hash; pblock2->hashPrev = pblock->hashPrevBlock; mapOrphanBlocks.insert(make_pair(hash, pblock2)); mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrev, pblock2)); // Ask this guy to fill in what we're missing PushGetBlocks(pfrom, chainActive.Tip(), GetOrphanRoot(hash)); } return true; } // Store to disk if (!AcceptBlock(*pblock, state, dbp)) return error("ProcessBlock() : AcceptBlock FAILED"); // Recursively process any orphan blocks that depended on this one vector vWorkQueue; vWorkQueue.push_back(hash); for (unsigned int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev); mi != mapOrphanBlocksByPrev.upper_bound(hashPrev); ++mi) { CBlock block; { CDataStream ss(mi->second->vchBlock, SER_DISK, CLIENT_VERSION); ss >> block; } block.BuildMerkleTree(); // Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan resolution (that is, feeding people an invalid block based on LegitBlockX in order to get anyone relaying LegitBlockX banned) CValidationState stateDummy; if (AcceptBlock(block, stateDummy)) vWorkQueue.push_back(mi->second->hashBlock); mapOrphanBlocks.erase(mi->second->hashBlock); delete mi->second; } mapOrphanBlocksByPrev.erase(hashPrev); } if(!fLiteMode){ if (!fImporting && !fReindex && chainActive.Height() > Checkpoints::GetTotalBlocksEstimate()){ darkSendPool.NewBlock(); masternodePayments.ProcessBlock(GetHeight()+10); } } LogPrintf("ProcessBlock: ACCEPTED\n"); return true; } CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter& filter) { header = block.GetBlockHeader(); vector vMatch; vector vHashes; vMatch.reserve(block.vtx.size()); vHashes.reserve(block.vtx.size()); for (unsigned int i = 0; i < block.vtx.size(); i++) { uint256 hash = block.vtx[i].GetHash(); if (filter.IsRelevantAndUpdate(block.vtx[i], hash)) { vMatch.push_back(true); vMatchedTxn.push_back(make_pair(i, hash)); } else vMatch.push_back(false); vHashes.push_back(hash); } txn = CPartialMerkleTree(vHashes, vMatch); } uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector &vTxid) { if (height == 0) { // hash at height 0 is the txids themself return vTxid[pos]; } else { // calculate left hash uint256 left = CalcHash(height-1, pos*2, vTxid), right; // calculate right hash if not beyong the end of the array - copy left hash otherwise1 if (pos*2+1 < CalcTreeWidth(height-1)) right = CalcHash(height-1, pos*2+1, vTxid); else right = left; // combine subhashes return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } } void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch) { // determine whether this node is the parent of at least one matched txid bool fParentOfMatch = false; for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++) fParentOfMatch |= vMatch[p]; // store as flag bit vBits.push_back(fParentOfMatch); if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, store hash and stop vHash.push_back(CalcHash(height, pos, vTxid)); } else { // otherwise, don't store any hash, but descend into the subtrees TraverseAndBuild(height-1, pos*2, vTxid, vMatch); if (pos*2+1 < CalcTreeWidth(height-1)) TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch); } } uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch) { if (nBitsUsed >= vBits.size()) { // overflowed the bits array - failure fBad = true; return 0; } bool fParentOfMatch = vBits[nBitsUsed++]; if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, use stored hash and do not descend if (nHashUsed >= vHash.size()) { // overflowed the hash array - failure fBad = true; return 0; } const uint256 &hash = vHash[nHashUsed++]; if (height==0 && fParentOfMatch) // in case of height 0, we have a matched txid vMatch.push_back(hash); return hash; } else { // otherwise, descend into the subtrees to extract matched txids and hashes uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch), right; if (pos*2+1 < CalcTreeWidth(height-1)) right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch); else right = left; // and combine them before returning return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } } CPartialMerkleTree::CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch) : nTransactions(vTxid.size()), fBad(false) { // reset state vBits.clear(); vHash.clear(); // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree TraverseAndBuild(nHeight, 0, vTxid, vMatch); } CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {} uint256 CPartialMerkleTree::ExtractMatches(std::vector &vMatch) { vMatch.clear(); // An empty set will not work if (nTransactions == 0) return 0; // check for excessively high numbers of transactions if (nTransactions > MAX_BLOCK_SIZE / 60) // 60 is the lower bound for the size of a serialized CTransaction return 0; // there can never be more hashes provided than one for every txid if (vHash.size() > nTransactions) return 0; // there must be at least one bit per node in the partial tree, and at least one node per hash if (vBits.size() < vHash.size()) return 0; // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree unsigned int nBitsUsed = 0, nHashUsed = 0; uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch); // verify that no problems occured during the tree traversal if (fBad) return 0; // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence) if ((nBitsUsed+7)/8 != (vBits.size()+7)/8) return 0; // verify that all hashes were consumed if (nHashUsed != vHash.size()) return 0; return hashMerkleRoot; } bool AbortNode(const std::string &strMessage) { strMiscWarning = strMessage; LogPrintf("*** %s\n", strMessage); uiInterface.ThreadSafeMessageBox(strMessage, "", CClientUIInterface::MSG_ERROR); StartShutdown(); return false; } bool CheckDiskSpace(uint64_t nAdditionalBytes) { uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available; // Check for nMinDiskSpace bytes (currently 50MB) if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes) return AbortNode(_("Error: Disk space is low!")); return true; } FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly) { if (pos.IsNull()) return NULL; boost::filesystem::path path = GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile); boost::filesystem::create_directories(path.parent_path()); FILE* file = fopen(path.string().c_str(), "rb+"); if (!file && !fReadOnly) file = fopen(path.string().c_str(), "wb+"); if (!file) { LogPrintf("Unable to open file %s\n", path.string()); return NULL; } if (pos.nPos) { if (fseek(file, pos.nPos, SEEK_SET)) { LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string()); fclose(file); return NULL; } } return file; } FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "blk", fReadOnly); } FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "rev", fReadOnly); } CBlockIndex * InsertBlockIndex(uint256 hash) { if (hash == 0) return NULL; // Return existing map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) return (*mi).second; // Create new CBlockIndex* pindexNew = new CBlockIndex(); if (!pindexNew) throw runtime_error("LoadBlockIndex() : new CBlockIndex failed"); mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } bool static LoadBlockIndexDB() { if (!pblocktree->LoadBlockIndexGuts()) return false; boost::this_thread::interruption_point(); // Calculate nChainWork vector > vSortedByHeight; vSortedByHeight.reserve(mapBlockIndex.size()); BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex) { CBlockIndex* pindex = item.second; vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight) { CBlockIndex* pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + pindex->GetBlockWork().getuint256(); pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx; if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS && !(pindex->nStatus & BLOCK_FAILED_MASK)) setBlockIndexValid.insert(pindex); if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork)) pindexBestInvalid = pindex; } // Load block file info pblocktree->ReadLastBlockFile(nLastBlockFile); LogPrintf("LoadBlockIndexDB(): last block file = %i\n", nLastBlockFile); if (pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile)) LogPrintf("LoadBlockIndexDB(): last block file info: %s\n", infoLastBlockFile.ToString()); // Check whether we need to continue reindexing bool fReindexing = false; pblocktree->ReadReindexing(fReindexing); fReindex |= fReindexing; // Check whether we have a transaction index pblocktree->ReadFlag("txindex", fTxIndex); LogPrintf("LoadBlockIndexDB(): transaction index %s\n", fTxIndex ? "enabled" : "disabled"); // Load pointer to end of best chain std::map::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock()); if (it == mapBlockIndex.end()) return true; chainActive.SetTip(it->second); LogPrintf("LoadBlockIndexDB(): hashBestChain=%s height=%d date=%s progress=%f\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), Checkpoints::GuessVerificationProgress(chainActive.Tip())); return true; } bool VerifyDB(int nCheckLevel, int nCheckDepth) { LOCK(cs_main); if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL) return true; // Verify blocks in the best chain if (nCheckDepth <= 0) nCheckDepth = 1000000000; // suffices until the year 19000 if (nCheckDepth > chainActive.Height()) nCheckDepth = chainActive.Height(); nCheckLevel = std::max(0, std::min(4, nCheckLevel)); LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel); CCoinsViewCache coins(*pcoinsTip, true); CBlockIndex* pindexState = chainActive.Tip(); CBlockIndex* pindexFailure = NULL; int nGoodTransactions = 0; CValidationState state; for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) { boost::this_thread::interruption_point(); if (pindex->nHeight < chainActive.Height()-nCheckDepth) break; CBlock block; // check level 0: read from disk if (!ReadBlockFromDisk(block, pindex)) return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); // check level 1: verify block validity if (nCheckLevel >= 1 && !CheckBlock(block, state)) return error("VerifyDB() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); // check level 2: verify undo validity if (nCheckLevel >= 2 && pindex) { CBlockUndo undo; CDiskBlockPos pos = pindex->GetUndoPos(); if (!pos.IsNull()) { if (!undo.ReadFromDisk(pos, pindex->pprev->GetBlockHash())) return error("VerifyDB() : *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); } } // check level 3: check for inconsistencies during memory-only disconnect of tip blocks if (nCheckLevel >= 3 && pindex == pindexState && (coins.GetCacheSize() + pcoinsTip->GetCacheSize()) <= 2*nCoinCacheSize + 32000) { bool fClean = true; if (!DisconnectBlock(block, state, pindex, coins, &fClean)) return error("VerifyDB() : *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); pindexState = pindex->pprev; if (!fClean) { nGoodTransactions = 0; pindexFailure = pindex; } else nGoodTransactions += block.vtx.size(); } } if (pindexFailure) return error("VerifyDB() : *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions); // check level 4: try reconnecting blocks if (nCheckLevel >= 4) { CBlockIndex *pindex = pindexState; while (pindex != chainActive.Tip()) { boost::this_thread::interruption_point(); pindex = chainActive.Next(pindex); CBlock block; if (!ReadBlockFromDisk(block, pindex)) return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); if (!ConnectBlock(block, state, pindex, coins)) return error("VerifyDB() : *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } } LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions); return true; } void UnloadBlockIndex() { mapBlockIndex.clear(); setBlockIndexValid.clear(); chainActive.SetTip(NULL); pindexBestInvalid = NULL; } bool LoadBlockIndex() { // Load block index from databases if (!fReindex && !LoadBlockIndexDB()) return false; return true; } bool InitBlockIndex() { LOCK(cs_main); // Check whether we're already initialized if (chainActive.Genesis() != NULL) return true; // Use the provided setting for -txindex in the new database fTxIndex = GetBoolArg("-txindex", false); pblocktree->WriteFlag("txindex", fTxIndex); LogPrintf("Initializing databases...\n"); // Only add the genesis block if not reindexing (in which case we reuse the one already on disk) if (!fReindex) { try { CBlock &block = const_cast(Params().GenesisBlock()); // Start new block file unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; CValidationState state; if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.nTime)) return error("LoadBlockIndex() : FindBlockPos failed"); if (!WriteBlockToDisk(block, blockPos)) return error("LoadBlockIndex() : writing genesis block to disk failed"); if (!AddToBlockIndex(block, state, blockPos)) return error("LoadBlockIndex() : genesis block not accepted"); } catch(std::runtime_error &e) { return error("LoadBlockIndex() : failed to initialize block database: %s", e.what()); } } return true; } void PrintBlockTree() { AssertLockHeld(cs_main); // pre-compute tree structure map > mapNext; for (map::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi) { CBlockIndex* pindex = (*mi).second; mapNext[pindex->pprev].push_back(pindex); // test //while (rand() % 3 == 0) // mapNext[pindex->pprev].push_back(pindex); } vector > vStack; vStack.push_back(make_pair(0, chainActive.Genesis())); int nPrevCol = 0; while (!vStack.empty()) { int nCol = vStack.back().first; CBlockIndex* pindex = vStack.back().second; vStack.pop_back(); // print split or gap if (nCol > nPrevCol) { for (int i = 0; i < nCol-1; i++) LogPrintf("| "); LogPrintf("|\\\n"); } else if (nCol < nPrevCol) { for (int i = 0; i < nCol; i++) LogPrintf("| "); LogPrintf("|\n"); } nPrevCol = nCol; // print columns for (int i = 0; i < nCol; i++) LogPrintf("| "); // print item CBlock block; ReadBlockFromDisk(block, pindex); LogPrintf("%d (blk%05u.dat:0x%x) %s tx %u\n", pindex->nHeight, pindex->GetBlockPos().nFile, pindex->GetBlockPos().nPos, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", block.GetBlockTime()), block.vtx.size()); // put the main time-chain first vector& vNext = mapNext[pindex]; for (unsigned int i = 0; i < vNext.size(); i++) { if (chainActive.Next(vNext[i])) { swap(vNext[0], vNext[i]); break; } } // iterate children for (unsigned int i = 0; i < vNext.size(); i++) vStack.push_back(make_pair(nCol+i, vNext[i])); } } bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp) { int64_t nStart = GetTimeMillis(); int nLoaded = 0; try { CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION); uint64_t nStartByte = 0; if (dbp) { // (try to) skip already indexed part CBlockFileInfo info; if (pblocktree->ReadBlockFileInfo(dbp->nFile, info)) { nStartByte = info.nSize; blkdat.Seek(info.nSize); } } uint64_t nRewind = blkdat.GetPos(); while (blkdat.good() && !blkdat.eof()) { boost::this_thread::interruption_point(); blkdat.SetPos(nRewind); nRewind++; // start one byte further next time, in case of failure blkdat.SetLimit(); // remove former limit unsigned int nSize = 0; try { // locate a header unsigned char buf[MESSAGE_START_SIZE]; blkdat.FindByte(Params().MessageStart()[0]); nRewind = blkdat.GetPos()+1; blkdat >> FLATDATA(buf); if (memcmp(buf, Params().MessageStart(), MESSAGE_START_SIZE)) continue; // read size blkdat >> nSize; if (nSize < 80 || nSize > MAX_BLOCK_SIZE) continue; } catch (std::exception &e) { // no valid block header found; don't complain break; } try { // read block uint64_t nBlockPos = blkdat.GetPos(); blkdat.SetLimit(nBlockPos + nSize); CBlock block; blkdat >> block; nRewind = blkdat.GetPos(); // process block if (nBlockPos >= nStartByte) { LOCK(cs_main); if (dbp) dbp->nPos = nBlockPos; CValidationState state; if (ProcessBlock(state, NULL, &block, dbp)) nLoaded++; if (state.IsError()) break; } } catch (std::exception &e) { LogPrintf("%s : Deserialize or I/O error - %s", __func__, e.what()); } } fclose(fileIn); } catch(std::runtime_error &e) { AbortNode(_("Error: system error: ") + e.what()); } if (nLoaded > 0) LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart); return nLoaded > 0; } ////////////////////////////////////////////////////////////////////////////// // // CAlert // string GetWarnings(string strFor) { int nPriority = 0; string strStatusBar; string strRPC; if (GetBoolArg("-testsafemode", false)) strRPC = "test"; if (!CLIENT_VERSION_IS_RELEASE) strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications"); // Misc warnings like out of disk space and clock is wrong if (strMiscWarning != "") { nPriority = 1000; strStatusBar = strMiscWarning; } if (fLargeWorkForkFound) { nPriority = 2000; strStatusBar = strRPC = _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues."); } else if (fLargeWorkInvalidChainFound) { nPriority = 2000; strStatusBar = strRPC = _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade."); } // Alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.AppliesToMe() && alert.nPriority > nPriority) { nPriority = alert.nPriority; strStatusBar = alert.strStatusBar; } } } if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(!"GetWarnings() : invalid parameter"); return "error"; } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool static AlreadyHave(const CInv& inv) { switch (inv.type) { case MSG_TX: { bool txInMap = false; txInMap = mempool.exists(inv.hash); return txInMap || mapOrphanTransactions.count(inv.hash) || pcoinsTip->HaveCoins(inv.hash); } case MSG_BLOCK: return mapBlockIndex.count(inv.hash) || mapOrphanBlocks.count(inv.hash); case MSG_TXLOCK_REQUEST: return mapTxLockReq.count(inv.hash) || mapTxLockReqRejected.count(inv.hash); case MSG_TXLOCK_VOTE: return mapTxLockVote.count(inv.hash); case MSG_SPORK: return mapSporks.count(inv.hash); case MSG_MASTERNODE_WINNER: return mapSeenMasternodeVotes.count(inv.hash); } // Don't know what it is, just say we already got one return true; } void static ProcessGetData(CNode* pfrom) { std::deque::iterator it = pfrom->vRecvGetData.begin(); vector vNotFound; LOCK(cs_main); while (it != pfrom->vRecvGetData.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= SendBufferSize()) break; const CInv &inv = *it; { boost::this_thread::interruption_point(); it++; if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK) { bool send = false; map::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { // If the requested block is at a height below our last // checkpoint, only serve it if it's in the checkpointed chain int nHeight = mi->second->nHeight; CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex); if (pcheckpoint && nHeight < pcheckpoint->nHeight) { if (!chainActive.Contains(mi->second)) { LogPrintf("ProcessGetData(): ignoring request for old block that isn't in the main chain\n"); } else { send = true; } } else { send = true; } } if (send) { // Send block from disk CBlock block; ReadBlockFromDisk(block, (*mi).second); if (inv.type == MSG_BLOCK) pfrom->PushMessage("block", block); else // MSG_FILTERED_BLOCK) { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { CMerkleBlock merkleBlock(block, *pfrom->pfilter); pfrom->PushMessage("merkleblock", merkleBlock); // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see // This avoids hurting performance by pointlessly requiring a round-trip // Note that there is currently no way for a node to request any single transactions we didnt send here - // they must either disconnect and retry or request the full block. // Thus, the protocol spec specified allows for us to provide duplicate txn here, // however we MUST always provide at least what the remote peer needs typedef std::pair PairType; BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn) if (!pfrom->setInventoryKnown.count(CInv(MSG_TX, pair.second))) pfrom->PushMessage("tx", block.vtx[pair.first]); } // else // no response } // Trigger them to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, // and we want it right after the last block so they don't // wait for other stuff first. vector vInv; vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash())); pfrom->PushMessage("inv", vInv); pfrom->hashContinue = 0; } } } else if (inv.IsKnownType()) { // Send stream from relay memory bool pushed = false; { LOCK(cs_mapRelay); map::iterator mi = mapRelay.find(inv); if (mi != mapRelay.end()) { pfrom->PushMessage(inv.GetCommand(), (*mi).second); pushed = true; } } if (!pushed && inv.type == MSG_TX) { if(mapDarksendBroadcastTxes.count(inv.hash)){ CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << mapDarksendBroadcastTxes[inv.hash].tx << mapDarksendBroadcastTxes[inv.hash].vin << mapDarksendBroadcastTxes[inv.hash].vchSig << mapDarksendBroadcastTxes[inv.hash].sigTime; pfrom->PushMessage("dstx", ss); pushed = true; } else { CTransaction tx; if (mempool.lookup(inv.hash, tx)) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << tx; pfrom->PushMessage("tx", ss); pushed = true; } } } if (!pushed && inv.type == MSG_TXLOCK_VOTE) { if(mapTxLockVote.count(inv.hash)){ CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << mapTxLockVote[inv.hash]; pfrom->PushMessage("txlvote", ss); pushed = true; } } if (!pushed && inv.type == MSG_TXLOCK_REQUEST) { if(mapTxLockReq.count(inv.hash)){ CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << mapTxLockReq[inv.hash]; pfrom->PushMessage("txlreq", ss); pushed = true; } } if (!pushed && inv.type == MSG_SPORK) { if(mapSporks.count(inv.hash)){ CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << mapSporks[inv.hash]; pfrom->PushMessage("spork", ss); pushed = true; } } if (!pushed && inv.type == MSG_MASTERNODE_WINNER) { if(mapSeenMasternodeVotes.count(inv.hash)){ CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << mapSeenMasternodeVotes[inv.hash]; pfrom->PushMessage("mnw", ss); pushed = true; } } if (!pushed) { vNotFound.push_back(inv); } } // Track requests for our stuff. g_signals.Inventory(inv.hash); if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK) break; } } pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it doesn't // have to wait around forever. Currently only SPV clients actually care // about this message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want to // do that because they want to know about (and store and rebroadcast and // risk analyze) the dependencies of transactions relevant to them, without // having to download the entire memory pool. pfrom->PushMessage("notfound", vNotFound); } } bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv) { RandAddSeedPerfmon(); LogPrint("net", "received: %s (%u bytes)\n", SanitizeString(strCommand), vRecv.size()); if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } { LOCK(cs_main); State(pfrom->GetId())->nLastBlockProcess = GetTimeMicros(); } if (strCommand == "version") { // Each connection can only send one version message if (pfrom->nVersion != 0) { pfrom->PushMessage("reject", strCommand, REJECT_DUPLICATE, string("Duplicate version message")); Misbehaving(pfrom->GetId(), 1); return false; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe; if (pfrom->nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrintf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString(), pfrom->nVersion); pfrom->PushMessage("reject", strCommand, REJECT_OBSOLETE, strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION)); pfrom->fDisconnect = true; return false; } if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (!vRecv.empty()) vRecv >> addrFrom >> nNonce; if (!vRecv.empty()) { vRecv >> LIMITED_STRING(pfrom->strSubVer, 256); pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer); } if (!vRecv.empty()) vRecv >> pfrom->nStartingHeight; if (!vRecv.empty()) vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message else pfrom->fRelayTxes = true; if (pfrom->fInbound && addrMe.IsRoutable()) { pfrom->addrLocal = addrMe; SeenLocal(addrMe); } // Disconnect if we connected to ourself if (nNonce == nLocalHostNonce && nNonce > 1) { LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString()); pfrom->fDisconnect = true; return true; } // Be shy and don't send version until we hear if (pfrom->fInbound) pfrom->PushVersion(); pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); // Change version pfrom->PushMessage("verack"); pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Advertise our address if (!fNoListen && !IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom->addr); if (addr.IsRoutable()) pfrom->PushAddress(addr); } // Get recent addresses if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000) { pfrom->PushMessage("getaddr"); pfrom->fGetAddr = true; } addrman.Good(pfrom->addr); } else { if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom) { addrman.Add(addrFrom, addrFrom); addrman.Good(addrFrom); } } // Relay alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) item.second.RelayTo(pfrom); } pfrom->fSuccessfullyConnected = true; LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->cleanSubVer, pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString(), addrFrom.ToString(), pfrom->addr.ToString()); AddTimeData(pfrom->addr, nTime); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom->GetId(), 1); return false; } else if (strCommand == "verack") { pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); } else if (strCommand == "addr") { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000) return true; if (vAddr.size() > 1000) { Misbehaving(pfrom->GetId(), 20); return error("message addr size() = %u", vAddr.size()); } // Store the new addresses vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; BOOST_FOREACH(CAddress& addr, vAddr) { boost::this_thread::interruption_point(); if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * 24 * 60 * 60; pfrom->AddAddressKnown(addr); bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes { LOCK(cs_vNodes); // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the setAddrKnowns of the chosen nodes prevent repeats static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint64_t hashAddr = addr.GetHash(); uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60)); hashRand = Hash(BEGIN(hashRand), END(hashRand)); multimap mapMix; BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->nVersion < CADDR_TIME_VERSION) continue; unsigned int nPointer; memcpy(&nPointer, &pnode, sizeof(nPointer)); uint256 hashKey = hashRand ^ nPointer; hashKey = Hash(BEGIN(hashKey), END(hashKey)); mapMix.insert(make_pair(hashKey, pnode)); } int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s) for (multimap::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) ((*mi).second)->PushAddress(addr); } } // Do not store addresses outside our network if (fReachable) vAddrOk.push_back(addr); } addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60); if (vAddr.size() < 1000) pfrom->fGetAddr = false; if (pfrom->fOneShot) pfrom->fDisconnect = true; } else if (strCommand == "inv") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom->GetId(), 20); return error("message inv size() = %u", vInv.size()); } LOCK(cs_main); for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) { const CInv &inv = vInv[nInv]; boost::this_thread::interruption_point(); pfrom->AddInventoryKnown(inv); bool fAlreadyHave = AlreadyHave(inv); LogPrint("net", " got inventory: %s %s\n", inv.ToString(), fAlreadyHave ? "have" : "new"); if (!fAlreadyHave) { if (!fImporting && !fReindex) { if (inv.type == MSG_BLOCK) AddBlockToQueue(pfrom->GetId(), inv.hash); else pfrom->AskFor(inv); } } else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) { PushGetBlocks(pfrom, chainActive.Tip(), GetOrphanRoot(inv.hash)); } // Track requests for our stuff g_signals.Inventory(inv.hash); if (pfrom->nSendSize > (SendBufferSize() * 2)) { Misbehaving(pfrom->GetId(), 50); return error("send buffer size() = %u", pfrom->nSendSize); } } } else if (strCommand == "getdata") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom->GetId(), 20); return error("message getdata size() = %u", vInv.size()); } if (fDebug || (vInv.size() != 1)) LogPrint("net", "received getdata (%u invsz)\n", vInv.size()); if ((fDebug && vInv.size() > 0) || (vInv.size() == 1)) LogPrint("net", "received getdata for: %s\n", vInv[0].ToString()); pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(pfrom); } else if (strCommand == "getblocks") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; LOCK(cs_main); // Find the last block the caller has in the main chain CBlockIndex* pindex = chainActive.FindFork(locator); // Send the rest of the chain if (pindex) pindex = chainActive.Next(pindex); int nLimit = 500; LogPrint("net", "getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString(), nLimit); for (; pindex; pindex = chainActive.Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll make them // getblocks the next batch of inventory. LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == "getheaders") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; LOCK(cs_main); CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block map::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = chainActive.FindFork(locator); if (pindex) pindex = chainActive.Next(pindex); } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end vector vHeaders; int nLimit = 2000; LogPrint("net", "getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString()); for (; pindex; pindex = chainActive.Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } pfrom->PushMessage("headers", vHeaders); } else if (strCommand == "tx"|| strCommand == "dstx") { vector vWorkQueue; vector vEraseQueue; CTransaction tx; //masternode signed transaction bool allowFree = false; CTxIn vin; vector vchSig; int64_t sigTime; if(strCommand == "tx") { vRecv >> tx; } else if (strCommand == "dstx") { //these allow masternodes to publish a limited amount of free transactions vRecv >> tx >> vin >> vchSig >> sigTime; CMasternode* pmn = mnodeman.Find(vin); if(pmn != NULL) { if(!pmn->allowFreeTx){ //multiple peers can send us a valid masternode transaction if(fDebug) LogPrintf("dstx: Masternode sending too many transactions %s\n", tx.GetHash().ToString().c_str()); return true; } std::string strMessage = tx.GetHash().ToString() + boost::lexical_cast(sigTime); std::string errorMessage = ""; if(!darkSendSigner.VerifyMessage(pmn->pubkey2, vchSig, strMessage, errorMessage)){ LogPrintf("dstx: Got bad masternode address signature %s \n", vin.ToString().c_str()); //pfrom->Misbehaving(20); return false; } LogPrintf("dstx: Got Masternode transaction %s\n", tx.GetHash().ToString().c_str()); allowFree = true; pmn->allowFreeTx = false; if(!mapDarksendBroadcastTxes.count(tx.GetHash())){ CDarksendBroadcastTx dstx; dstx.tx = tx; dstx.vin = vin; dstx.vchSig = vchSig; dstx.sigTime = sigTime; mapDarksendBroadcastTxes.insert(make_pair(tx.GetHash(), dstx)); } } } CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); LOCK(cs_main); bool fMissingInputs = false; CValidationState state; if (AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs, allowFree)) { mempool.check(pcoinsTip); RelayTransaction(tx, inv.hash); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); vEraseQueue.push_back(inv.hash); LogPrint("mempool", "AcceptToMemoryPool: %s %s : accepted %s (poolsz %u)\n", pfrom->addr.ToString(), pfrom->cleanSubVer, tx.GetHash().ToString(), mempool.mapTx.size()); // Recursively process any orphan transactions that depended on this one set setMisbehaving; for (unsigned int i = 0; i < vWorkQueue.size(); i++) { map >::iterator itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue[i]); if (itByPrev == mapOrphanTransactionsByPrev.end()) continue; for (set::iterator mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const uint256& orphanHash = *mi; const CTransaction& orphanTx = mapOrphanTransactions[orphanHash].tx; NodeId fromPeer = mapOrphanTransactions[orphanHash].fromPeer; bool fMissingInputs2 = false; // Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan // resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get // anyone relaying LegitTxX banned) CValidationState stateDummy; vEraseQueue.push_back(orphanHash); if (setMisbehaving.count(fromPeer)) continue; if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2)) { LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString()); RelayTransaction(orphanTx, orphanHash); mapAlreadyAskedFor.erase(CInv(MSG_TX, orphanHash)); vWorkQueue.push_back(orphanHash); } else if (!fMissingInputs2) { int nDos = 0; if (stateDummy.IsInvalid(nDos) && nDos > 0) { // Punish peer that gave us an invalid orphan tx Misbehaving(fromPeer, nDos); setMisbehaving.insert(fromPeer); LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString()); } // too-little-fee orphan LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString()); } mempool.check(pcoinsTip); } } BOOST_FOREACH(uint256 hash, vEraseQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { AddOrphanTx(tx, pfrom->GetId()); // DoS prevention: do not allow mapOrphanTransactions to grow unbounded unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx); if (nEvicted > 0) LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted); } int nDoS = 0; if (state.IsInvalid(nDoS)) { LogPrint("mempool", "%s from %s %s was not accepted into the memory pool: %s\n", tx.GetHash().ToString(), pfrom->addr.ToString(), pfrom->cleanSubVer, state.GetRejectReason()); pfrom->PushMessage("reject", strCommand, state.GetRejectCode(), state.GetRejectReason(), inv.hash); if (nDoS > 0) Misbehaving(pfrom->GetId(), nDoS); } } else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing { CBlock block; vRecv >> block; LogPrint("net", "received block %s\n", block.GetHash().ToString()); // block.print(); CInv inv(MSG_BLOCK, block.GetHash()); pfrom->AddInventoryKnown(inv); LOCK(cs_main); // Remember who we got this block from. mapBlockSource[inv.hash] = pfrom->GetId(); MarkBlockAsReceived(inv.hash, pfrom->GetId()); CValidationState state; ProcessBlock(state, pfrom, &block); } else if (strCommand == "getaddr") { pfrom->vAddrToSend.clear(); vector vAddr = addrman.GetAddr(); BOOST_FOREACH(const CAddress &addr, vAddr) pfrom->PushAddress(addr); } else if (strCommand == "mempool") { LOCK2(cs_main, pfrom->cs_filter); std::vector vtxid; mempool.queryHashes(vtxid); vector vInv; BOOST_FOREACH(uint256& hash, vtxid) { CInv inv(MSG_TX, hash); CTransaction tx; bool fInMemPool = mempool.lookup(hash, tx); if (!fInMemPool) continue; // another thread removed since queryHashes, maybe... if ((pfrom->pfilter && pfrom->pfilter->IsRelevantAndUpdate(tx, hash)) || (!pfrom->pfilter)) vInv.push_back(inv); if (vInv.size() == MAX_INV_SZ) { pfrom->PushMessage("inv", vInv); vInv.clear(); } } if (vInv.size() > 0) pfrom->PushMessage("inv", vInv); } else if (strCommand == "ping") { if (pfrom->nVersion > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful features: // // 1) A remote node can quickly check if the connection is operational // 2) Remote nodes can measure the latency of the network thread. If this node // is overloaded it won't respond to pings quickly and the remote node can // avoid sending us more work, like chain download requests. // // The nonce stops the remote getting confused between different pings: without // it, if the remote node sends a ping once per second and this node takes 5 // seconds to respond to each, the 5th ping the remote sends would appear to // return very quickly. pfrom->PushMessage("pong", nonce); } } else if (strCommand == "pong") { int64_t pingUsecEnd = GetTimeMicros(); uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old ping without nonce should never pong) if (pfrom->nPingNonceSent != 0) { if (nonce == pfrom->nPingNonceSent) { // Matching pong received, this ping is no longer outstanding bPingFinished = true; int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart; if (pingUsecTime > 0) { // Successful ping time measurement, replace previous pfrom->nPingUsecTime = pingUsecTime; } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation somewhere, cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere, cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint("net", "pong %s %s: %s, %x expected, %x received, %u bytes\n", pfrom->addr.ToString(), pfrom->cleanSubVer, sProblem, pfrom->nPingNonceSent, nonce, nAvail); } if (bPingFinished) { pfrom->nPingNonceSent = 0; } } else if (strCommand == "alert") { CAlert alert; vRecv >> alert; uint256 alertHash = alert.GetHash(); if (pfrom->setKnown.count(alertHash) == 0) { if (alert.ProcessAlert()) { // Relay pfrom->setKnown.insert(alertHash); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) alert.RelayTo(pnode); } } else { // Small DoS penalty so peers that send us lots of // duplicate/expired/invalid-signature/whatever alerts // eventually get banned. // This isn't a Misbehaving(100) (immediate ban) because the // peer might be an older or different implementation with // a different signature key, etc. Misbehaving(pfrom->GetId(), 10); } } } else if (strCommand == "filterload") { CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) // There is no excuse for sending a too-large filter Misbehaving(pfrom->GetId(), 100); else { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(filter); pfrom->pfilter->UpdateEmptyFull(); } pfrom->fRelayTxes = true; } else if (strCommand == "filteradd") { vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object, // and thus, the maximum size any matched object can have) in a filteradd message if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { Misbehaving(pfrom->GetId(), 100); } else { LOCK(pfrom->cs_filter); if (pfrom->pfilter) pfrom->pfilter->insert(vData); else Misbehaving(pfrom->GetId(), 100); } } else if (strCommand == "filterclear") { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(); pfrom->fRelayTxes = true; } else if (strCommand == "reject") { if (fDebug) { string strMsg; unsigned char ccode; string strReason; vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, 111); ostringstream ss; ss << strMsg << " code " << itostr(ccode) << ": " << strReason; if (strMsg == "block" || strMsg == "tx") { uint256 hash; vRecv >> hash; ss << ": hash " << hash.ToString(); } LogPrint("net", "Reject %s\n", SanitizeString(ss.str())); } } else { //probably one the extensions darkSendPool.ProcessMessageDarksend(pfrom, strCommand, vRecv); mnodeman.ProcessMessage(pfrom, strCommand, vRecv); ProcessMessageMasternodePayments(pfrom, strCommand, vRecv); ProcessMessageInstantX(pfrom, strCommand, vRecv); ProcessSpork(pfrom, strCommand, vRecv); } // Update the last seen time for this node's address if (pfrom->fNetworkNode) if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping") AddressCurrentlyConnected(pfrom->addr); return true; } // requires LOCK(cs_vRecvMsg) bool ProcessMessages(CNode* pfrom) { //if (fDebug) // LogPrintf("ProcessMessages(%u messages)\n", pfrom->vRecvMsg.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fOk = true; if (!pfrom->vRecvGetData.empty()) ProcessGetData(pfrom); // this maintains the order of responses if (!pfrom->vRecvGetData.empty()) return fOk; std::deque::iterator it = pfrom->vRecvMsg.begin(); while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= SendBufferSize()) break; // get next message CNetMessage& msg = *it; //if (fDebug) // LogPrintf("ProcessMessages(message %u msgsz, %u bytes, complete:%s)\n", // msg.hdr.nMessageSize, msg.vRecv.size(), // msg.complete() ? "Y" : "N"); // end, if an incomplete message is found if (!msg.complete()) break; // at this point, any failure means we can delete the current message it++; // Scan for message start if (memcmp(msg.hdr.pchMessageStart, Params().MessageStart(), MESSAGE_START_SIZE) != 0) { LogPrintf("PROCESSMESSAGE: INVALID MESSAGESTART %s\n", SanitizeString(msg.hdr.GetCommand())); fOk = false; break; } // Read header CMessageHeader& hdr = msg.hdr; if (!hdr.IsValid()) { LogPrintf("PROCESSMESSAGE: ERRORS IN HEADER %s\n", SanitizeString(hdr.GetCommand())); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; // Checksum CDataStream& vRecv = msg.vRecv; uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); if (nChecksum != hdr.nChecksum) { LogPrintf("ProcessMessages(%s, %u bytes): CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", SanitizeString(strCommand), nMessageSize, nChecksum, hdr.nChecksum); continue; } // Process message bool fRet = false; try { fRet = ProcessMessage(pfrom, strCommand, vRecv); boost::this_thread::interruption_point(); } catch (std::ios_base::failure& e) { pfrom->PushMessage("reject", strCommand, REJECT_MALFORMED, string("error parsing message")); if (strstr(e.what(), "end of data")) { // Allow exceptions from under-length message on vRecv LogPrintf("ProcessMessages(%s, %u bytes): Exception '%s' caught, normally caused by a message being shorter than its stated length\n", SanitizeString(strCommand), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from over-long size LogPrintf("ProcessMessages(%s, %u bytes): Exception '%s' caught\n", SanitizeString(strCommand), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessages()"); } } catch (boost::thread_interrupted) { throw; } catch (std::exception& e) { PrintExceptionContinue(&e, "ProcessMessages()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessages()"); } if (!fRet) LogPrintf("ProcessMessage(%s, %u bytes) FAILED\n", SanitizeString(strCommand), nMessageSize); break; } // In case the connection got shut down, its receive buffer was wiped if (!pfrom->fDisconnect) pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it); return fOk; } bool SendMessages(CNode* pto, bool fSendTrickle) { { // Don't send anything until we get their version message if (pto->nVersion == 0) return true; // // Message: ping // bool pingSend = false; if (pto->fPingQueued) { // RPC ping request by user pingSend = true; } if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSendMsg.empty()) { // Ping automatically sent as a keepalive pingSend = true; } if (pingSend) { uint64_t nonce = 0; while (nonce == 0) { RAND_bytes((unsigned char*)&nonce, sizeof(nonce)); } pto->nPingNonceSent = nonce; pto->fPingQueued = false; if (pto->nVersion > BIP0031_VERSION) { // Take timestamp as close as possible before transmitting ping pto->nPingUsecStart = GetTimeMicros(); pto->PushMessage("ping", nonce); } else { // Peer is too old to support ping command with nonce, pong will never arrive, disable timing pto->nPingUsecStart = 0; pto->PushMessage("ping"); } } TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState() if (!lockMain) return true; // Address refresh broadcast static int64_t nLastRebroadcast; if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60)) { { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { // Periodically clear setAddrKnown to allow refresh broadcasts if (nLastRebroadcast) pnode->setAddrKnown.clear(); // Rebroadcast our address if (!fNoListen) { CAddress addr = GetLocalAddress(&pnode->addr); if (addr.IsRoutable()) pnode->PushAddress(addr); } } } nLastRebroadcast = GetTime(); } // // Message: addr // if (fSendTrickle) { vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend) { // returns true if wasn't already contained in the set if (pto->setAddrKnown.insert(addr).second) { vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { pto->PushMessage("addr", vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) pto->PushMessage("addr", vAddr); } CNodeState &state = *State(pto->GetId()); if (state.fShouldBan) { if (pto->addr.IsLocal()) LogPrintf("Warning: not banning local node %s!\n", pto->addr.ToString()); else { pto->fDisconnect = true; CNode::Ban(pto->addr); } state.fShouldBan = false; } BOOST_FOREACH(const CBlockReject& reject, state.rejects) pto->PushMessage("reject", (string)"block", reject.chRejectCode, reject.strRejectReason, reject.hashBlock); state.rejects.clear(); // Start block sync if (pto->fStartSync && !fImporting && !fReindex) { pto->fStartSync = false; PushGetBlocks(pto, chainActive.Tip(), uint256(0)); } // Resend wallet transactions that haven't gotten in a block yet // Except during reindex, importing and IBD, when old wallet // transactions become unconfirmed and spams other nodes. if (!fReindex && !fImporting && !IsInitialBlockDownload()) { g_signals.Broadcast(); } // // Message: inventory // vector vInv; vector vInvWait; { LOCK(pto->cs_inventory); vInv.reserve(pto->vInventoryToSend.size()); vInvWait.reserve(pto->vInventoryToSend.size()); BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend) { if (pto->setInventoryKnown.count(inv)) continue; // trickle out tx inv to protect privacy if (inv.type == MSG_TX && !fSendTrickle) { // 1/4 of tx invs blast to all immediately static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint256 hashRand = inv.hash ^ hashSalt; hashRand = Hash(BEGIN(hashRand), END(hashRand)); bool fTrickleWait = ((hashRand & 3) != 0); if (fTrickleWait) { vInvWait.push_back(inv); continue; } } // returns true if wasn't already contained in the set if (pto->setInventoryKnown.insert(inv).second) { vInv.push_back(inv); if (vInv.size() >= 1000) { pto->PushMessage("inv", vInv); vInv.clear(); } } } pto->vInventoryToSend = vInvWait; } if (!vInv.empty()) pto->PushMessage("inv", vInv); // Detect stalled peers. Require that blocks are in flight, we haven't // received a (requested) block in one minute, and that all blocks are // in flight for over two minutes, since we first had a chance to // process an incoming block. int64_t nNow = GetTimeMicros(); if (!pto->fDisconnect && state.nBlocksInFlight && state.nLastBlockReceive < state.nLastBlockProcess - BLOCK_DOWNLOAD_TIMEOUT*1000000 && state.vBlocksInFlight.front().nTime < state.nLastBlockProcess - 2*BLOCK_DOWNLOAD_TIMEOUT*1000000) { LogPrintf("Peer %s is stalling block download, disconnecting\n", state.name.c_str()); pto->fDisconnect = true; } // // Message: getdata (blocks) // vector vGetData; while (!pto->fDisconnect && state.nBlocksToDownload && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { uint256 hash = state.vBlocksToDownload.front(); vGetData.push_back(CInv(MSG_BLOCK, hash)); MarkBlockAsInFlight(pto->GetId(), hash); LogPrint("net", "Requesting block %s from %s\n", hash.ToString().c_str(), state.name.c_str()); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } } // // Message: getdata (non-blocks) // while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(inv)) { if (fDebug) LogPrint("net", "sending getdata: %s\n", inv.ToString()); vGetData.push_back(inv); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } } pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) pto->PushMessage("getdata", vGetData); } return true; } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers std::map::iterator it1 = mapBlockIndex.begin(); for (; it1 != mapBlockIndex.end(); it1++) delete (*it1).second; mapBlockIndex.clear(); // orphan blocks std::map::iterator it2 = mapOrphanBlocks.begin(); for (; it2 != mapOrphanBlocks.end(); it2++) delete (*it2).second; mapOrphanBlocks.clear(); // orphan transactions mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); } } instance_of_cmaincleanup;