// Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "crypter.h" #include "script/script.h" #include "script/standard.h" #include "util.h" #include #include #include #include #include bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod) { if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE) return false; int i = 0; if (nDerivationMethod == 0) i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0], (unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV); if (i != (int)WALLET_CRYPTO_KEY_SIZE) { OPENSSL_cleanse(chKey, sizeof(chKey)); OPENSSL_cleanse(chIV, sizeof(chIV)); return false; } fKeySet = true; return true; } bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector& chNewIV) { if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_KEY_SIZE) return false; memcpy(&chKey[0], &chNewKey[0], sizeof chKey); memcpy(&chIV[0], &chNewIV[0], sizeof chIV); fKeySet = true; return true; } bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector &vchCiphertext) { if (!fKeySet) return false; // max ciphertext len for a n bytes of plaintext is // n + AES_BLOCK_SIZE - 1 bytes int nLen = vchPlaintext.size(); int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0; vchCiphertext = std::vector (nCLen); EVP_CIPHER_CTX ctx; bool fOk = true; EVP_CIPHER_CTX_init(&ctx); if (fOk) fOk = EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; if (fOk) fOk = EVP_EncryptUpdate(&ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen) != 0; if (fOk) fOk = EVP_EncryptFinal_ex(&ctx, (&vchCiphertext[0]) + nCLen, &nFLen) != 0; EVP_CIPHER_CTX_cleanup(&ctx); if (!fOk) return false; vchCiphertext.resize(nCLen + nFLen); return true; } bool CCrypter::Decrypt(const std::vector& vchCiphertext, CKeyingMaterial& vchPlaintext) { if (!fKeySet) return false; // plaintext will always be equal to or lesser than length of ciphertext int nLen = vchCiphertext.size(); int nPLen = nLen, nFLen = 0; vchPlaintext = CKeyingMaterial(nPLen); EVP_CIPHER_CTX ctx; bool fOk = true; EVP_CIPHER_CTX_init(&ctx); if (fOk) fOk = EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0; if (fOk) fOk = EVP_DecryptUpdate(&ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen) != 0; if (fOk) fOk = EVP_DecryptFinal_ex(&ctx, (&vchPlaintext[0]) + nPLen, &nFLen) != 0; EVP_CIPHER_CTX_cleanup(&ctx); if (!fOk) return false; vchPlaintext.resize(nPLen + nFLen); return true; } bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector &vchCiphertext) { CCrypter cKeyCrypter; std::vector chIV(WALLET_CRYPTO_KEY_SIZE); memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE); if(!cKeyCrypter.SetKey(vMasterKey, chIV)) return false; return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext); } // General secure AES 256 CBC encryption routine bool EncryptAES256(const SecureString& sKey, const SecureString& sPlaintext, const std::string& sIV, std::string& sCiphertext) { // max ciphertext len for a n bytes of plaintext is // n + AES_BLOCK_SIZE - 1 bytes int nLen = sPlaintext.size(); int nCLen = nLen + AES_BLOCK_SIZE; int nFLen = 0; // Verify key sizes if(sKey.size() != 32 || sIV.size() != AES_BLOCK_SIZE) { LogPrintf("crypter EncryptAES256 - Invalid key or block size: Key: %d sIV:%d\n", sKey.size(), sIV.size()); return false; } // Prepare output buffer sCiphertext.resize(nCLen); // Perform the encryption EVP_CIPHER_CTX ctx; bool fOk = true; EVP_CIPHER_CTX_init(&ctx); if (fOk) fOk = EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, (const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0]); if (fOk) fOk = EVP_EncryptUpdate(&ctx, (unsigned char*) &sCiphertext[0], &nCLen, (const unsigned char*) &sPlaintext[0], nLen); if (fOk) fOk = EVP_EncryptFinal_ex(&ctx, (unsigned char*) (&sCiphertext[0])+nCLen, &nFLen); EVP_CIPHER_CTX_cleanup(&ctx); if (!fOk) return false; sCiphertext.resize(nCLen + nFLen); return true; } bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext) { CCrypter cKeyCrypter; std::vector chIV(WALLET_CRYPTO_KEY_SIZE); memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE); if(!cKeyCrypter.SetKey(vMasterKey, chIV)) return false; return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext)); } bool DecryptAES256(const SecureString& sKey, const std::string& sCiphertext, const std::string& sIV, SecureString& sPlaintext) { // plaintext will always be equal to or lesser than length of ciphertext int nLen = sCiphertext.size(); int nPLen = nLen, nFLen = 0; // Verify key sizes if(sKey.size() != 32 || sIV.size() != AES_BLOCK_SIZE) { LogPrintf("crypter DecryptAES256 - Invalid key or block size\n"); return false; } sPlaintext.resize(nPLen); EVP_CIPHER_CTX ctx; bool fOk = true; EVP_CIPHER_CTX_init(&ctx); if (fOk) fOk = EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, (const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0]); if (fOk) fOk = EVP_DecryptUpdate(&ctx, (unsigned char *) &sPlaintext[0], &nPLen, (const unsigned char *) &sCiphertext[0], nLen); if (fOk) fOk = EVP_DecryptFinal_ex(&ctx, (unsigned char *) (&sPlaintext[0])+nPLen, &nFLen); EVP_CIPHER_CTX_cleanup(&ctx); if (!fOk) return false; sPlaintext.resize(nPLen + nFLen); return true; } bool CCryptoKeyStore::SetCrypted() { LOCK(cs_KeyStore); if (fUseCrypto) return true; if (!mapKeys.empty()) return false; fUseCrypto = true; return true; } bool CCryptoKeyStore::Lock() { if (!SetCrypted()) return false; { LOCK(cs_KeyStore); vMasterKey.clear(); } NotifyStatusChanged(this); return true; } bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn) { { LOCK(cs_KeyStore); if (!SetCrypted()) return false; bool keyPass = false; bool keyFail = false; CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin(); for (; mi != mapCryptedKeys.end(); ++mi) { const CPubKey &vchPubKey = (*mi).second.first; const std::vector &vchCryptedSecret = (*mi).second.second; CKeyingMaterial vchSecret; if(!DecryptSecret(vMasterKeyIn, vchCryptedSecret, vchPubKey.GetHash(), vchSecret)) { keyFail = true; break; } if (vchSecret.size() != 32) { keyFail = true; break; } CKey key; key.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed()); if (key.GetPubKey() != vchPubKey) { keyFail = true; break; } keyPass = true; if (fDecryptionThoroughlyChecked) break; } if (keyPass && keyFail) { LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all."); assert(false); } if (keyFail || !keyPass) return false; vMasterKey = vMasterKeyIn; fDecryptionThoroughlyChecked = true; } NotifyStatusChanged(this); return true; } bool CCryptoKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey) { { LOCK(cs_KeyStore); if (!IsCrypted()) return CBasicKeyStore::AddKeyPubKey(key, pubkey); if (IsLocked()) return false; std::vector vchCryptedSecret; CKeyingMaterial vchSecret(key.begin(), key.end()); if (!EncryptSecret(vMasterKey, vchSecret, pubkey.GetHash(), vchCryptedSecret)) return false; if (!AddCryptedKey(pubkey, vchCryptedSecret)) return false; } return true; } bool CCryptoKeyStore::AddCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret) { { LOCK(cs_KeyStore); if (!SetCrypted()) return false; mapCryptedKeys[vchPubKey.GetID()] = make_pair(vchPubKey, vchCryptedSecret); } return true; } bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const { { LOCK(cs_KeyStore); if (!IsCrypted()) return CBasicKeyStore::GetKey(address, keyOut); CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address); if (mi != mapCryptedKeys.end()) { const CPubKey &vchPubKey = (*mi).second.first; const std::vector &vchCryptedSecret = (*mi).second.second; CKeyingMaterial vchSecret; if (!DecryptSecret(vMasterKey, vchCryptedSecret, vchPubKey.GetHash(), vchSecret)) return false; if (vchSecret.size() != 32) return false; keyOut.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed()); return true; } } return false; } bool CCryptoKeyStore::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const { { LOCK(cs_KeyStore); if (!IsCrypted()) return CKeyStore::GetPubKey(address, vchPubKeyOut); CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address); if (mi != mapCryptedKeys.end()) { vchPubKeyOut = (*mi).second.first; return true; } } return false; } bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn) { { LOCK(cs_KeyStore); if (!mapCryptedKeys.empty() || IsCrypted()) return false; fUseCrypto = true; BOOST_FOREACH(KeyMap::value_type& mKey, mapKeys) { const CKey &key = mKey.second; CPubKey vchPubKey = key.GetPubKey(); CKeyingMaterial vchSecret(key.begin(), key.end()); std::vector vchCryptedSecret; if (!EncryptSecret(vMasterKeyIn, vchSecret, vchPubKey.GetHash(), vchCryptedSecret)) return false; if (!AddCryptedKey(vchPubKey, vchCryptedSecret)) return false; } mapKeys.clear(); } return true; }