// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "alert.h" #include "checkpoints.h" #include "db.h" #include "txdb.h" #include "net.h" #include "init.h" #include "ui_interface.h" #include "checkqueue.h" #include "chainparams.h" #include #include #include using namespace std; using namespace boost; // // Global state // CCriticalSection cs_setpwalletRegistered; set setpwalletRegistered; CCriticalSection cs_main; CTxMemPool mempool; unsigned int nTransactionsUpdated = 0; map mapBlockIndex; std::vector vBlockIndexByHeight; CBlockIndex* pindexGenesisBlock = NULL; int nBestHeight = -1; uint256 nBestChainWork = 0; uint256 nBestInvalidWork = 0; uint256 hashBestChain = 0; CBlockIndex* pindexBest = NULL; set setBlockIndexValid; // may contain all CBlockIndex*'s that have validness >=BLOCK_VALID_TRANSACTIONS, and must contain those who aren't failed int64 nTimeBestReceived = 0; int nScriptCheckThreads = 0; bool fImporting = false; bool fReindex = false; bool fBenchmark = false; bool fTxIndex = false; unsigned int nCoinCacheSize = 5000; bool fHaveGUI = false; /** Fees smaller than this (in satoshi) are considered zero fee (for transaction creation) */ int64 CTransaction::nMinTxFee = 10000; // Override with -mintxfee /** Fees smaller than this (in satoshi) are considered zero fee (for relaying) */ int64 CTransaction::nMinRelayTxFee = 10000; CMedianFilter cPeerBlockCounts(8, 0); // Amount of blocks that other nodes claim to have map mapOrphanBlocks; multimap mapOrphanBlocksByPrev; map mapOrphanTransactions; map > mapOrphanTransactionsByPrev; // Constant stuff for coinbase transactions we create: CScript COINBASE_FLAGS; const string strMessageMagic = "Bitcoin Signed Message:\n"; double dHashesPerSec = 0.0; int64 nHPSTimerStart = 0; // Settings int64 nTransactionFee = 0; ////////////////////////////////////////////////////////////////////////////// // // dispatching functions // // These functions dispatch to one or all registered wallets void RegisterWallet(CWallet* pwalletIn) { { LOCK(cs_setpwalletRegistered); setpwalletRegistered.insert(pwalletIn); } } void UnregisterWallet(CWallet* pwalletIn) { { LOCK(cs_setpwalletRegistered); setpwalletRegistered.erase(pwalletIn); } } void UnregisterAllWallets() { LOCK(cs_setpwalletRegistered); setpwalletRegistered.clear(); } // get the wallet transaction with the given hash (if it exists) bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) if (pwallet->GetTransaction(hashTx,wtx)) return true; return false; } // erases transaction with the given hash from all wallets void static EraseFromWallets(uint256 hash) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->EraseFromWallet(hash); } // make sure all wallets know about the given transaction, in the given block void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock, bool fUpdate) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->AddToWalletIfInvolvingMe(hash, tx, pblock, fUpdate); } // notify wallets about a new best chain void static SetBestChain(const CBlockLocator& loc) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->SetBestChain(loc); } // notify wallets about an updated transaction void static UpdatedTransaction(const uint256& hashTx) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->UpdatedTransaction(hashTx); } // dump all wallets void static PrintWallets(const CBlock& block) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->PrintWallet(block); } // notify wallets about an incoming inventory (for request counts) void static Inventory(const uint256& hash) { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->Inventory(hash); } // ask wallets to resend their transactions void static ResendWalletTransactions() { LOCK(cs_setpwalletRegistered); BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->ResendWalletTransactions(); } ////////////////////////////////////////////////////////////////////////////// // // Registration of network node signals. // void RegisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.ProcessMessages.connect(&ProcessMessages); nodeSignals.SendMessages.connect(&SendMessages); } void UnregisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.ProcessMessages.disconnect(&ProcessMessages); nodeSignals.SendMessages.disconnect(&SendMessages); } ////////////////////////////////////////////////////////////////////////////// // // CBlockLocator implementation // CBlockLocator::CBlockLocator(uint256 hashBlock) { std::map::iterator mi = mapBlockIndex.find(hashBlock); if (mi != mapBlockIndex.end()) Set((*mi).second); } void CBlockLocator::Set(const CBlockIndex* pindex) { vHave.clear(); int nStep = 1; while (pindex) { vHave.push_back(pindex->GetBlockHash()); // Exponentially larger steps back for (int i = 0; pindex && i < nStep; i++) pindex = pindex->pprev; if (vHave.size() > 10) nStep *= 2; } vHave.push_back(Params().HashGenesisBlock()); } int CBlockLocator::GetDistanceBack() { // Retrace how far back it was in the sender's branch int nDistance = 0; int nStep = 1; BOOST_FOREACH(const uint256& hash, vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex->IsInMainChain()) return nDistance; } nDistance += nStep; if (nDistance > 10) nStep *= 2; } return nDistance; } CBlockIndex *CBlockLocator::GetBlockIndex() { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex->IsInMainChain()) return pindex; } } return pindexGenesisBlock; } uint256 CBlockLocator::GetBlockHash() { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex->IsInMainChain()) return hash; } } return Params().HashGenesisBlock(); } int CBlockLocator::GetHeight() { CBlockIndex* pindex = GetBlockIndex(); if (!pindex) return 0; return pindex->nHeight; } ////////////////////////////////////////////////////////////////////////////// // // CCoinsView implementations // bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) { return false; } bool CCoinsView::SetCoins(const uint256 &txid, const CCoins &coins) { return false; } bool CCoinsView::HaveCoins(const uint256 &txid) { return false; } CBlockIndex *CCoinsView::GetBestBlock() { return NULL; } bool CCoinsView::SetBestBlock(CBlockIndex *pindex) { return false; } bool CCoinsView::BatchWrite(const std::map &mapCoins, CBlockIndex *pindex) { return false; } bool CCoinsView::GetStats(CCoinsStats &stats) { return false; } CCoinsViewBacked::CCoinsViewBacked(CCoinsView &viewIn) : base(&viewIn) { } bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) { return base->GetCoins(txid, coins); } bool CCoinsViewBacked::SetCoins(const uint256 &txid, const CCoins &coins) { return base->SetCoins(txid, coins); } bool CCoinsViewBacked::HaveCoins(const uint256 &txid) { return base->HaveCoins(txid); } CBlockIndex *CCoinsViewBacked::GetBestBlock() { return base->GetBestBlock(); } bool CCoinsViewBacked::SetBestBlock(CBlockIndex *pindex) { return base->SetBestBlock(pindex); } void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; } bool CCoinsViewBacked::BatchWrite(const std::map &mapCoins, CBlockIndex *pindex) { return base->BatchWrite(mapCoins, pindex); } bool CCoinsViewBacked::GetStats(CCoinsStats &stats) { return base->GetStats(stats); } CCoinsViewCache::CCoinsViewCache(CCoinsView &baseIn, bool fDummy) : CCoinsViewBacked(baseIn), pindexTip(NULL) { } bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) { if (cacheCoins.count(txid)) { coins = cacheCoins[txid]; return true; } if (base->GetCoins(txid, coins)) { cacheCoins[txid] = coins; return true; } return false; } std::map::iterator CCoinsViewCache::FetchCoins(const uint256 &txid) { std::map::iterator it = cacheCoins.lower_bound(txid); if (it != cacheCoins.end() && it->first == txid) return it; CCoins tmp; if (!base->GetCoins(txid,tmp)) return cacheCoins.end(); std::map::iterator ret = cacheCoins.insert(it, std::make_pair(txid, CCoins())); tmp.swap(ret->second); return ret; } CCoins &CCoinsViewCache::GetCoins(const uint256 &txid) { std::map::iterator it = FetchCoins(txid); assert(it != cacheCoins.end()); return it->second; } bool CCoinsViewCache::SetCoins(const uint256 &txid, const CCoins &coins) { cacheCoins[txid] = coins; return true; } bool CCoinsViewCache::HaveCoins(const uint256 &txid) { return FetchCoins(txid) != cacheCoins.end(); } CBlockIndex *CCoinsViewCache::GetBestBlock() { if (pindexTip == NULL) pindexTip = base->GetBestBlock(); return pindexTip; } bool CCoinsViewCache::SetBestBlock(CBlockIndex *pindex) { pindexTip = pindex; return true; } bool CCoinsViewCache::BatchWrite(const std::map &mapCoins, CBlockIndex *pindex) { for (std::map::const_iterator it = mapCoins.begin(); it != mapCoins.end(); it++) cacheCoins[it->first] = it->second; pindexTip = pindex; return true; } bool CCoinsViewCache::Flush() { bool fOk = base->BatchWrite(cacheCoins, pindexTip); if (fOk) cacheCoins.clear(); return fOk; } unsigned int CCoinsViewCache::GetCacheSize() { return cacheCoins.size(); } /** CCoinsView that brings transactions from a memorypool into view. It does not check for spendings by memory pool transactions. */ CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { } bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) { if (base->GetCoins(txid, coins)) return true; if (mempool.exists(txid)) { const CTransaction &tx = mempool.lookup(txid); coins = CCoins(tx, MEMPOOL_HEIGHT); return true; } return false; } bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) { return mempool.exists(txid) || base->HaveCoins(txid); } CCoinsViewCache *pcoinsTip = NULL; CBlockTreeDB *pblocktree = NULL; ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // bool AddOrphanTx(const CDataStream& vMsg) { CTransaction tx; CDataStream(vMsg) >> tx; uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return false; CDataStream* pvMsg = new CDataStream(vMsg); // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 10,000 orphans, each of which is at most 5,000 bytes big is // at most 500 megabytes of orphans: if (pvMsg->size() > 5000) { printf("ignoring large orphan tx (size: %"PRIszu", hash: %s)\n", pvMsg->size(), hash.ToString().c_str()); delete pvMsg; return false; } mapOrphanTransactions[hash] = pvMsg; BOOST_FOREACH(const CTxIn& txin, tx.vin) mapOrphanTransactionsByPrev[txin.prevout.hash].insert(make_pair(hash, pvMsg)); printf("stored orphan tx %s (mapsz %"PRIszu")\n", hash.ToString().c_str(), mapOrphanTransactions.size()); return true; } void static EraseOrphanTx(uint256 hash) { if (!mapOrphanTransactions.count(hash)) return; const CDataStream* pvMsg = mapOrphanTransactions[hash]; CTransaction tx; CDataStream(*pvMsg) >> tx; BOOST_FOREACH(const CTxIn& txin, tx.vin) { mapOrphanTransactionsByPrev[txin.prevout.hash].erase(hash); if (mapOrphanTransactionsByPrev[txin.prevout.hash].empty()) mapOrphanTransactionsByPrev.erase(txin.prevout.hash); } delete pvMsg; mapOrphanTransactions.erase(hash); } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { unsigned int nEvicted = 0; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: uint256 randomhash = GetRandHash(); map::iterator it = mapOrphanTransactions.lower_bound(randomhash); if (it == mapOrphanTransactions.end()) it = mapOrphanTransactions.begin(); EraseOrphanTx(it->first); ++nEvicted; } return nEvicted; } bool IsStandardTx(const CTransaction& tx, string& reason) { if (tx.nVersion > CTransaction::CURRENT_VERSION) { reason = "version"; return false; } if (!IsFinalTx(tx)) { reason = "non-final"; return false; } // Extremely large transactions with lots of inputs can cost the network // almost as much to process as they cost the sender in fees, because // computing signature hashes is O(ninputs*txsize). Limiting transactions // to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks. unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION); if (sz >= MAX_STANDARD_TX_SIZE) { reason = "tx-size"; return false; } BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Biggest 'standard' txin is a 3-signature 3-of-3 CHECKMULTISIG // pay-to-script-hash, which is 3 ~80-byte signatures, 3 // ~65-byte public keys, plus a few script ops. if (txin.scriptSig.size() > 500) { reason = "scriptsig-size"; return false; } if (!txin.scriptSig.IsPushOnly()) { reason = "scriptsig-not-pushonly"; return false; } } BOOST_FOREACH(const CTxOut& txout, tx.vout) { if (!::IsStandard(txout.scriptPubKey)) { reason = "scriptpubkey"; return false; } if (txout.IsDust(CTransaction::nMinRelayTxFee)) { reason = "dust"; return false; } } return true; } bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64 nBlockTime) { // Time based nLockTime implemented in 0.1.6 if (tx.nLockTime == 0) return true; if (nBlockHeight == 0) nBlockHeight = nBestHeight; if (nBlockTime == 0) nBlockTime = GetAdjustedTime(); if ((int64)tx.nLockTime < ((int64)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64)nBlockHeight : nBlockTime)) return true; BOOST_FOREACH(const CTxIn& txin, tx.vin) if (!txin.IsFinal()) return false; return true; } /** Amount of bitcoins spent by the transaction. @return sum of all outputs (note: does not include fees) */ int64 GetValueOut(const CTransaction& tx) { int64 nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, tx.vout) { nValueOut += txout.nValue; if (!MoneyRange(txout.nValue) || !MoneyRange(nValueOut)) throw std::runtime_error("GetValueOut() : value out of range"); } return nValueOut; } // // Check transaction inputs, and make sure any // pay-to-script-hash transactions are evaluating IsStandard scripts // // Why bother? To avoid denial-of-service attacks; an attacker // can submit a standard HASH... OP_EQUAL transaction, // which will get accepted into blocks. The redemption // script can be anything; an attacker could use a very // expensive-to-check-upon-redemption script like: // DUP CHECKSIG DROP ... repeated 100 times... OP_1 // bool AreInputsStandard(const CTransaction& tx, CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) return true; // Coinbases don't use vin normally for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut& prev = mapInputs.GetOutputFor(tx.vin[i]); vector > vSolutions; txnouttype whichType; // get the scriptPubKey corresponding to this input: const CScript& prevScript = prev.scriptPubKey; if (!Solver(prevScript, whichType, vSolutions)) return false; int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions); if (nArgsExpected < 0) return false; // Transactions with extra stuff in their scriptSigs are // non-standard. Note that this EvalScript() call will // be quick, because if there are any operations // beside "push data" in the scriptSig the // IsStandard() call returns false vector > stack; if (!EvalScript(stack, tx.vin[i].scriptSig, tx, i, false, 0)) return false; if (whichType == TX_SCRIPTHASH) { if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); vector > vSolutions2; txnouttype whichType2; if (!Solver(subscript, whichType2, vSolutions2)) return false; if (whichType2 == TX_SCRIPTHASH) return false; int tmpExpected; tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2); if (tmpExpected < 0) return false; nArgsExpected += tmpExpected; } if (stack.size() != (unsigned int)nArgsExpected) return false; } return true; } unsigned int GetLegacySigOpCount(const CTransaction& tx) { unsigned int nSigOps = 0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } BOOST_FOREACH(const CTxOut& txout, tx.vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } unsigned int GetP2SHSigOpCount(const CTransaction& tx, CCoinsViewCache& inputs) { if (tx.IsCoinBase()) return 0; unsigned int nSigOps = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]); if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig); } return nSigOps; } int CMerkleTx::SetMerkleBranch(const CBlock* pblock) { CBlock blockTmp; if (pblock == NULL) { CCoins coins; if (pcoinsTip->GetCoins(GetHash(), coins)) { CBlockIndex *pindex = FindBlockByHeight(coins.nHeight); if (pindex) { if (!ReadBlockFromDisk(blockTmp, pindex)) return 0; pblock = &blockTmp; } } } if (pblock) { // Update the tx's hashBlock hashBlock = pblock->GetHash(); // Locate the transaction for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++) if (pblock->vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == (int)pblock->vtx.size()) { vMerkleBranch.clear(); nIndex = -1; printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n"); return 0; } // Fill in merkle branch vMerkleBranch = pblock->GetMerkleBranch(nIndex); } // Is the tx in a block that's in the main chain map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; return pindexBest->nHeight - pindex->nHeight + 1; } bool CheckTransaction(const CTransaction& tx, CValidationState &state) { // Basic checks that don't depend on any context if (tx.vin.empty()) return state.DoS(10, error("CheckTransaction() : vin empty")); if (tx.vout.empty()) return state.DoS(10, error("CheckTransaction() : vout empty")); // Size limits if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return state.DoS(100, error("CTransaction::CheckTransaction() : size limits failed")); // Check for negative or overflow output values int64 nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, tx.vout) { if (txout.nValue < 0) return state.DoS(100, error("CheckTransaction() : txout.nValue negative")); if (txout.nValue > MAX_MONEY) return state.DoS(100, error("CheckTransaction() : txout.nValue too high")); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return state.DoS(100, error("CTransaction::CheckTransaction() : txout total out of range")); } // Check for duplicate inputs set vInOutPoints; BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (vInOutPoints.count(txin.prevout)) return state.DoS(100, error("CTransaction::CheckTransaction() : duplicate inputs")); vInOutPoints.insert(txin.prevout); } if (tx.IsCoinBase()) { if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) return state.DoS(100, error("CheckTransaction() : coinbase script size")); } else { BOOST_FOREACH(const CTxIn& txin, tx.vin) if (txin.prevout.IsNull()) return state.DoS(10, error("CheckTransaction() : prevout is null")); } return true; } int64 GetMinFee(const CTransaction& tx, bool fAllowFree, enum GetMinFee_mode mode) { // Base fee is either nMinTxFee or nMinRelayTxFee int64 nBaseFee = (mode == GMF_RELAY) ? tx.nMinRelayTxFee : tx.nMinTxFee; unsigned int nBytes = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); int64 nMinFee = (1 + (int64)nBytes / 1000) * nBaseFee; if (fAllowFree) { // There is a free transaction area in blocks created by most miners, // * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000 // to be considered to fall into this category // * If we are creating a transaction we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 17000 // (= 10000) to be considered safe and assume they can likely make it into this section if (nBytes < (mode == GMF_SEND ? (DEFAULT_BLOCK_PRIORITY_SIZE - 17000) : (DEFAULT_BLOCK_PRIORITY_SIZE - 1000))) nMinFee = 0; } // To limit dust spam, require base fee if any output is less than 0.01 if (nMinFee < nBaseFee) { BOOST_FOREACH(const CTxOut& txout, tx.vout) if (txout.nValue < CENT) nMinFee = nBaseFee; } if (!MoneyRange(nMinFee)) nMinFee = MAX_MONEY; return nMinFee; } void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins) { LOCK(cs); std::map::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0)); // iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx while (it != mapNextTx.end() && it->first.hash == hashTx) { coins.Spend(it->first.n); // and remove those outputs from coins it++; } } bool CTxMemPool::accept(CValidationState &state, CTransaction &tx, bool fLimitFree, bool* pfMissingInputs) { if (pfMissingInputs) *pfMissingInputs = false; if (!CheckTransaction(tx, state)) return error("CTxMemPool::accept() : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (tx.IsCoinBase()) return state.DoS(100, error("CTxMemPool::accept() : coinbase as individual tx")); // To help v0.1.5 clients who would see it as a negative number if ((int64)tx.nLockTime > std::numeric_limits::max()) return error("CTxMemPool::accept() : not accepting nLockTime beyond 2038 yet"); // Rather not work on nonstandard transactions (unless -testnet) string reason; if (!TestNet() && !IsStandardTx(tx, reason)) return error("CTxMemPool::accept() : nonstandard transaction: %s", reason.c_str()); // is it already in the memory pool? uint256 hash = tx.GetHash(); { LOCK(cs); if (mapTx.count(hash)) return false; } // Check for conflicts with in-memory transactions CTransaction* ptxOld = NULL; for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; // Allow replacing with a newer version of the same transaction if (i != 0) return false; ptxOld = mapNextTx[outpoint].ptx; if (IsFinalTx(*ptxOld)) return false; if (!tx.IsNewerThan(*ptxOld)) return false; for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld) return false; } break; } } { CCoinsView dummy; CCoinsViewCache view(dummy); { LOCK(cs); CCoinsViewMemPool viewMemPool(*pcoinsTip, *this); view.SetBackend(viewMemPool); // do we already have it? if (view.HaveCoins(hash)) return false; // do all inputs exist? // Note that this does not check for the presence of actual outputs (see the next check for that), // only helps filling in pfMissingInputs (to determine missing vs spent). BOOST_FOREACH(const CTxIn txin, tx.vin) { if (!view.HaveCoins(txin.prevout.hash)) { if (pfMissingInputs) *pfMissingInputs = true; return false; } } // are the actual inputs available? if (!view.HaveInputs(tx)) return state.Invalid(error("CTxMemPool::accept() : inputs already spent")); // Bring the best block into scope view.GetBestBlock(); // we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool view.SetBackend(dummy); } // Check for non-standard pay-to-script-hash in inputs if (!TestNet() && !AreInputsStandard(tx, view)) return error("CTxMemPool::accept() : nonstandard transaction input"); // Note: if you modify this code to accept non-standard transactions, then // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. int64 nFees = view.GetValueIn(tx)-GetValueOut(tx); unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); // Don't accept it if it can't get into a block int64 txMinFee = GetMinFee(tx, true, GMF_RELAY); if (fLimitFree && nFees < txMinFee) return error("CTxMemPool::accept() : not enough fees %s, %"PRI64d" < %"PRI64d, hash.ToString().c_str(), nFees, txMinFee); // Continuously rate-limit free transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make others' transactions take longer to confirm. if (fLimitFree && nFees < CTransaction::nMinRelayTxFee) { static double dFreeCount; static int64 nLastTime; int64 nNow = GetTime(); LOCK(cs); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000) return error("CTxMemPool::accept() : free transaction rejected by rate limiter"); if (fDebug) printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. if (!CheckInputs(tx, state, view, true, SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC)) { return error("CTxMemPool::accept() : ConnectInputs failed %s", hash.ToString().c_str()); } } // Store transaction in memory { LOCK(cs); if (ptxOld) { printf("CTxMemPool::accept() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str()); remove(*ptxOld); } addUnchecked(hash, tx); } ///// are we sure this is ok when loading transactions or restoring block txes // If updated, erase old tx from wallet if (ptxOld) EraseFromWallets(ptxOld->GetHash()); SyncWithWallets(hash, tx, NULL, true); printf("CTxMemPool::accept() : accepted %s (poolsz %"PRIszu")\n", hash.ToString().c_str(), mapTx.size()); return true; } bool CTxMemPool::addUnchecked(const uint256& hash, CTransaction &tx) { // Add to memory pool without checking anything. Don't call this directly, // call CTxMemPool::accept to properly check the transaction first. { mapTx[hash] = tx; for (unsigned int i = 0; i < tx.vin.size(); i++) mapNextTx[tx.vin[i].prevout] = CInPoint(&mapTx[hash], i); nTransactionsUpdated++; } return true; } bool CTxMemPool::remove(const CTransaction &tx, bool fRecursive) { // Remove transaction from memory pool { LOCK(cs); uint256 hash = tx.GetHash(); if (mapTx.count(hash)) { if (fRecursive) { for (unsigned int i = 0; i < tx.vout.size(); i++) { std::map::iterator it = mapNextTx.find(COutPoint(hash, i)); if (it != mapNextTx.end()) remove(*it->second.ptx, true); } } BOOST_FOREACH(const CTxIn& txin, tx.vin) mapNextTx.erase(txin.prevout); mapTx.erase(hash); nTransactionsUpdated++; } } return true; } bool CTxMemPool::removeConflicts(const CTransaction &tx) { // Remove transactions which depend on inputs of tx, recursively LOCK(cs); BOOST_FOREACH(const CTxIn &txin, tx.vin) { std::map::iterator it = mapNextTx.find(txin.prevout); if (it != mapNextTx.end()) { const CTransaction &txConflict = *it->second.ptx; if (txConflict != tx) remove(txConflict, true); } } return true; } void CTxMemPool::clear() { LOCK(cs); mapTx.clear(); mapNextTx.clear(); ++nTransactionsUpdated; } void CTxMemPool::queryHashes(std::vector& vtxid) { vtxid.clear(); LOCK(cs); vtxid.reserve(mapTx.size()); for (map::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) vtxid.push_back((*mi).first); } int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const { if (hashBlock == 0 || nIndex == -1) return 0; // Find the block it claims to be in map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; // Make sure the merkle branch connects to this block if (!fMerkleVerified) { if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot) return 0; fMerkleVerified = true; } pindexRet = pindex; return pindexBest->nHeight - pindex->nHeight + 1; } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return max(0, (COINBASE_MATURITY+20) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(bool fLimitFree) { CValidationState state; return mempool.accept(state, *this, fLimitFree, NULL); } bool CWalletTx::AcceptWalletTransaction() { { LOCK(mempool.cs); // Add previous supporting transactions first BOOST_FOREACH(CMerkleTx& tx, vtxPrev) { if (!tx.IsCoinBase()) { uint256 hash = tx.GetHash(); if (!mempool.exists(hash) && pcoinsTip->HaveCoins(hash)) tx.AcceptToMemoryPool(false); } } return AcceptToMemoryPool(false); } return false; } // Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow) { CBlockIndex *pindexSlow = NULL; { LOCK(cs_main); { LOCK(mempool.cs); if (mempool.exists(hash)) { txOut = mempool.lookup(hash); return true; } } if (fTxIndex) { CDiskTxPos postx; if (pblocktree->ReadTxIndex(hash, postx)) { CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION); CBlockHeader header; try { file >> header; fseek(file, postx.nTxOffset, SEEK_CUR); file >> txOut; } catch (std::exception &e) { return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__); } hashBlock = header.GetHash(); if (txOut.GetHash() != hash) return error("%s() : txid mismatch", __PRETTY_FUNCTION__); return true; } } if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it int nHeight = -1; { CCoinsViewCache &view = *pcoinsTip; CCoins coins; if (view.GetCoins(hash, coins)) nHeight = coins.nHeight; } if (nHeight > 0) pindexSlow = FindBlockByHeight(nHeight); } } if (pindexSlow) { CBlock block; if (ReadBlockFromDisk(block, pindexSlow)) { BOOST_FOREACH(const CTransaction &tx, block.vtx) { if (tx.GetHash() == hash) { txOut = tx; hashBlock = pindexSlow->GetBlockHash(); return true; } } } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // static CBlockIndex* pblockindexFBBHLast; CBlockIndex* FindBlockByHeight(int nHeight) { if (nHeight >= (int)vBlockIndexByHeight.size()) return NULL; return vBlockIndexByHeight[nHeight]; } bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos) { // Open history file to append CAutoFile fileout = CAutoFile(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (!fileout) return error("WriteBlockToDisk() : OpenBlockFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(block); fileout << FLATDATA(Params().MessageStart()) << nSize; // Write block long fileOutPos = ftell(fileout); if (fileOutPos < 0) return error("WriteBlockToDisk() : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << block; // Flush stdio buffers and commit to disk before returning fflush(fileout); if (!IsInitialBlockDownload()) FileCommit(fileout); return true; } bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos) { block.SetNull(); // Open history file to read CAutoFile filein = CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (!filein) return error("ReadBlockFromDisk(CBlock&, CDiskBlockPos&) : OpenBlockFile failed"); // Read block try { filein >> block; } catch (std::exception &e) { return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits)) return error("ReadBlockFromDisk(CBlock&, CDiskBlockPos&) : errors in block header"); return true; } bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex) { if (!ReadBlockFromDisk(block, pindex->GetBlockPos())) return false; if (block.GetHash() != pindex->GetBlockHash()) return error("ReadBlockFromDisk(CBlock&, CBlockIndex*) : GetHash() doesn't match index"); return true; } uint256 static GetOrphanRoot(const CBlockHeader* pblock) { // Work back to the first block in the orphan chain while (mapOrphanBlocks.count(pblock->hashPrevBlock)) pblock = mapOrphanBlocks[pblock->hashPrevBlock]; return pblock->GetHash(); } int64 static GetBlockValue(int nHeight, int64 nFees) { int64 nSubsidy = 50 * COIN; // Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years. nSubsidy >>= (nHeight / Params().SubsidyHalvingInterval()); return nSubsidy + nFees; } static const int64 nTargetTimespan = 14 * 24 * 60 * 60; // two weeks static const int64 nTargetSpacing = 10 * 60; static const int64 nInterval = nTargetTimespan / nTargetSpacing; // // minimum amount of work that could possibly be required nTime after // minimum work required was nBase // unsigned int ComputeMinWork(unsigned int nBase, int64 nTime) { const CBigNum &bnLimit = Params().ProofOfWorkLimit(); // Testnet has min-difficulty blocks // after nTargetSpacing*2 time between blocks: if (TestNet() && nTime > nTargetSpacing*2) return bnLimit.GetCompact(); CBigNum bnResult; bnResult.SetCompact(nBase); while (nTime > 0 && bnResult < bnLimit) { // Maximum 400% adjustment... bnResult *= 4; // ... in best-case exactly 4-times-normal target time nTime -= nTargetTimespan*4; } if (bnResult > bnLimit) bnResult = bnLimit; return bnResult.GetCompact(); } unsigned int static GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock) { unsigned int nProofOfWorkLimit = Params().ProofOfWorkLimit().GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % nInterval != 0) { if (TestNet()) { // Special difficulty rule for testnet: // If the new block's timestamp is more than 2* 10 minutes // then allow mining of a min-difficulty block. if (pblock->nTime > pindexLast->nTime + nTargetSpacing*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % nInterval != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Go back by what we want to be 14 days worth of blocks const CBlockIndex* pindexFirst = pindexLast; for (int i = 0; pindexFirst && i < nInterval-1; i++) pindexFirst = pindexFirst->pprev; assert(pindexFirst); // Limit adjustment step int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime(); printf(" nActualTimespan = %"PRI64d" before bounds\n", nActualTimespan); if (nActualTimespan < nTargetTimespan/4) nActualTimespan = nTargetTimespan/4; if (nActualTimespan > nTargetTimespan*4) nActualTimespan = nTargetTimespan*4; // Retarget CBigNum bnNew; bnNew.SetCompact(pindexLast->nBits); bnNew *= nActualTimespan; bnNew /= nTargetTimespan; if (bnNew > Params().ProofOfWorkLimit()) bnNew = Params().ProofOfWorkLimit(); /// debug print printf("GetNextWorkRequired RETARGET\n"); printf("nTargetTimespan = %"PRI64d" nActualTimespan = %"PRI64d"\n", nTargetTimespan, nActualTimespan); printf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str()); printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str()); return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { CBigNum bnTarget; bnTarget.SetCompact(nBits); // Check range if (bnTarget <= 0 || bnTarget > Params().ProofOfWorkLimit()) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget.getuint256()) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } // Return maximum amount of blocks that other nodes claim to have int GetNumBlocksOfPeers() { return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate()); } bool IsInitialBlockDownload() { if (pindexBest == NULL || fImporting || fReindex || nBestHeight < Checkpoints::GetTotalBlocksEstimate()) return true; static int64 nLastUpdate; static CBlockIndex* pindexLastBest; if (pindexBest != pindexLastBest) { pindexLastBest = pindexBest; nLastUpdate = GetTime(); } return (GetTime() - nLastUpdate < 10 && pindexBest->GetBlockTime() < GetTime() - 24 * 60 * 60); } void static InvalidChainFound(CBlockIndex* pindexNew) { if (pindexNew->nChainWork > nBestInvalidWork) { nBestInvalidWork = pindexNew->nChainWork; pblocktree->WriteBestInvalidWork(CBigNum(nBestInvalidWork)); uiInterface.NotifyBlocksChanged(); } printf("InvalidChainFound: invalid block=%s height=%d log2_work=%.8g date=%s\n", pindexNew->GetBlockHash().ToString().c_str(), pindexNew->nHeight, log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexNew->GetBlockTime()).c_str()); printf("InvalidChainFound: current best=%s height=%d log2_work=%.8g date=%s\n", hashBestChain.ToString().c_str(), nBestHeight, log(nBestChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexBest->GetBlockTime()).c_str()); if (pindexBest && nBestInvalidWork > nBestChainWork + (pindexBest->GetBlockWork() * 6).getuint256()) printf("InvalidChainFound: Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.\n"); } void static InvalidBlockFound(CBlockIndex *pindex) { pindex->nStatus |= BLOCK_FAILED_VALID; pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex)); setBlockIndexValid.erase(pindex); InvalidChainFound(pindex); if (pindex->GetNextInMainChain()) { CValidationState stateDummy; ConnectBestBlock(stateDummy); // reorganise away from the failed block } } bool ConnectBestBlock(CValidationState &state) { do { CBlockIndex *pindexNewBest; { std::set::reverse_iterator it = setBlockIndexValid.rbegin(); if (it == setBlockIndexValid.rend()) return true; pindexNewBest = *it; } if (pindexNewBest == pindexBest || (pindexBest && pindexNewBest->nChainWork == pindexBest->nChainWork)) return true; // nothing to do // check ancestry CBlockIndex *pindexTest = pindexNewBest; std::vector vAttach; do { if (pindexTest->nStatus & BLOCK_FAILED_MASK) { // mark descendants failed CBlockIndex *pindexFailed = pindexNewBest; while (pindexTest != pindexFailed) { pindexFailed->nStatus |= BLOCK_FAILED_CHILD; setBlockIndexValid.erase(pindexFailed); pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexFailed)); pindexFailed = pindexFailed->pprev; } InvalidChainFound(pindexNewBest); break; } if (pindexBest == NULL || pindexTest->nChainWork > pindexBest->nChainWork) vAttach.push_back(pindexTest); if (pindexTest->pprev == NULL || pindexTest->GetNextInMainChain()) { reverse(vAttach.begin(), vAttach.end()); BOOST_FOREACH(CBlockIndex *pindexSwitch, vAttach) { boost::this_thread::interruption_point(); try { if (!SetBestChain(state, pindexSwitch)) return false; } catch(std::runtime_error &e) { return state.Abort(_("System error: ") + e.what()); } } return true; } pindexTest = pindexTest->pprev; } while(true); } while(true); } void UpdateTime(CBlockHeader& block, const CBlockIndex* pindexPrev) { block.nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); // Updating time can change work required on testnet: if (TestNet()) block.nBits = GetNextWorkRequired(pindexPrev, &block); } const CTxOut &CCoinsViewCache::GetOutputFor(const CTxIn& input) { const CCoins &coins = GetCoins(input.prevout.hash); assert(coins.IsAvailable(input.prevout.n)); return coins.vout[input.prevout.n]; } int64 CCoinsViewCache::GetValueIn(const CTransaction& tx) { if (tx.IsCoinBase()) return 0; int64 nResult = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) nResult += GetOutputFor(tx.vin[i]).nValue; return nResult; } void UpdateCoins(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight, const uint256 &txhash) { // mark inputs spent if (!tx.IsCoinBase()) { BOOST_FOREACH(const CTxIn &txin, tx.vin) { CCoins &coins = inputs.GetCoins(txin.prevout.hash); CTxInUndo undo; assert(coins.Spend(txin.prevout, undo)); txundo.vprevout.push_back(undo); } } // add outputs assert(inputs.SetCoins(txhash, CCoins(tx, nHeight))); } bool CCoinsViewCache::HaveInputs(const CTransaction& tx) { if (!tx.IsCoinBase()) { // first check whether information about the prevout hash is available for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; if (!HaveCoins(prevout.hash)) return false; } // then check whether the actual outputs are available for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins &coins = GetCoins(prevout.hash); if (!coins.IsAvailable(prevout.n)) return false; } } return true; } bool CScriptCheck::operator()() const { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; if (!VerifyScript(scriptSig, scriptPubKey, *ptxTo, nIn, nFlags, nHashType)) return error("CScriptCheck() : %s VerifySignature failed", ptxTo->GetHash().ToString().c_str()); return true; } bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType) { return CScriptCheck(txFrom, txTo, nIn, flags, nHashType)(); } bool CheckInputs(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, std::vector *pvChecks) { if (!tx.IsCoinBase()) { if (pvChecks) pvChecks->reserve(tx.vin.size()); // This doesn't trigger the DoS code on purpose; if it did, it would make it easier // for an attacker to attempt to split the network. if (!inputs.HaveInputs(tx)) return state.Invalid(error("CheckInputs() : %s inputs unavailable", tx.GetHash().ToString().c_str())); // While checking, GetBestBlock() refers to the parent block. // This is also true for mempool checks. int nSpendHeight = inputs.GetBestBlock()->nHeight + 1; int64 nValueIn = 0; int64 nFees = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins &coins = inputs.GetCoins(prevout.hash); // If prev is coinbase, check that it's matured if (coins.IsCoinBase()) { if (nSpendHeight - coins.nHeight < COINBASE_MATURITY) return state.Invalid(error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins.nHeight)); } // Check for negative or overflow input values nValueIn += coins.vout[prevout.n].nValue; if (!MoneyRange(coins.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return state.DoS(100, error("CheckInputs() : txin values out of range")); } if (nValueIn < GetValueOut(tx)) return state.DoS(100, error("CheckInputs() : %s value in < value out", tx.GetHash().ToString().c_str())); // Tally transaction fees int64 nTxFee = nValueIn - GetValueOut(tx); if (nTxFee < 0) return state.DoS(100, error("CheckInputs() : %s nTxFee < 0", tx.GetHash().ToString().c_str())); nFees += nTxFee; if (!MoneyRange(nFees)) return state.DoS(100, error("CheckInputs() : nFees out of range")); // The first loop above does all the inexpensive checks. // Only if ALL inputs pass do we perform expensive ECDSA signature checks. // Helps prevent CPU exhaustion attacks. // Skip ECDSA signature verification when connecting blocks // before the last block chain checkpoint. This is safe because block merkle hashes are // still computed and checked, and any change will be caught at the next checkpoint. if (fScriptChecks) { for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins &coins = inputs.GetCoins(prevout.hash); // Verify signature CScriptCheck check(coins, tx, i, flags, 0); if (pvChecks) { pvChecks->push_back(CScriptCheck()); check.swap(pvChecks->back()); } else if (!check()) { if (flags & SCRIPT_VERIFY_STRICTENC) { // For now, check whether the failure was caused by non-canonical // encodings or not; if so, don't trigger DoS protection. CScriptCheck check(coins, tx, i, flags & (~SCRIPT_VERIFY_STRICTENC), 0); if (check()) return state.Invalid(); } return state.DoS(100,false); } } } } return true; } bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean) { assert(pindex == view.GetBestBlock()); if (pfClean) *pfClean = false; bool fClean = true; CBlockUndo blockUndo; CDiskBlockPos pos = pindex->GetUndoPos(); if (pos.IsNull()) return error("DisconnectBlock() : no undo data available"); if (!blockUndo.ReadFromDisk(pos, pindex->pprev->GetBlockHash())) return error("DisconnectBlock() : failure reading undo data"); if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) return error("DisconnectBlock() : block and undo data inconsistent"); // undo transactions in reverse order for (int i = block.vtx.size() - 1; i >= 0; i--) { const CTransaction &tx = block.vtx[i]; uint256 hash = tx.GetHash(); // check that all outputs are available if (!view.HaveCoins(hash)) { fClean = fClean && error("DisconnectBlock() : outputs still spent? database corrupted"); view.SetCoins(hash, CCoins()); } CCoins &outs = view.GetCoins(hash); CCoins outsBlock = CCoins(tx, pindex->nHeight); if (outs != outsBlock) fClean = fClean && error("DisconnectBlock() : added transaction mismatch? database corrupted"); // remove outputs outs = CCoins(); // restore inputs if (i > 0) { // not coinbases const CTxUndo &txundo = blockUndo.vtxundo[i-1]; if (txundo.vprevout.size() != tx.vin.size()) return error("DisconnectBlock() : transaction and undo data inconsistent"); for (unsigned int j = tx.vin.size(); j-- > 0;) { const COutPoint &out = tx.vin[j].prevout; const CTxInUndo &undo = txundo.vprevout[j]; CCoins coins; view.GetCoins(out.hash, coins); // this can fail if the prevout was already entirely spent if (undo.nHeight != 0) { // undo data contains height: this is the last output of the prevout tx being spent if (!coins.IsPruned()) fClean = fClean && error("DisconnectBlock() : undo data overwriting existing transaction"); coins = CCoins(); coins.fCoinBase = undo.fCoinBase; coins.nHeight = undo.nHeight; coins.nVersion = undo.nVersion; } else { if (coins.IsPruned()) fClean = fClean && error("DisconnectBlock() : undo data adding output to missing transaction"); } if (coins.IsAvailable(out.n)) fClean = fClean && error("DisconnectBlock() : undo data overwriting existing output"); if (coins.vout.size() < out.n+1) coins.vout.resize(out.n+1); coins.vout[out.n] = undo.txout; if (!view.SetCoins(out.hash, coins)) return error("DisconnectBlock() : cannot restore coin inputs"); } } } // move best block pointer to prevout block view.SetBestBlock(pindex->pprev); if (pfClean) { *pfClean = fClean; return true; } else { return fClean; } } void static FlushBlockFile(bool fFinalize = false) { LOCK(cs_LastBlockFile); CDiskBlockPos posOld(nLastBlockFile, 0); FILE *fileOld = OpenBlockFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, infoLastBlockFile.nSize); FileCommit(fileOld); fclose(fileOld); } fileOld = OpenUndoFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, infoLastBlockFile.nUndoSize); FileCommit(fileOld); fclose(fileOld); } } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize); static CCheckQueue scriptcheckqueue(128); void ThreadScriptCheck() { RenameThread("bitcoin-scriptch"); scriptcheckqueue.Thread(); } bool ConnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool fJustCheck) { // Check it again in case a previous version let a bad block in if (!CheckBlock(block, state, !fJustCheck, !fJustCheck)) return false; // verify that the view's current state corresponds to the previous block assert(pindex->pprev == view.GetBestBlock()); // Special case for the genesis block, skipping connection of its transactions // (its coinbase is unspendable) if (block.GetHash() == Params().HashGenesisBlock()) { view.SetBestBlock(pindex); pindexGenesisBlock = pindex; return true; } bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate(); // Do not allow blocks that contain transactions which 'overwrite' older transactions, // unless those are already completely spent. // If such overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- even after // being sent to another address. // See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information. // This logic is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. // This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC. // Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the // two in the chain that violate it. This prevents exploiting the issue against nodes in their // initial block download. bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash. !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) || (pindex->nHeight==91880 && pindex->GetBlockHash() == uint256("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721"))); if (fEnforceBIP30) { for (unsigned int i = 0; i < block.vtx.size(); i++) { uint256 hash = block.GetTxHash(i); if (view.HaveCoins(hash) && !view.GetCoins(hash).IsPruned()) return state.DoS(100, error("ConnectBlock() : tried to overwrite transaction")); } } // BIP16 didn't become active until Apr 1 2012 int64 nBIP16SwitchTime = 1333238400; bool fStrictPayToScriptHash = (pindex->nTime >= nBIP16SwitchTime); unsigned int flags = SCRIPT_VERIFY_NOCACHE | (fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE); CBlockUndo blockundo; CCheckQueueControl control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL); int64 nStart = GetTimeMicros(); int64 nFees = 0; int nInputs = 0; unsigned int nSigOps = 0; CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size())); std::vector > vPos; vPos.reserve(block.vtx.size()); for (unsigned int i = 0; i < block.vtx.size(); i++) { const CTransaction &tx = block.vtx[i]; nInputs += tx.vin.size(); nSigOps += GetLegacySigOpCount(tx); if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("ConnectBlock() : too many sigops")); if (!tx.IsCoinBase()) { if (!view.HaveInputs(tx)) return state.DoS(100, error("ConnectBlock() : inputs missing/spent")); if (fStrictPayToScriptHash) { // Add in sigops done by pay-to-script-hash inputs; // this is to prevent a "rogue miner" from creating // an incredibly-expensive-to-validate block. nSigOps += GetP2SHSigOpCount(tx, view); if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("ConnectBlock() : too many sigops")); } nFees += view.GetValueIn(tx)-GetValueOut(tx); std::vector vChecks; if (!CheckInputs(tx, state, view, fScriptChecks, flags, nScriptCheckThreads ? &vChecks : NULL)) return false; control.Add(vChecks); } CTxUndo txundo; UpdateCoins(tx, state, view, txundo, pindex->nHeight, block.GetTxHash(i)); if (!tx.IsCoinBase()) blockundo.vtxundo.push_back(txundo); vPos.push_back(std::make_pair(block.GetTxHash(i), pos)); pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION); } int64 nTime = GetTimeMicros() - nStart; if (fBenchmark) printf("- Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin)\n", (unsigned)block.vtx.size(), 0.001 * nTime, 0.001 * nTime / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * nTime / (nInputs-1)); if (GetValueOut(block.vtx[0]) > GetBlockValue(pindex->nHeight, nFees)) return state.DoS(100, error("ConnectBlock() : coinbase pays too much (actual=%"PRI64d" vs limit=%"PRI64d")", GetValueOut(block.vtx[0]), GetBlockValue(pindex->nHeight, nFees))); if (!control.Wait()) return state.DoS(100, false); int64 nTime2 = GetTimeMicros() - nStart; if (fBenchmark) printf("- Verify %u txins: %.2fms (%.3fms/txin)\n", nInputs - 1, 0.001 * nTime2, nInputs <= 1 ? 0 : 0.001 * nTime2 / (nInputs-1)); if (fJustCheck) return true; // Write undo information to disk if (pindex->GetUndoPos().IsNull() || (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) { if (pindex->GetUndoPos().IsNull()) { CDiskBlockPos pos; if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40)) return error("ConnectBlock() : FindUndoPos failed"); if (!blockundo.WriteToDisk(pos, pindex->pprev->GetBlockHash())) return state.Abort(_("Failed to write undo data")); // update nUndoPos in block index pindex->nUndoPos = pos.nPos; pindex->nStatus |= BLOCK_HAVE_UNDO; } pindex->nStatus = (pindex->nStatus & ~BLOCK_VALID_MASK) | BLOCK_VALID_SCRIPTS; CDiskBlockIndex blockindex(pindex); if (!pblocktree->WriteBlockIndex(blockindex)) return state.Abort(_("Failed to write block index")); } if (fTxIndex) if (!pblocktree->WriteTxIndex(vPos)) return state.Abort(_("Failed to write transaction index")); // add this block to the view's block chain assert(view.SetBestBlock(pindex)); // Watch for transactions paying to me for (unsigned int i = 0; i < block.vtx.size(); i++) SyncWithWallets(block.GetTxHash(i), block.vtx[i], &block, true); return true; } bool SetBestChain(CValidationState &state, CBlockIndex* pindexNew) { // All modifications to the coin state will be done in this cache. // Only when all have succeeded, we push it to pcoinsTip. CCoinsViewCache view(*pcoinsTip, true); // Find the fork (typically, there is none) CBlockIndex* pfork = view.GetBestBlock(); CBlockIndex* plonger = pindexNew; while (pfork && pfork != plonger) { while (plonger->nHeight > pfork->nHeight) { plonger = plonger->pprev; assert(plonger != NULL); } if (pfork == plonger) break; pfork = pfork->pprev; assert(pfork != NULL); } // List of what to disconnect (typically nothing) vector vDisconnect; for (CBlockIndex* pindex = view.GetBestBlock(); pindex != pfork; pindex = pindex->pprev) vDisconnect.push_back(pindex); // List of what to connect (typically only pindexNew) vector vConnect; for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev) vConnect.push_back(pindex); reverse(vConnect.begin(), vConnect.end()); if (vDisconnect.size() > 0) { printf("REORGANIZE: Disconnect %"PRIszu" blocks; %s..\n", vDisconnect.size(), pfork->GetBlockHash().ToString().c_str()); printf("REORGANIZE: Connect %"PRIszu" blocks; ..%s\n", vConnect.size(), pindexNew->GetBlockHash().ToString().c_str()); } // Disconnect shorter branch vector vResurrect; BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) { CBlock block; if (!ReadBlockFromDisk(block, pindex)) return state.Abort(_("Failed to read block")); int64 nStart = GetTimeMicros(); if (!DisconnectBlock(block, state, pindex, view)) return error("SetBestBlock() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString().c_str()); if (fBenchmark) printf("- Disconnect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Queue memory transactions to resurrect. // We only do this for blocks after the last checkpoint (reorganisation before that // point should only happen with -reindex/-loadblock, or a misbehaving peer. BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!tx.IsCoinBase() && pindex->nHeight > Checkpoints::GetTotalBlocksEstimate()) vResurrect.push_back(tx); } // Connect longer branch vector vDelete; BOOST_FOREACH(CBlockIndex *pindex, vConnect) { CBlock block; if (!ReadBlockFromDisk(block, pindex)) return state.Abort(_("Failed to read block")); int64 nStart = GetTimeMicros(); if (!ConnectBlock(block, state, pindex, view)) { if (state.IsInvalid()) { InvalidChainFound(pindexNew); InvalidBlockFound(pindex); } return error("SetBestBlock() : ConnectBlock %s failed", pindex->GetBlockHash().ToString().c_str()); } if (fBenchmark) printf("- Connect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Queue memory transactions to delete BOOST_FOREACH(const CTransaction& tx, block.vtx) vDelete.push_back(tx); } // Flush changes to global coin state int64 nStart = GetTimeMicros(); int nModified = view.GetCacheSize(); assert(view.Flush()); int64 nTime = GetTimeMicros() - nStart; if (fBenchmark) printf("- Flush %i transactions: %.2fms (%.4fms/tx)\n", nModified, 0.001 * nTime, 0.001 * nTime / nModified); // Make sure it's successfully written to disk before changing memory structure bool fIsInitialDownload = IsInitialBlockDownload(); if (!fIsInitialDownload || pcoinsTip->GetCacheSize() > nCoinCacheSize) { // Typical CCoins structures on disk are around 100 bytes in size. // Pushing a new one to the database can cause it to be written // twice (once in the log, and once in the tables). This is already // an overestimation, as most will delete an existing entry or // overwrite one. Still, use a conservative safety factor of 2. if (!CheckDiskSpace(100 * 2 * 2 * pcoinsTip->GetCacheSize())) return state.Error(); FlushBlockFile(); pblocktree->Sync(); if (!pcoinsTip->Flush()) return state.Abort(_("Failed to write to coin database")); } // At this point, all changes have been done to the database. // Proceed by updating the memory structures. // Register new best chain vBlockIndexByHeight.resize(pindexNew->nHeight + 1); BOOST_FOREACH(CBlockIndex* pindex, vConnect) vBlockIndexByHeight[pindex->nHeight] = pindex; // Resurrect memory transactions that were in the disconnected branch BOOST_FOREACH(CTransaction& tx, vResurrect) { // ignore validation errors in resurrected transactions CValidationState stateDummy; mempool.accept(stateDummy, tx, false, NULL); } // Delete redundant memory transactions that are in the connected branch BOOST_FOREACH(CTransaction& tx, vDelete) { mempool.remove(tx); mempool.removeConflicts(tx); } // Update best block in wallet (so we can detect restored wallets) if ((pindexNew->nHeight % 20160) == 0 || (!fIsInitialDownload && (pindexNew->nHeight % 144) == 0)) { const CBlockLocator locator(pindexNew); ::SetBestChain(locator); } // New best block hashBestChain = pindexNew->GetBlockHash(); pindexBest = pindexNew; pblockindexFBBHLast = NULL; nBestHeight = pindexBest->nHeight; nBestChainWork = pindexNew->nChainWork; nTimeBestReceived = GetTime(); nTransactionsUpdated++; printf("SetBestChain: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f\n", hashBestChain.ToString().c_str(), nBestHeight, log(nBestChainWork.getdouble())/log(2.0), (unsigned long)pindexNew->nChainTx, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexBest->GetBlockTime()).c_str(), Checkpoints::GuessVerificationProgress(pindexBest)); // Check the version of the last 100 blocks to see if we need to upgrade: if (!fIsInitialDownload) { int nUpgraded = 0; const CBlockIndex* pindex = pindexBest; for (int i = 0; i < 100 && pindex != NULL; i++) { if (pindex->nVersion > CBlock::CURRENT_VERSION) ++nUpgraded; pindex = pindex->pprev; } if (nUpgraded > 0) printf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, CBlock::CURRENT_VERSION); if (nUpgraded > 100/2) // strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user: strMiscWarning = _("Warning: This version is obsolete, upgrade required!"); } std::string strCmd = GetArg("-blocknotify", ""); if (!fIsInitialDownload && !strCmd.empty()) { boost::replace_all(strCmd, "%s", hashBestChain.GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } return true; } bool AddToBlockIndex(CBlock& block, CValidationState& state, const CDiskBlockPos& pos) { // Check for duplicate uint256 hash = block.GetHash(); if (mapBlockIndex.count(hash)) return state.Invalid(error("AddToBlockIndex() : %s already exists", hash.ToString().c_str())); // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(block); assert(pindexNew); map::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); map::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; } pindexNew->nTx = block.vtx.size(); pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + pindexNew->GetBlockWork().getuint256(); pindexNew->nChainTx = (pindexNew->pprev ? pindexNew->pprev->nChainTx : 0) + pindexNew->nTx; pindexNew->nFile = pos.nFile; pindexNew->nDataPos = pos.nPos; pindexNew->nUndoPos = 0; pindexNew->nStatus = BLOCK_VALID_TRANSACTIONS | BLOCK_HAVE_DATA; setBlockIndexValid.insert(pindexNew); if (!pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew))) return state.Abort(_("Failed to write block index")); // New best? if (!ConnectBestBlock(state)) return false; if (pindexNew == pindexBest) { // Notify UI to display prev block's coinbase if it was ours static uint256 hashPrevBestCoinBase; UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = block.GetTxHash(0); } if (!pblocktree->Flush()) return state.Abort(_("Failed to sync block index")); uiInterface.NotifyBlocksChanged(); return true; } bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64 nTime, bool fKnown = false) { bool fUpdatedLast = false; LOCK(cs_LastBlockFile); if (fKnown) { if (nLastBlockFile != pos.nFile) { nLastBlockFile = pos.nFile; infoLastBlockFile.SetNull(); pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); fUpdatedLast = true; } } else { while (infoLastBlockFile.nSize + nAddSize >= MAX_BLOCKFILE_SIZE) { printf("Leaving block file %i: %s\n", nLastBlockFile, infoLastBlockFile.ToString().c_str()); FlushBlockFile(true); nLastBlockFile++; infoLastBlockFile.SetNull(); pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); // check whether data for the new file somehow already exist; can fail just fine fUpdatedLast = true; } pos.nFile = nLastBlockFile; pos.nPos = infoLastBlockFile.nSize; } infoLastBlockFile.nSize += nAddSize; infoLastBlockFile.AddBlock(nHeight, nTime); if (!fKnown) { unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; unsigned int nNewChunks = (infoLastBlockFile.nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenBlockFile(pos); if (file) { printf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error(); } } if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile)) return state.Abort(_("Failed to write file info")); if (fUpdatedLast) pblocktree->WriteLastBlockFile(nLastBlockFile); return true; } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); unsigned int nNewSize; if (nFile == nLastBlockFile) { pos.nPos = infoLastBlockFile.nUndoSize; nNewSize = (infoLastBlockFile.nUndoSize += nAddSize); if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile)) return state.Abort(_("Failed to write block info")); } else { CBlockFileInfo info; if (!pblocktree->ReadBlockFileInfo(nFile, info)) return state.Abort(_("Failed to read block info")); pos.nPos = info.nUndoSize; nNewSize = (info.nUndoSize += nAddSize); if (!pblocktree->WriteBlockFileInfo(nFile, info)) return state.Abort(_("Failed to write block info")); } unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenUndoFile(pos); if (file) { printf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error(); } return true; } bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW, bool fCheckMerkleRoot) { // These are checks that are independent of context // that can be verified before saving an orphan block. // Size limits if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return state.DoS(100, error("CheckBlock() : size limits failed")); // Check proof of work matches claimed amount if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits)) return state.DoS(50, error("CheckBlock() : proof of work failed")); // Check timestamp if (block.GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60) return state.Invalid(error("CheckBlock() : block timestamp too far in the future")); // First transaction must be coinbase, the rest must not be if (block.vtx.empty() || !block.vtx[0].IsCoinBase()) return state.DoS(100, error("CheckBlock() : first tx is not coinbase")); for (unsigned int i = 1; i < block.vtx.size(); i++) if (block.vtx[i].IsCoinBase()) return state.DoS(100, error("CheckBlock() : more than one coinbase")); // Check transactions BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!CheckTransaction(tx, state)) return error("CheckBlock() : CheckTransaction failed"); // Build the merkle tree already. We need it anyway later, and it makes the // block cache the transaction hashes, which means they don't need to be // recalculated many times during this block's validation. block.BuildMerkleTree(); // Check for duplicate txids. This is caught by ConnectInputs(), // but catching it earlier avoids a potential DoS attack: set uniqueTx; for (unsigned int i = 0; i < block.vtx.size(); i++) { uniqueTx.insert(block.GetTxHash(i)); } if (uniqueTx.size() != block.vtx.size()) return state.DoS(100, error("CheckBlock() : duplicate transaction")); unsigned int nSigOps = 0; BOOST_FOREACH(const CTransaction& tx, block.vtx) { nSigOps += GetLegacySigOpCount(tx); } if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("CheckBlock() : out-of-bounds SigOpCount")); // Check merkle root if (fCheckMerkleRoot && block.hashMerkleRoot != block.BuildMerkleTree()) return state.DoS(100, error("CheckBlock() : hashMerkleRoot mismatch")); return true; } bool AcceptBlock(CBlock& block, CValidationState& state, CDiskBlockPos* dbp) { // Check for duplicate uint256 hash = block.GetHash(); if (mapBlockIndex.count(hash)) return state.Invalid(error("AcceptBlock() : block already in mapBlockIndex")); // Get prev block index CBlockIndex* pindexPrev = NULL; int nHeight = 0; if (hash != Params().HashGenesisBlock()) { map::iterator mi = mapBlockIndex.find(block.hashPrevBlock); if (mi == mapBlockIndex.end()) return state.DoS(10, error("AcceptBlock() : prev block not found")); pindexPrev = (*mi).second; nHeight = pindexPrev->nHeight+1; // Check proof of work if (block.nBits != GetNextWorkRequired(pindexPrev, &block)) return state.DoS(100, error("AcceptBlock() : incorrect proof of work")); // Check timestamp against prev if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast()) return state.Invalid(error("AcceptBlock() : block's timestamp is too early")); // Check that all transactions are finalized BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!IsFinalTx(tx, nHeight, block.GetBlockTime())) return state.DoS(10, error("AcceptBlock() : contains a non-final transaction")); // Check that the block chain matches the known block chain up to a checkpoint if (!Checkpoints::CheckBlock(nHeight, hash)) return state.DoS(100, error("AcceptBlock() : rejected by checkpoint lock-in at %d", nHeight)); // Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded: if (block.nVersion < 2) { if ((!TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 950, 1000)) || (TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 75, 100))) { return state.Invalid(error("AcceptBlock() : rejected nVersion=1 block")); } } // Enforce block.nVersion=2 rule that the coinbase starts with serialized block height if (block.nVersion >= 2) { // if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet): if ((!TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 750, 1000)) || (TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 51, 100))) { CScript expect = CScript() << nHeight; if (!std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) return state.DoS(100, error("AcceptBlock() : block height mismatch in coinbase")); } } } // Write block to history file try { unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; if (dbp != NULL) blockPos = *dbp; if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.nTime, dbp != NULL)) return error("AcceptBlock() : FindBlockPos failed"); if (dbp == NULL) if (!WriteBlockToDisk(block, blockPos)) return state.Abort(_("Failed to write block")); if (!AddToBlockIndex(block, state, blockPos)) return error("AcceptBlock() : AddToBlockIndex failed"); } catch(std::runtime_error &e) { return state.Abort(_("System error: ") + e.what()); } // Relay inventory, but don't relay old inventory during initial block download int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate(); if (hashBestChain == hash) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate)) pnode->PushInventory(CInv(MSG_BLOCK, hash)); } return true; } bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck) { unsigned int nFound = 0; for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++) { if (pstart->nVersion >= minVersion) ++nFound; pstart = pstart->pprev; } return (nFound >= nRequired); } void PushGetBlocks(CNode* pnode, CBlockIndex* pindexBegin, uint256 hashEnd) { // Filter out duplicate requests if (pindexBegin == pnode->pindexLastGetBlocksBegin && hashEnd == pnode->hashLastGetBlocksEnd) return; pnode->pindexLastGetBlocksBegin = pindexBegin; pnode->hashLastGetBlocksEnd = hashEnd; pnode->PushMessage("getblocks", CBlockLocator(pindexBegin), hashEnd); } bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp) { // Check for duplicate uint256 hash = pblock->GetHash(); if (mapBlockIndex.count(hash)) return state.Invalid(error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().c_str())); if (mapOrphanBlocks.count(hash)) return state.Invalid(error("ProcessBlock() : already have block (orphan) %s", hash.ToString().c_str())); // Preliminary checks if (!CheckBlock(*pblock, state)) return error("ProcessBlock() : CheckBlock FAILED"); CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex); if (pcheckpoint && pblock->hashPrevBlock != hashBestChain) { // Extra checks to prevent "fill up memory by spamming with bogus blocks" int64 deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime; if (deltaTime < 0) { return state.DoS(100, error("ProcessBlock() : block with timestamp before last checkpoint")); } CBigNum bnNewBlock; bnNewBlock.SetCompact(pblock->nBits); CBigNum bnRequired; bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime)); if (bnNewBlock > bnRequired) { return state.DoS(100, error("ProcessBlock() : block with too little proof-of-work")); } } // If we don't already have its previous block, shunt it off to holding area until we get it if (pblock->hashPrevBlock != 0 && !mapBlockIndex.count(pblock->hashPrevBlock)) { printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().c_str()); // Accept orphans as long as there is a node to request its parents from if (pfrom) { CBlock* pblock2 = new CBlock(*pblock); mapOrphanBlocks.insert(make_pair(hash, pblock2)); mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2)); // Ask this guy to fill in what we're missing PushGetBlocks(pfrom, pindexBest, GetOrphanRoot(pblock2)); } return true; } // Store to disk if (!AcceptBlock(*pblock, state, dbp)) return error("ProcessBlock() : AcceptBlock FAILED"); // Recursively process any orphan blocks that depended on this one vector vWorkQueue; vWorkQueue.push_back(hash); for (unsigned int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev); mi != mapOrphanBlocksByPrev.upper_bound(hashPrev); ++mi) { CBlock* pblockOrphan = (*mi).second; // Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan resolution (that is, feeding people an invalid block based on LegitBlockX in order to get anyone relaying LegitBlockX banned) CValidationState stateDummy; if (AcceptBlock(*pblockOrphan, stateDummy)) vWorkQueue.push_back(pblockOrphan->GetHash()); mapOrphanBlocks.erase(pblockOrphan->GetHash()); delete pblockOrphan; } mapOrphanBlocksByPrev.erase(hashPrev); } printf("ProcessBlock: ACCEPTED\n"); return true; } CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter& filter) { header = block.GetBlockHeader(); vector vMatch; vector vHashes; vMatch.reserve(block.vtx.size()); vHashes.reserve(block.vtx.size()); for (unsigned int i = 0; i < block.vtx.size(); i++) { uint256 hash = block.vtx[i].GetHash(); if (filter.IsRelevantAndUpdate(block.vtx[i], hash)) { vMatch.push_back(true); vMatchedTxn.push_back(make_pair(i, hash)); } else vMatch.push_back(false); vHashes.push_back(hash); } txn = CPartialMerkleTree(vHashes, vMatch); } uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector &vTxid) { if (height == 0) { // hash at height 0 is the txids themself return vTxid[pos]; } else { // calculate left hash uint256 left = CalcHash(height-1, pos*2, vTxid), right; // calculate right hash if not beyong the end of the array - copy left hash otherwise1 if (pos*2+1 < CalcTreeWidth(height-1)) right = CalcHash(height-1, pos*2+1, vTxid); else right = left; // combine subhashes return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } } void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch) { // determine whether this node is the parent of at least one matched txid bool fParentOfMatch = false; for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++) fParentOfMatch |= vMatch[p]; // store as flag bit vBits.push_back(fParentOfMatch); if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, store hash and stop vHash.push_back(CalcHash(height, pos, vTxid)); } else { // otherwise, don't store any hash, but descend into the subtrees TraverseAndBuild(height-1, pos*2, vTxid, vMatch); if (pos*2+1 < CalcTreeWidth(height-1)) TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch); } } uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch) { if (nBitsUsed >= vBits.size()) { // overflowed the bits array - failure fBad = true; return 0; } bool fParentOfMatch = vBits[nBitsUsed++]; if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, use stored hash and do not descend if (nHashUsed >= vHash.size()) { // overflowed the hash array - failure fBad = true; return 0; } const uint256 &hash = vHash[nHashUsed++]; if (height==0 && fParentOfMatch) // in case of height 0, we have a matched txid vMatch.push_back(hash); return hash; } else { // otherwise, descend into the subtrees to extract matched txids and hashes uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch), right; if (pos*2+1 < CalcTreeWidth(height-1)) right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch); else right = left; // and combine them before returning return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } } CPartialMerkleTree::CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch) : nTransactions(vTxid.size()), fBad(false) { // reset state vBits.clear(); vHash.clear(); // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree TraverseAndBuild(nHeight, 0, vTxid, vMatch); } CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {} uint256 CPartialMerkleTree::ExtractMatches(std::vector &vMatch) { vMatch.clear(); // An empty set will not work if (nTransactions == 0) return 0; // check for excessively high numbers of transactions if (nTransactions > MAX_BLOCK_SIZE / 60) // 60 is the lower bound for the size of a serialized CTransaction return 0; // there can never be more hashes provided than one for every txid if (vHash.size() > nTransactions) return 0; // there must be at least one bit per node in the partial tree, and at least one node per hash if (vBits.size() < vHash.size()) return 0; // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree unsigned int nBitsUsed = 0, nHashUsed = 0; uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch); // verify that no problems occured during the tree traversal if (fBad) return 0; // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence) if ((nBitsUsed+7)/8 != (vBits.size()+7)/8) return 0; // verify that all hashes were consumed if (nHashUsed != vHash.size()) return 0; return hashMerkleRoot; } bool AbortNode(const std::string &strMessage) { strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); uiInterface.ThreadSafeMessageBox(strMessage, "", CClientUIInterface::MSG_ERROR); StartShutdown(); return false; } bool CheckDiskSpace(uint64 nAdditionalBytes) { uint64 nFreeBytesAvailable = filesystem::space(GetDataDir()).available; // Check for nMinDiskSpace bytes (currently 50MB) if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes) return AbortNode(_("Error: Disk space is low!")); return true; } CCriticalSection cs_LastBlockFile; CBlockFileInfo infoLastBlockFile; int nLastBlockFile = 0; FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly) { if (pos.IsNull()) return NULL; boost::filesystem::path path = GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile); boost::filesystem::create_directories(path.parent_path()); FILE* file = fopen(path.string().c_str(), "rb+"); if (!file && !fReadOnly) file = fopen(path.string().c_str(), "wb+"); if (!file) { printf("Unable to open file %s\n", path.string().c_str()); return NULL; } if (pos.nPos) { if (fseek(file, pos.nPos, SEEK_SET)) { printf("Unable to seek to position %u of %s\n", pos.nPos, path.string().c_str()); fclose(file); return NULL; } } return file; } FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "blk", fReadOnly); } FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "rev", fReadOnly); } CBlockIndex * InsertBlockIndex(uint256 hash) { if (hash == 0) return NULL; // Return existing map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) return (*mi).second; // Create new CBlockIndex* pindexNew = new CBlockIndex(); if (!pindexNew) throw runtime_error("LoadBlockIndex() : new CBlockIndex failed"); mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } bool static LoadBlockIndexDB() { if (!pblocktree->LoadBlockIndexGuts()) return false; boost::this_thread::interruption_point(); // Calculate nChainWork vector > vSortedByHeight; vSortedByHeight.reserve(mapBlockIndex.size()); BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex) { CBlockIndex* pindex = item.second; vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight) { CBlockIndex* pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + pindex->GetBlockWork().getuint256(); pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx; if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS && !(pindex->nStatus & BLOCK_FAILED_MASK)) setBlockIndexValid.insert(pindex); } // Load block file info pblocktree->ReadLastBlockFile(nLastBlockFile); printf("LoadBlockIndexDB(): last block file = %i\n", nLastBlockFile); if (pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile)) printf("LoadBlockIndexDB(): last block file info: %s\n", infoLastBlockFile.ToString().c_str()); // Load nBestInvalidWork, OK if it doesn't exist CBigNum bnBestInvalidWork; pblocktree->ReadBestInvalidWork(bnBestInvalidWork); nBestInvalidWork = bnBestInvalidWork.getuint256(); // Check whether we need to continue reindexing bool fReindexing = false; pblocktree->ReadReindexing(fReindexing); fReindex |= fReindexing; // Check whether we have a transaction index pblocktree->ReadFlag("txindex", fTxIndex); printf("LoadBlockIndexDB(): transaction index %s\n", fTxIndex ? "enabled" : "disabled"); // Load hashBestChain pointer to end of best chain pindexBest = pcoinsTip->GetBestBlock(); if (pindexBest == NULL) return true; hashBestChain = pindexBest->GetBlockHash(); nBestHeight = pindexBest->nHeight; nBestChainWork = pindexBest->nChainWork; // register best chain CBlockIndex *pindex = pindexBest; vBlockIndexByHeight.resize(pindexBest->nHeight + 1); while(pindex != NULL) { vBlockIndexByHeight[pindex->nHeight] = pindex; pindex = pindex->pprev; } printf("LoadBlockIndexDB(): hashBestChain=%s height=%d date=%s\n", hashBestChain.ToString().c_str(), nBestHeight, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexBest->GetBlockTime()).c_str()); return true; } bool VerifyDB(int nCheckLevel, int nCheckDepth) { if (pindexBest == NULL || pindexBest->pprev == NULL) return true; // Verify blocks in the best chain if (nCheckDepth <= 0) nCheckDepth = 1000000000; // suffices until the year 19000 if (nCheckDepth > nBestHeight) nCheckDepth = nBestHeight; nCheckLevel = std::max(0, std::min(4, nCheckLevel)); printf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel); CCoinsViewCache coins(*pcoinsTip, true); CBlockIndex* pindexState = pindexBest; CBlockIndex* pindexFailure = NULL; int nGoodTransactions = 0; CValidationState state; for (CBlockIndex* pindex = pindexBest; pindex && pindex->pprev; pindex = pindex->pprev) { boost::this_thread::interruption_point(); if (pindex->nHeight < nBestHeight-nCheckDepth) break; CBlock block; // check level 0: read from disk if (!ReadBlockFromDisk(block, pindex)) return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); // check level 1: verify block validity if (nCheckLevel >= 1 && !CheckBlock(block, state)) return error("VerifyDB() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); // check level 2: verify undo validity if (nCheckLevel >= 2 && pindex) { CBlockUndo undo; CDiskBlockPos pos = pindex->GetUndoPos(); if (!pos.IsNull()) { if (!undo.ReadFromDisk(pos, pindex->pprev->GetBlockHash())) return error("VerifyDB() : *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); } } // check level 3: check for inconsistencies during memory-only disconnect of tip blocks if (nCheckLevel >= 3 && pindex == pindexState && (coins.GetCacheSize() + pcoinsTip->GetCacheSize()) <= 2*nCoinCacheSize + 32000) { bool fClean = true; if (!DisconnectBlock(block, state, pindex, coins, &fClean)) return error("VerifyDB() : *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); pindexState = pindex->pprev; if (!fClean) { nGoodTransactions = 0; pindexFailure = pindex; } else nGoodTransactions += block.vtx.size(); } } if (pindexFailure) return error("VerifyDB() : *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", pindexBest->nHeight - pindexFailure->nHeight + 1, nGoodTransactions); // check level 4: try reconnecting blocks if (nCheckLevel >= 4) { CBlockIndex *pindex = pindexState; while (pindex != pindexBest) { boost::this_thread::interruption_point(); pindex = pindex->GetNextInMainChain(); CBlock block; if (!ReadBlockFromDisk(block, pindex)) return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); if (!ConnectBlock(block, state, pindex, coins)) return error("VerifyDB() : *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); } } printf("No coin database inconsistencies in last %i blocks (%i transactions)\n", pindexBest->nHeight - pindexState->nHeight, nGoodTransactions); return true; } void UnloadBlockIndex() { mapBlockIndex.clear(); setBlockIndexValid.clear(); pindexGenesisBlock = NULL; nBestHeight = 0; nBestChainWork = 0; nBestInvalidWork = 0; hashBestChain = 0; pindexBest = NULL; } bool LoadBlockIndex() { // Load block index from databases if (!fReindex && !LoadBlockIndexDB()) return false; return true; } bool InitBlockIndex() { // Check whether we're already initialized if (pindexGenesisBlock != NULL) return true; // Use the provided setting for -txindex in the new database fTxIndex = GetBoolArg("-txindex", false); pblocktree->WriteFlag("txindex", fTxIndex); printf("Initializing databases...\n"); // Only add the genesis block if not reindexing (in which case we reuse the one already on disk) if (!fReindex) { try { CBlock &block = const_cast(Params().GenesisBlock()); // Start new block file unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; CValidationState state; if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.nTime)) return error("LoadBlockIndex() : FindBlockPos failed"); if (!WriteBlockToDisk(block, blockPos)) return error("LoadBlockIndex() : writing genesis block to disk failed"); if (!AddToBlockIndex(block, state, blockPos)) return error("LoadBlockIndex() : genesis block not accepted"); } catch(std::runtime_error &e) { return error("LoadBlockIndex() : failed to initialize block database: %s", e.what()); } } return true; } void PrintBlockTree() { // pre-compute tree structure map > mapNext; for (map::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi) { CBlockIndex* pindex = (*mi).second; mapNext[pindex->pprev].push_back(pindex); // test //while (rand() % 3 == 0) // mapNext[pindex->pprev].push_back(pindex); } vector > vStack; vStack.push_back(make_pair(0, pindexGenesisBlock)); int nPrevCol = 0; while (!vStack.empty()) { int nCol = vStack.back().first; CBlockIndex* pindex = vStack.back().second; vStack.pop_back(); // print split or gap if (nCol > nPrevCol) { for (int i = 0; i < nCol-1; i++) printf("| "); printf("|\\\n"); } else if (nCol < nPrevCol) { for (int i = 0; i < nCol; i++) printf("| "); printf("|\n"); } nPrevCol = nCol; // print columns for (int i = 0; i < nCol; i++) printf("| "); // print item CBlock block; ReadBlockFromDisk(block, pindex); printf("%d (blk%05u.dat:0x%x) %s tx %"PRIszu"", pindex->nHeight, pindex->GetBlockPos().nFile, pindex->GetBlockPos().nPos, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", block.GetBlockTime()).c_str(), block.vtx.size()); PrintWallets(block); // put the main time-chain first vector& vNext = mapNext[pindex]; for (unsigned int i = 0; i < vNext.size(); i++) { if (vNext[i]->GetNextInMainChain()) { swap(vNext[0], vNext[i]); break; } } // iterate children for (unsigned int i = 0; i < vNext.size(); i++) vStack.push_back(make_pair(nCol+i, vNext[i])); } } bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp) { int64 nStart = GetTimeMillis(); int nLoaded = 0; try { CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION); uint64 nStartByte = 0; if (dbp) { // (try to) skip already indexed part CBlockFileInfo info; if (pblocktree->ReadBlockFileInfo(dbp->nFile, info)) { nStartByte = info.nSize; blkdat.Seek(info.nSize); } } uint64 nRewind = blkdat.GetPos(); while (blkdat.good() && !blkdat.eof()) { boost::this_thread::interruption_point(); blkdat.SetPos(nRewind); nRewind++; // start one byte further next time, in case of failure blkdat.SetLimit(); // remove former limit unsigned int nSize = 0; try { // locate a header unsigned char buf[4]; blkdat.FindByte(Params().MessageStart()[0]); nRewind = blkdat.GetPos()+1; blkdat >> FLATDATA(buf); if (memcmp(buf, Params().MessageStart(), 4)) continue; // read size blkdat >> nSize; if (nSize < 80 || nSize > MAX_BLOCK_SIZE) continue; } catch (std::exception &e) { // no valid block header found; don't complain break; } try { // read block uint64 nBlockPos = blkdat.GetPos(); blkdat.SetLimit(nBlockPos + nSize); CBlock block; blkdat >> block; nRewind = blkdat.GetPos(); // process block if (nBlockPos >= nStartByte) { LOCK(cs_main); if (dbp) dbp->nPos = nBlockPos; CValidationState state; if (ProcessBlock(state, NULL, &block, dbp)) nLoaded++; if (state.IsError()) break; } } catch (std::exception &e) { printf("%s() : Deserialize or I/O error caught during load\n", __PRETTY_FUNCTION__); } } fclose(fileIn); } catch(std::runtime_error &e) { AbortNode(_("Error: system error: ") + e.what()); } if (nLoaded > 0) printf("Loaded %i blocks from external file in %"PRI64d"ms\n", nLoaded, GetTimeMillis() - nStart); return nLoaded > 0; } ////////////////////////////////////////////////////////////////////////////// // // CAlert // extern map mapAlerts; extern CCriticalSection cs_mapAlerts; string GetWarnings(string strFor) { int nPriority = 0; string strStatusBar; string strRPC; if (GetBoolArg("-testsafemode", false)) strRPC = "test"; if (!CLIENT_VERSION_IS_RELEASE) strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications"); // Misc warnings like out of disk space and clock is wrong if (strMiscWarning != "") { nPriority = 1000; strStatusBar = strMiscWarning; } // Longer invalid proof-of-work chain if (pindexBest && nBestInvalidWork > nBestChainWork + (pindexBest->GetBlockWork() * 6).getuint256()) { nPriority = 2000; strStatusBar = strRPC = _("Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade."); } // Alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.AppliesToMe() && alert.nPriority > nPriority) { nPriority = alert.nPriority; strStatusBar = alert.strStatusBar; } } } if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(!"GetWarnings() : invalid parameter"); return "error"; } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool static AlreadyHave(const CInv& inv) { switch (inv.type) { case MSG_TX: { bool txInMap = false; { LOCK(mempool.cs); txInMap = mempool.exists(inv.hash); } return txInMap || mapOrphanTransactions.count(inv.hash) || pcoinsTip->HaveCoins(inv.hash); } case MSG_BLOCK: return mapBlockIndex.count(inv.hash) || mapOrphanBlocks.count(inv.hash); } // Don't know what it is, just say we already got one return true; } void static ProcessGetData(CNode* pfrom) { std::deque::iterator it = pfrom->vRecvGetData.begin(); vector vNotFound; while (it != pfrom->vRecvGetData.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= SendBufferSize()) break; const CInv &inv = *it; { boost::this_thread::interruption_point(); it++; if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK) { // Send block from disk map::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { CBlock block; ReadBlockFromDisk(block, (*mi).second); if (inv.type == MSG_BLOCK) pfrom->PushMessage("block", block); else // MSG_FILTERED_BLOCK) { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { CMerkleBlock merkleBlock(block, *pfrom->pfilter); pfrom->PushMessage("merkleblock", merkleBlock); // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see // This avoids hurting performance by pointlessly requiring a round-trip // Note that there is currently no way for a node to request any single transactions we didnt send here - // they must either disconnect and retry or request the full block. // Thus, the protocol spec specified allows for us to provide duplicate txn here, // however we MUST always provide at least what the remote peer needs typedef std::pair PairType; BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn) if (!pfrom->setInventoryKnown.count(CInv(MSG_TX, pair.second))) pfrom->PushMessage("tx", block.vtx[pair.first]); } // else // no response } // Trigger them to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, // and we want it right after the last block so they don't // wait for other stuff first. vector vInv; vInv.push_back(CInv(MSG_BLOCK, hashBestChain)); pfrom->PushMessage("inv", vInv); pfrom->hashContinue = 0; } } } else if (inv.IsKnownType()) { // Send stream from relay memory bool pushed = false; { LOCK(cs_mapRelay); map::iterator mi = mapRelay.find(inv); if (mi != mapRelay.end()) { pfrom->PushMessage(inv.GetCommand(), (*mi).second); pushed = true; } } if (!pushed && inv.type == MSG_TX) { LOCK(mempool.cs); if (mempool.exists(inv.hash)) { CTransaction tx = mempool.lookup(inv.hash); CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << tx; pfrom->PushMessage("tx", ss); pushed = true; } } if (!pushed) { vNotFound.push_back(inv); } } // Track requests for our stuff. Inventory(inv.hash); } } pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it doesn't // have to wait around forever. Currently only SPV clients actually care // about this message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want to // do that because they want to know about (and store and rebroadcast and // risk analyze) the dependencies of transactions relevant to them, without // having to download the entire memory pool. pfrom->PushMessage("notfound", vNotFound); } } bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv) { RandAddSeedPerfmon(); if (fDebug) printf("received: %s (%"PRIszu" bytes)\n", strCommand.c_str(), vRecv.size()); if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { printf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (strCommand == "version") { // Each connection can only send one version message if (pfrom->nVersion != 0) { pfrom->Misbehaving(1); return false; } int64 nTime; CAddress addrMe; CAddress addrFrom; uint64 nNonce = 1; vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe; if (pfrom->nVersion < MIN_PROTO_VERSION) { // Since February 20, 2012, the protocol is initiated at version 209, // and earlier versions are no longer supported printf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion); pfrom->fDisconnect = true; return false; } if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (!vRecv.empty()) vRecv >> addrFrom >> nNonce; if (!vRecv.empty()) vRecv >> pfrom->strSubVer; if (!vRecv.empty()) vRecv >> pfrom->nStartingHeight; if (!vRecv.empty()) vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message else pfrom->fRelayTxes = true; if (pfrom->fInbound && addrMe.IsRoutable()) { pfrom->addrLocal = addrMe; SeenLocal(addrMe); } // Disconnect if we connected to ourself if (nNonce == nLocalHostNonce && nNonce > 1) { printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str()); pfrom->fDisconnect = true; return true; } // Be shy and don't send version until we hear if (pfrom->fInbound) pfrom->PushVersion(); pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); AddTimeData(pfrom->addr, nTime); // Change version pfrom->PushMessage("verack"); pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Advertise our address if (!fNoListen && !IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom->addr); if (addr.IsRoutable()) pfrom->PushAddress(addr); } // Get recent addresses if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000) { pfrom->PushMessage("getaddr"); pfrom->fGetAddr = true; } addrman.Good(pfrom->addr); } else { if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom) { addrman.Add(addrFrom, addrFrom); addrman.Good(addrFrom); } } // Relay alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) item.second.RelayTo(pfrom); } pfrom->fSuccessfullyConnected = true; printf("receive version message: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString().c_str(), addrFrom.ToString().c_str(), pfrom->addr.ToString().c_str()); cPeerBlockCounts.input(pfrom->nStartingHeight); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else pfrom->Misbehaving(1); return false; } else if (strCommand == "verack") { pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); } else if (strCommand == "addr") { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000) return true; if (vAddr.size() > 1000) { pfrom->Misbehaving(20); return error("message addr size() = %"PRIszu"", vAddr.size()); } // Store the new addresses vector vAddrOk; int64 nNow = GetAdjustedTime(); int64 nSince = nNow - 10 * 60; BOOST_FOREACH(CAddress& addr, vAddr) { boost::this_thread::interruption_point(); if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * 24 * 60 * 60; pfrom->AddAddressKnown(addr); bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes { LOCK(cs_vNodes); // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the setAddrKnowns of the chosen nodes prevent repeats static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint64 hashAddr = addr.GetHash(); uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60)); hashRand = Hash(BEGIN(hashRand), END(hashRand)); multimap mapMix; BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->nVersion < CADDR_TIME_VERSION) continue; unsigned int nPointer; memcpy(&nPointer, &pnode, sizeof(nPointer)); uint256 hashKey = hashRand ^ nPointer; hashKey = Hash(BEGIN(hashKey), END(hashKey)); mapMix.insert(make_pair(hashKey, pnode)); } int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s) for (multimap::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) ((*mi).second)->PushAddress(addr); } } // Do not store addresses outside our network if (fReachable) vAddrOk.push_back(addr); } addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60); if (vAddr.size() < 1000) pfrom->fGetAddr = false; if (pfrom->fOneShot) pfrom->fDisconnect = true; } else if (strCommand == "inv") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { pfrom->Misbehaving(20); return error("message inv size() = %"PRIszu"", vInv.size()); } // find last block in inv vector unsigned int nLastBlock = (unsigned int)(-1); for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) { if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) { nLastBlock = vInv.size() - 1 - nInv; break; } } for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) { const CInv &inv = vInv[nInv]; boost::this_thread::interruption_point(); pfrom->AddInventoryKnown(inv); bool fAlreadyHave = AlreadyHave(inv); if (fDebug) printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new"); if (!fAlreadyHave) { if (!fImporting && !fReindex) pfrom->AskFor(inv); } else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) { PushGetBlocks(pfrom, pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash])); } else if (nInv == nLastBlock) { // In case we are on a very long side-chain, it is possible that we already have // the last block in an inv bundle sent in response to getblocks. Try to detect // this situation and push another getblocks to continue. PushGetBlocks(pfrom, mapBlockIndex[inv.hash], uint256(0)); if (fDebug) printf("force request: %s\n", inv.ToString().c_str()); } // Track requests for our stuff Inventory(inv.hash); } } else if (strCommand == "getdata") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { pfrom->Misbehaving(20); return error("message getdata size() = %"PRIszu"", vInv.size()); } if (fDebugNet || (vInv.size() != 1)) printf("received getdata (%"PRIszu" invsz)\n", vInv.size()); if ((fDebugNet && vInv.size() > 0) || (vInv.size() == 1)) printf("received getdata for: %s\n", vInv[0].ToString().c_str()); pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(pfrom); } else if (strCommand == "getblocks") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; // Find the last block the caller has in the main chain CBlockIndex* pindex = locator.GetBlockIndex(); // Send the rest of the chain if (pindex) pindex = pindex->GetNextInMainChain(); int nLimit = 500; printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().c_str(), nLimit); for (; pindex; pindex = pindex->GetNextInMainChain()) { if (pindex->GetBlockHash() == hashStop) { printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll make them // getblocks the next batch of inventory. printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == "getheaders") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block map::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = locator.GetBlockIndex(); if (pindex) pindex = pindex->GetNextInMainChain(); } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end vector vHeaders; int nLimit = 2000; printf("getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().c_str()); for (; pindex; pindex = pindex->GetNextInMainChain()) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } pfrom->PushMessage("headers", vHeaders); } else if (strCommand == "tx") { vector vWorkQueue; vector vEraseQueue; CDataStream vMsg(vRecv); CTransaction tx; vRecv >> tx; CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); // Truncate messages to the size of the tx in them unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); unsigned int oldSize = vMsg.size(); if (nSize < oldSize) { vMsg.resize(nSize); printf("truncating oversized TX %s (%u -> %u)\n", tx.GetHash().ToString().c_str(), oldSize, nSize); } bool fMissingInputs = false; CValidationState state; if (mempool.accept(state, tx, true, &fMissingInputs)) { RelayTransaction(tx, inv.hash, vMsg); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); vEraseQueue.push_back(inv.hash); // Recursively process any orphan transactions that depended on this one for (unsigned int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (map::iterator mi = mapOrphanTransactionsByPrev[hashPrev].begin(); mi != mapOrphanTransactionsByPrev[hashPrev].end(); ++mi) { const CDataStream& vMsg = *((*mi).second); CTransaction tx; CDataStream(vMsg) >> tx; CInv inv(MSG_TX, tx.GetHash()); bool fMissingInputs2 = false; // Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get anyone relaying LegitTxX banned) CValidationState stateDummy; if (mempool.accept(stateDummy, tx, true, &fMissingInputs2)) { printf(" accepted orphan tx %s\n", inv.hash.ToString().c_str()); RelayTransaction(tx, inv.hash, vMsg); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); vEraseQueue.push_back(inv.hash); } else if (!fMissingInputs2) { // invalid or too-little-fee orphan vEraseQueue.push_back(inv.hash); printf(" removed orphan tx %s\n", inv.hash.ToString().c_str()); } } } BOOST_FOREACH(uint256 hash, vEraseQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { AddOrphanTx(vMsg); // DoS prevention: do not allow mapOrphanTransactions to grow unbounded unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS); if (nEvicted > 0) printf("mapOrphan overflow, removed %u tx\n", nEvicted); } int nDoS; if (state.IsInvalid(nDoS)) pfrom->Misbehaving(nDoS); } else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing { CBlock block; vRecv >> block; printf("received block %s\n", block.GetHash().ToString().c_str()); // block.print(); CInv inv(MSG_BLOCK, block.GetHash()); pfrom->AddInventoryKnown(inv); CValidationState state; if (ProcessBlock(state, pfrom, &block)) mapAlreadyAskedFor.erase(inv); int nDoS; if (state.IsInvalid(nDoS)) pfrom->Misbehaving(nDoS); } else if (strCommand == "getaddr") { pfrom->vAddrToSend.clear(); vector vAddr = addrman.GetAddr(); BOOST_FOREACH(const CAddress &addr, vAddr) pfrom->PushAddress(addr); } else if (strCommand == "mempool") { std::vector vtxid; LOCK2(mempool.cs, pfrom->cs_filter); mempool.queryHashes(vtxid); vector vInv; BOOST_FOREACH(uint256& hash, vtxid) { CInv inv(MSG_TX, hash); if ((pfrom->pfilter && pfrom->pfilter->IsRelevantAndUpdate(mempool.lookup(hash), hash)) || (!pfrom->pfilter)) vInv.push_back(inv); if (vInv.size() == MAX_INV_SZ) break; } if (vInv.size() > 0) pfrom->PushMessage("inv", vInv); } else if (strCommand == "ping") { if (pfrom->nVersion > BIP0031_VERSION) { uint64 nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful features: // // 1) A remote node can quickly check if the connection is operational // 2) Remote nodes can measure the latency of the network thread. If this node // is overloaded it won't respond to pings quickly and the remote node can // avoid sending us more work, like chain download requests. // // The nonce stops the remote getting confused between different pings: without // it, if the remote node sends a ping once per second and this node takes 5 // seconds to respond to each, the 5th ping the remote sends would appear to // return very quickly. pfrom->PushMessage("pong", nonce); } } else if (strCommand == "alert") { CAlert alert; vRecv >> alert; uint256 alertHash = alert.GetHash(); if (pfrom->setKnown.count(alertHash) == 0) { if (alert.ProcessAlert()) { // Relay pfrom->setKnown.insert(alertHash); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) alert.RelayTo(pnode); } } else { // Small DoS penalty so peers that send us lots of // duplicate/expired/invalid-signature/whatever alerts // eventually get banned. // This isn't a Misbehaving(100) (immediate ban) because the // peer might be an older or different implementation with // a different signature key, etc. pfrom->Misbehaving(10); } } } else if (strCommand == "filterload") { CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) // There is no excuse for sending a too-large filter pfrom->Misbehaving(100); else { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(filter); } pfrom->fRelayTxes = true; } else if (strCommand == "filteradd") { vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object, // and thus, the maximum size any matched object can have) in a filteradd message if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { pfrom->Misbehaving(100); } else { LOCK(pfrom->cs_filter); if (pfrom->pfilter) pfrom->pfilter->insert(vData); else pfrom->Misbehaving(100); } } else if (strCommand == "filterclear") { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = NULL; pfrom->fRelayTxes = true; } else { // Ignore unknown commands for extensibility } // Update the last seen time for this node's address if (pfrom->fNetworkNode) if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping") AddressCurrentlyConnected(pfrom->addr); return true; } // requires LOCK(cs_vRecvMsg) bool ProcessMessages(CNode* pfrom) { //if (fDebug) // printf("ProcessMessages(%zu messages)\n", pfrom->vRecvMsg.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fOk = true; if (!pfrom->vRecvGetData.empty()) ProcessGetData(pfrom); std::deque::iterator it = pfrom->vRecvMsg.begin(); while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= SendBufferSize()) break; // get next message CNetMessage& msg = *it; //if (fDebug) // printf("ProcessMessages(message %u msgsz, %zu bytes, complete:%s)\n", // msg.hdr.nMessageSize, msg.vRecv.size(), // msg.complete() ? "Y" : "N"); // end, if an incomplete message is found if (!msg.complete()) break; // at this point, any failure means we can delete the current message it++; // Scan for message start if (memcmp(msg.hdr.pchMessageStart, Params().MessageStart(), MESSAGE_START_SIZE) != 0) { printf("\n\nPROCESSMESSAGE: INVALID MESSAGESTART\n\n"); fOk = false; break; } // Read header CMessageHeader& hdr = msg.hdr; if (!hdr.IsValid()) { printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str()); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; // Checksum CDataStream& vRecv = msg.vRecv; uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); if (nChecksum != hdr.nChecksum) { printf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum); continue; } // Process message bool fRet = false; try { { LOCK(cs_main); fRet = ProcessMessage(pfrom, strCommand, vRecv); } boost::this_thread::interruption_point(); } catch (std::ios_base::failure& e) { if (strstr(e.what(), "end of data")) { // Allow exceptions from under-length message on vRecv printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from over-long size printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessages()"); } } catch (boost::thread_interrupted) { throw; } catch (std::exception& e) { PrintExceptionContinue(&e, "ProcessMessages()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessages()"); } if (!fRet) printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize); } // In case the connection got shut down, its receive buffer was wiped if (!pfrom->fDisconnect) pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it); return fOk; } bool SendMessages(CNode* pto, bool fSendTrickle) { TRY_LOCK(cs_main, lockMain); if (lockMain) { // Don't send anything until we get their version message if (pto->nVersion == 0) return true; // Keep-alive ping. We send a nonce of zero because we don't use it anywhere // right now. if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSendMsg.empty()) { uint64 nonce = 0; if (pto->nVersion > BIP0031_VERSION) pto->PushMessage("ping", nonce); else pto->PushMessage("ping"); } // Start block sync if (pto->fStartSync && !fImporting && !fReindex) { pto->fStartSync = false; PushGetBlocks(pto, pindexBest, uint256(0)); } // Resend wallet transactions that haven't gotten in a block yet // Except during reindex, importing and IBD, when old wallet // transactions become unconfirmed and spams other nodes. if (!fReindex && !fImporting && !IsInitialBlockDownload()) { ResendWalletTransactions(); } // Address refresh broadcast static int64 nLastRebroadcast; if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60)) { { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { // Periodically clear setAddrKnown to allow refresh broadcasts if (nLastRebroadcast) pnode->setAddrKnown.clear(); // Rebroadcast our address if (!fNoListen) { CAddress addr = GetLocalAddress(&pnode->addr); if (addr.IsRoutable()) pnode->PushAddress(addr); } } } nLastRebroadcast = GetTime(); } // // Message: addr // if (fSendTrickle) { vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend) { // returns true if wasn't already contained in the set if (pto->setAddrKnown.insert(addr).second) { vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { pto->PushMessage("addr", vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) pto->PushMessage("addr", vAddr); } // // Message: inventory // vector vInv; vector vInvWait; { LOCK(pto->cs_inventory); vInv.reserve(pto->vInventoryToSend.size()); vInvWait.reserve(pto->vInventoryToSend.size()); BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend) { if (pto->setInventoryKnown.count(inv)) continue; // trickle out tx inv to protect privacy if (inv.type == MSG_TX && !fSendTrickle) { // 1/4 of tx invs blast to all immediately static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint256 hashRand = inv.hash ^ hashSalt; hashRand = Hash(BEGIN(hashRand), END(hashRand)); bool fTrickleWait = ((hashRand & 3) != 0); // always trickle our own transactions if (!fTrickleWait) { CWalletTx wtx; if (GetTransaction(inv.hash, wtx)) if (wtx.fFromMe) fTrickleWait = true; } if (fTrickleWait) { vInvWait.push_back(inv); continue; } } // returns true if wasn't already contained in the set if (pto->setInventoryKnown.insert(inv).second) { vInv.push_back(inv); if (vInv.size() >= 1000) { pto->PushMessage("inv", vInv); vInv.clear(); } } } pto->vInventoryToSend = vInvWait; } if (!vInv.empty()) pto->PushMessage("inv", vInv); // // Message: getdata // vector vGetData; int64 nNow = GetTime() * 1000000; while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(inv)) { if (fDebugNet) printf("sending getdata: %s\n", inv.ToString().c_str()); vGetData.push_back(inv); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } } pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) pto->PushMessage("getdata", vGetData); } return true; } ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // int static FormatHashBlocks(void* pbuffer, unsigned int len) { unsigned char* pdata = (unsigned char*)pbuffer; unsigned int blocks = 1 + ((len + 8) / 64); unsigned char* pend = pdata + 64 * blocks; memset(pdata + len, 0, 64 * blocks - len); pdata[len] = 0x80; unsigned int bits = len * 8; pend[-1] = (bits >> 0) & 0xff; pend[-2] = (bits >> 8) & 0xff; pend[-3] = (bits >> 16) & 0xff; pend[-4] = (bits >> 24) & 0xff; return blocks; } static const unsigned int pSHA256InitState[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; void SHA256Transform(void* pstate, void* pinput, const void* pinit) { SHA256_CTX ctx; unsigned char data[64]; SHA256_Init(&ctx); for (int i = 0; i < 16; i++) ((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]); for (int i = 0; i < 8; i++) ctx.h[i] = ((uint32_t*)pinit)[i]; SHA256_Update(&ctx, data, sizeof(data)); for (int i = 0; i < 8; i++) ((uint32_t*)pstate)[i] = ctx.h[i]; } // // ScanHash scans nonces looking for a hash with at least some zero bits. // It operates on big endian data. Caller does the byte reversing. // All input buffers are 16-byte aligned. nNonce is usually preserved // between calls, but periodically or if nNonce is 0xffff0000 or above, // the block is rebuilt and nNonce starts over at zero. // unsigned int static ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone) { unsigned int& nNonce = *(unsigned int*)(pdata + 12); for (;;) { // Crypto++ SHA256 // Hash pdata using pmidstate as the starting state into // pre-formatted buffer phash1, then hash phash1 into phash nNonce++; SHA256Transform(phash1, pdata, pmidstate); SHA256Transform(phash, phash1, pSHA256InitState); // Return the nonce if the hash has at least some zero bits, // caller will check if it has enough to reach the target if (((unsigned short*)phash)[14] == 0) return nNonce; // If nothing found after trying for a while, return -1 if ((nNonce & 0xffff) == 0) { nHashesDone = 0xffff+1; return (unsigned int) -1; } if ((nNonce & 0xfff) == 0) boost::this_thread::interruption_point(); } } // Some explaining would be appreciated class COrphan { public: CTransaction* ptx; set setDependsOn; double dPriority; double dFeePerKb; COrphan(CTransaction* ptxIn) { ptx = ptxIn; dPriority = dFeePerKb = 0; } void print() const { printf("COrphan(hash=%s, dPriority=%.1f, dFeePerKb=%.1f)\n", ptx->GetHash().ToString().c_str(), dPriority, dFeePerKb); BOOST_FOREACH(uint256 hash, setDependsOn) printf(" setDependsOn %s\n", hash.ToString().c_str()); } }; uint64 nLastBlockTx = 0; uint64 nLastBlockSize = 0; // We want to sort transactions by priority and fee, so: typedef boost::tuple TxPriority; class TxPriorityCompare { bool byFee; public: TxPriorityCompare(bool _byFee) : byFee(_byFee) { } bool operator()(const TxPriority& a, const TxPriority& b) { if (byFee) { if (a.get<1>() == b.get<1>()) return a.get<0>() < b.get<0>(); return a.get<1>() < b.get<1>(); } else { if (a.get<0>() == b.get<0>()) return a.get<1>() < b.get<1>(); return a.get<0>() < b.get<0>(); } } }; CBlockTemplate* CreateNewBlock(CReserveKey& reservekey) { // Create new block auto_ptr pblocktemplate(new CBlockTemplate()); if(!pblocktemplate.get()) return NULL; CBlock *pblock = &pblocktemplate->block; // pointer for convenience // Create coinbase tx CTransaction txNew; txNew.vin.resize(1); txNew.vin[0].prevout.SetNull(); txNew.vout.resize(1); CPubKey pubkey; if (!reservekey.GetReservedKey(pubkey)) return NULL; txNew.vout[0].scriptPubKey << pubkey << OP_CHECKSIG; // Add our coinbase tx as first transaction pblock->vtx.push_back(txNew); pblocktemplate->vTxFees.push_back(-1); // updated at end pblocktemplate->vTxSigOps.push_back(-1); // updated at end // Largest block you're willing to create: unsigned int nBlockMaxSize = GetArg("-blockmaxsize", MAX_BLOCK_SIZE_GEN/2); // Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity: nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize)); // How much of the block should be dedicated to high-priority transactions, // included regardless of the fees they pay unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE); nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize); // Minimum block size you want to create; block will be filled with free transactions // until there are no more or the block reaches this size: unsigned int nBlockMinSize = GetArg("-blockminsize", 0); nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize); // Collect memory pool transactions into the block int64 nFees = 0; { LOCK2(cs_main, mempool.cs); CBlockIndex* pindexPrev = pindexBest; CCoinsViewCache view(*pcoinsTip, true); // Priority order to process transactions list vOrphan; // list memory doesn't move map > mapDependers; bool fPrintPriority = GetBoolArg("-printpriority", false); // This vector will be sorted into a priority queue: vector vecPriority; vecPriority.reserve(mempool.mapTx.size()); for (map::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) { CTransaction& tx = (*mi).second; if (tx.IsCoinBase() || !IsFinalTx(tx)) continue; COrphan* porphan = NULL; double dPriority = 0; int64 nTotalIn = 0; bool fMissingInputs = false; BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Read prev transaction if (!view.HaveCoins(txin.prevout.hash)) { // This should never happen; all transactions in the memory // pool should connect to either transactions in the chain // or other transactions in the memory pool. if (!mempool.mapTx.count(txin.prevout.hash)) { printf("ERROR: mempool transaction missing input\n"); if (fDebug) assert("mempool transaction missing input" == 0); fMissingInputs = true; if (porphan) vOrphan.pop_back(); break; } // Has to wait for dependencies if (!porphan) { // Use list for automatic deletion vOrphan.push_back(COrphan(&tx)); porphan = &vOrphan.back(); } mapDependers[txin.prevout.hash].push_back(porphan); porphan->setDependsOn.insert(txin.prevout.hash); nTotalIn += mempool.mapTx[txin.prevout.hash].vout[txin.prevout.n].nValue; continue; } const CCoins &coins = view.GetCoins(txin.prevout.hash); int64 nValueIn = coins.vout[txin.prevout.n].nValue; nTotalIn += nValueIn; int nConf = pindexPrev->nHeight - coins.nHeight + 1; dPriority += (double)nValueIn * nConf; } if (fMissingInputs) continue; // Priority is sum(valuein * age) / txsize unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); dPriority /= nTxSize; // This is a more accurate fee-per-kilobyte than is used by the client code, because the // client code rounds up the size to the nearest 1K. That's good, because it gives an // incentive to create smaller transactions. double dFeePerKb = double(nTotalIn-GetValueOut(tx)) / (double(nTxSize)/1000.0); if (porphan) { porphan->dPriority = dPriority; porphan->dFeePerKb = dFeePerKb; } else vecPriority.push_back(TxPriority(dPriority, dFeePerKb, &(*mi).second)); } // Collect transactions into block uint64 nBlockSize = 1000; uint64 nBlockTx = 0; int nBlockSigOps = 100; bool fSortedByFee = (nBlockPrioritySize <= 0); TxPriorityCompare comparer(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); while (!vecPriority.empty()) { // Take highest priority transaction off the priority queue: double dPriority = vecPriority.front().get<0>(); double dFeePerKb = vecPriority.front().get<1>(); CTransaction& tx = *(vecPriority.front().get<2>()); std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer); vecPriority.pop_back(); // Size limits unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); if (nBlockSize + nTxSize >= nBlockMaxSize) continue; // Legacy limits on sigOps: unsigned int nTxSigOps = GetLegacySigOpCount(tx); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Skip free transactions if we're past the minimum block size: if (fSortedByFee && (dFeePerKb < CTransaction::nMinTxFee) && (nBlockSize + nTxSize >= nBlockMinSize)) continue; // Prioritize by fee once past the priority size or we run out of high-priority // transactions: if (!fSortedByFee && ((nBlockSize + nTxSize >= nBlockPrioritySize) || !AllowFree(dPriority))) { fSortedByFee = true; comparer = TxPriorityCompare(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); } if (!view.HaveInputs(tx)) continue; int64 nTxFees = view.GetValueIn(tx)-GetValueOut(tx); nTxSigOps += GetP2SHSigOpCount(tx, view); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; CValidationState state; if (!CheckInputs(tx, state, view, true, SCRIPT_VERIFY_P2SH)) continue; CTxUndo txundo; uint256 hash = tx.GetHash(); UpdateCoins(tx, state, view, txundo, pindexPrev->nHeight+1, hash); // Added pblock->vtx.push_back(tx); pblocktemplate->vTxFees.push_back(nTxFees); pblocktemplate->vTxSigOps.push_back(nTxSigOps); nBlockSize += nTxSize; ++nBlockTx; nBlockSigOps += nTxSigOps; nFees += nTxFees; if (fPrintPriority) { printf("priority %.1f feeperkb %.1f txid %s\n", dPriority, dFeePerKb, tx.GetHash().ToString().c_str()); } // Add transactions that depend on this one to the priority queue if (mapDependers.count(hash)) { BOOST_FOREACH(COrphan* porphan, mapDependers[hash]) { if (!porphan->setDependsOn.empty()) { porphan->setDependsOn.erase(hash); if (porphan->setDependsOn.empty()) { vecPriority.push_back(TxPriority(porphan->dPriority, porphan->dFeePerKb, porphan->ptx)); std::push_heap(vecPriority.begin(), vecPriority.end(), comparer); } } } } } nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; printf("CreateNewBlock(): total size %"PRI64u"\n", nBlockSize); pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees); pblocktemplate->vTxFees[0] = -nFees; // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); UpdateTime(*pblock, pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock); pblock->nNonce = 0; pblock->vtx[0].vin[0].scriptSig = CScript() << OP_0 << OP_0; pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(pblock->vtx[0]); CBlockIndex indexDummy(*pblock); indexDummy.pprev = pindexPrev; indexDummy.nHeight = pindexPrev->nHeight + 1; CCoinsViewCache viewNew(*pcoinsTip, true); CValidationState state; if (!ConnectBlock(*pblock, state, &indexDummy, viewNew, true)) throw std::runtime_error("CreateNewBlock() : ConnectBlock failed"); } return pblocktemplate.release(); } void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2 pblock->vtx[0].vin[0].scriptSig = (CScript() << nHeight << CBigNum(nExtraNonce)) + COINBASE_FLAGS; assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100); pblock->hashMerkleRoot = pblock->BuildMerkleTree(); } void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1) { // // Pre-build hash buffers // struct { struct unnamed2 { int nVersion; uint256 hashPrevBlock; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; } block; unsigned char pchPadding0[64]; uint256 hash1; unsigned char pchPadding1[64]; } tmp; memset(&tmp, 0, sizeof(tmp)); tmp.block.nVersion = pblock->nVersion; tmp.block.hashPrevBlock = pblock->hashPrevBlock; tmp.block.hashMerkleRoot = pblock->hashMerkleRoot; tmp.block.nTime = pblock->nTime; tmp.block.nBits = pblock->nBits; tmp.block.nNonce = pblock->nNonce; FormatHashBlocks(&tmp.block, sizeof(tmp.block)); FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1)); // Byte swap all the input buffer for (unsigned int i = 0; i < sizeof(tmp)/4; i++) ((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]); // Precalc the first half of the first hash, which stays constant SHA256Transform(pmidstate, &tmp.block, pSHA256InitState); memcpy(pdata, &tmp.block, 128); memcpy(phash1, &tmp.hash1, 64); } bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey) { uint256 hash = pblock->GetHash(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); if (hash > hashTarget) return false; //// debug print printf("BitcoinMiner:\n"); printf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str()); pblock->print(); printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str()); // Found a solution { LOCK(cs_main); if (pblock->hashPrevBlock != hashBestChain) return error("BitcoinMiner : generated block is stale"); // Remove key from key pool reservekey.KeepKey(); // Track how many getdata requests this block gets { LOCK(wallet.cs_wallet); wallet.mapRequestCount[pblock->GetHash()] = 0; } // Process this block the same as if we had received it from another node CValidationState state; if (!ProcessBlock(state, NULL, pblock)) return error("BitcoinMiner : ProcessBlock, block not accepted"); } return true; } void static BitcoinMiner(CWallet *pwallet) { printf("BitcoinMiner started\n"); SetThreadPriority(THREAD_PRIORITY_LOWEST); RenameThread("bitcoin-miner"); // Each thread has its own key and counter CReserveKey reservekey(pwallet); unsigned int nExtraNonce = 0; try { while (true) { if (Params().NetworkID() != CChainParams::REGTEST) { // Busy-wait for the network to come online so we don't waste time mining // on an obsolete chain. In regtest mode we expect to fly solo. while (vNodes.empty()) MilliSleep(1000); } // // Create new block // unsigned int nTransactionsUpdatedLast = nTransactionsUpdated; CBlockIndex* pindexPrev = pindexBest; auto_ptr pblocktemplate(CreateNewBlock(reservekey)); if (!pblocktemplate.get()) return; CBlock *pblock = &pblocktemplate->block; IncrementExtraNonce(pblock, pindexPrev, nExtraNonce); printf("Running BitcoinMiner with %"PRIszu" transactions in block (%u bytes)\n", pblock->vtx.size(), ::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION)); // // Pre-build hash buffers // char pmidstatebuf[32+16]; char* pmidstate = alignup<16>(pmidstatebuf); char pdatabuf[128+16]; char* pdata = alignup<16>(pdatabuf); char phash1buf[64+16]; char* phash1 = alignup<16>(phash1buf); FormatHashBuffers(pblock, pmidstate, pdata, phash1); unsigned int& nBlockTime = *(unsigned int*)(pdata + 64 + 4); unsigned int& nBlockBits = *(unsigned int*)(pdata + 64 + 8); unsigned int& nBlockNonce = *(unsigned int*)(pdata + 64 + 12); // // Search // int64 nStart = GetTime(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); uint256 hashbuf[2]; uint256& hash = *alignup<16>(hashbuf); while (true) { unsigned int nHashesDone = 0; unsigned int nNonceFound; // Crypto++ SHA256 nNonceFound = ScanHash_CryptoPP(pmidstate, pdata + 64, phash1, (char*)&hash, nHashesDone); // Check if something found if (nNonceFound != (unsigned int) -1) { for (unsigned int i = 0; i < sizeof(hash)/4; i++) ((unsigned int*)&hash)[i] = ByteReverse(((unsigned int*)&hash)[i]); if (hash <= hashTarget) { // Found a solution pblock->nNonce = ByteReverse(nNonceFound); assert(hash == pblock->GetHash()); SetThreadPriority(THREAD_PRIORITY_NORMAL); CheckWork(pblock, *pwalletMain, reservekey); SetThreadPriority(THREAD_PRIORITY_LOWEST); // In regression test mode, stop mining after a block is found. This // allows developers to controllably generate a block on demand. if (Params().NetworkID() == CChainParams::REGTEST) throw boost::thread_interrupted(); break; } } // Meter hashes/sec static int64 nHashCounter; if (nHPSTimerStart == 0) { nHPSTimerStart = GetTimeMillis(); nHashCounter = 0; } else nHashCounter += nHashesDone; if (GetTimeMillis() - nHPSTimerStart > 4000) { static CCriticalSection cs; { LOCK(cs); if (GetTimeMillis() - nHPSTimerStart > 4000) { dHashesPerSec = 1000.0 * nHashCounter / (GetTimeMillis() - nHPSTimerStart); nHPSTimerStart = GetTimeMillis(); nHashCounter = 0; static int64 nLogTime; if (GetTime() - nLogTime > 30 * 60) { nLogTime = GetTime(); printf("hashmeter %6.0f khash/s\n", dHashesPerSec/1000.0); } } } } // Check for stop or if block needs to be rebuilt boost::this_thread::interruption_point(); if (vNodes.empty() && Params().NetworkID() != CChainParams::REGTEST) break; if (nBlockNonce >= 0xffff0000) break; if (nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60) break; if (pindexPrev != pindexBest) break; // Update nTime every few seconds UpdateTime(*pblock, pindexPrev); nBlockTime = ByteReverse(pblock->nTime); if (TestNet()) { // Changing pblock->nTime can change work required on testnet: nBlockBits = ByteReverse(pblock->nBits); hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); } } } } catch (boost::thread_interrupted) { printf("BitcoinMiner terminated\n"); throw; } } void GenerateBitcoins(bool fGenerate, CWallet* pwallet) { static boost::thread_group* minerThreads = NULL; int nThreads = GetArg("-genproclimit", -1); if (nThreads < 0) { if (Params().NetworkID() == CChainParams::REGTEST) nThreads = 1; else nThreads = boost::thread::hardware_concurrency(); } if (minerThreads != NULL) { minerThreads->interrupt_all(); delete minerThreads; minerThreads = NULL; } if (nThreads == 0 || !fGenerate) return; minerThreads = new boost::thread_group(); for (int i = 0; i < nThreads; i++) minerThreads->create_thread(boost::bind(&BitcoinMiner, pwallet)); } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers std::map::iterator it1 = mapBlockIndex.begin(); for (; it1 != mapBlockIndex.end(); it1++) delete (*it1).second; mapBlockIndex.clear(); // orphan blocks std::map::iterator it2 = mapOrphanBlocks.begin(); for (; it2 != mapOrphanBlocks.end(); it2++) delete (*it2).second; mapOrphanBlocks.clear(); // orphan transactions std::map::iterator it3 = mapOrphanTransactions.begin(); for (; it3 != mapOrphanTransactions.end(); it3++) delete (*it3).second; mapOrphanTransactions.clear(); } } instance_of_cmaincleanup;