// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #pragma once #include #include #include #if IMMER_DEBUG_PRINT #include #endif namespace immer { template class flex_vector; template class vector_transient; /*! * Immutable sequential container supporting both random access and * structural sharing. * * @tparam T The type of the values to be stored in the container. * @tparam MemoryPolicy Memory management policy. See @ref * memory_policy. * * @rst * * This cotainer provides a good trade-off between cache locality, * random access, update performance and structural sharing. It does * so by storing the data in contiguous chunks of :math:`2^{BL}` * elements. By default, when ``sizeof(T) == sizeof(void*)`` then * :math:`B=BL=5`, such that data would be stored in contiguous * chunks of :math:`32` elements. * * You may learn more about the meaning and implications of ``B`` and * ``BL`` parameters in the :doc:`implementation` section. * * .. note:: In several methods we say that their complexity is * *effectively* :math:`O(...)`. Do not confuse this with the word * *amortized*, which has a very different meaning. In this * context, *effective* means that while the * mathematically rigurous * complexity might be higher, for all practical matters the * provided complexity is more useful to think about the actual * cost of the operation. * * **Example** * .. literalinclude:: ../example/vector/intro.cpp * :language: c++ * :start-after: intro/start * :end-before: intro/end * * @endrst */ template > class vector { using impl_t = detail::rbts::rbtree; using flex_t = flex_vector; using move_t = std::integral_constant; public: static constexpr auto bits = B; static constexpr auto bits_leaf = BL; using memory_policy = MemoryPolicy; using value_type = T; using reference = const T&; using size_type = detail::rbts::size_t; using difference_type = std::ptrdiff_t; using const_reference = const T&; using iterator = detail::rbts::rbtree_iterator; using const_iterator = iterator; using reverse_iterator = std::reverse_iterator; using transient_type = vector_transient; /*! * Default constructor. It creates a vector of `size() == 0`. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ vector() = default; /*! * Constructs a vector containing the elements in `values`. */ vector(std::initializer_list values) : impl_{impl_t::from_initializer_list(values)} {} /*! * Constructs a vector containing the elements in the range * defined by the input iterators `first` and `last`. */ template vector(Iter first, Iter last) : impl_{impl_t::from_range(first, last)} {} /*! * Constructs a vector containing the element `val` repeated `n` * times. */ vector(size_type n, T v = {}) : impl_{impl_t::from_fill(n, v)} {} /*! * Returns an iterator pointing at the first element of the * collection. It does not allocate memory and its complexity is * @f$ O(1) @f$. */ iterator begin() const { return {impl_}; } /*! * Returns an iterator pointing just after the last element of the * collection. It does not allocate and its complexity is @f$ O(1) @f$. */ iterator end() const { return {impl_, typename iterator::end_t{}}; } /*! * Returns an iterator that traverses the collection backwards, * pointing at the first element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ reverse_iterator rbegin() const { return reverse_iterator{end()}; } /*! * Returns an iterator that traverses the collection backwards, * pointing after the last element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ reverse_iterator rend() const { return reverse_iterator{begin()}; } /*! * Returns the number of elements in the container. It does * not allocate memory and its complexity is @f$ O(1) @f$. */ size_type size() const { return impl_.size; } /*! * Returns `true` if there are no elements in the container. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ bool empty() const { return impl_.size == 0; } /*! * Access the last element. */ const T& back() const { return impl_.back(); } /*! * Access the first element. */ const T& front() const { return impl_.front(); } /*! * Returns a `const` reference to the element at position `index`. * It is undefined when @f$ 0 index \geq size() @f$. It does not * allocate memory and its complexity is *effectively* @f$ O(1) * @f$. */ reference operator[] (size_type index) const { return impl_.get(index); } /*! * Returns a `const` reference to the element at position * `index`. It throws an `std::out_of_range` exception when @f$ * index \geq size() @f$. It does not allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ reference at(size_type index) const { return impl_.get_check(index); } /*! * Returns whether the vectors are equal. */ bool operator==(const vector& other) const { return impl_.equals(other.impl_); } bool operator!=(const vector& other) const { return !(*this == other); } /*! * Returns a vector with `value` inserted at the end. It may * allocate memory and its complexity is *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/vector/vector.cpp * :language: c++ * :dedent: 8 * :start-after: push-back/start * :end-before: push-back/end * * @endrst */ vector push_back(value_type value) const& { return impl_.push_back(std::move(value)); } decltype(auto) push_back(value_type value) && { return push_back_move(move_t{}, std::move(value)); } /*! * Returns a vector containing value `value` at position `idx`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/vector/vector.cpp * :language: c++ * :dedent: 8 * :start-after: set/start * :end-before: set/end * * @endrst */ vector set(size_type index, value_type value) const& { return impl_.assoc(index, std::move(value)); } decltype(auto) set(size_type index, value_type value) && { return set_move(move_t{}, index, std::move(value)); } /*! * Returns a vector containing the result of the expression * `fn((*this)[idx])` at position `idx`. * Undefined for `0 >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/vector/vector.cpp * :language: c++ * :dedent: 8 * :start-after: update/start * :end-before: update/end * * @endrst */ template vector update(size_type index, FnT&& fn) const& { return impl_.update(index, std::forward(fn)); } template decltype(auto) update(size_type index, FnT&& fn) && { return update_move(move_t{}, index, std::forward(fn)); } /*! * Returns a vector containing only the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/vector/vector.cpp * :language: c++ * :dedent: 8 * :start-after: take/start * :end-before: take/end * * @endrst */ vector take(size_type elems) const& { return impl_.take(elems); } decltype(auto) take(size_type elems) && { return take_move(move_t{}, elems); } /*! * Returns an @a transient form of this container, an * `immer::vector_transient`. */ transient_type transient() const& { return transient_type{ impl_ }; } transient_type transient() && { return transient_type{ std::move(impl_) }; } // Semi-private const impl_t& impl() const { return impl_; } #if IMMER_DEBUG_PRINT void debug_print() const { flex_t{*this}.debug_print(); } #endif private: friend flex_t; friend transient_type; vector(impl_t impl) : impl_(std::move(impl)) { #if IMMER_DEBUG_PRINT // force the compiler to generate debug_print, so we can call // it from a debugger [](volatile auto){}(&vector::debug_print); #endif } vector&& push_back_move(std::true_type, value_type value) { impl_.push_back_mut({}, std::move(value)); return std::move(*this); } vector push_back_move(std::false_type, value_type value) { return impl_.push_back(std::move(value)); } vector&& set_move(std::true_type, size_type index, value_type value) { impl_.assoc_mut({}, index, std::move(value)); return std::move(*this); } vector set_move(std::false_type, size_type index, value_type value) { return impl_.assoc(index, std::move(value)); } template vector&& update_move(std::true_type, size_type index, Fn&& fn) { impl_.update_mut({}, index, std::forward(fn)); return std::move(*this); } template vector update_move(std::false_type, size_type index, Fn&& fn) { return impl_.update(index, std::forward(fn)); } vector&& take_move(std::true_type, size_type elems) { impl_.take_mut({}, elems); return std::move(*this); } vector take_move(std::false_type, size_type elems) { return impl_.take(elems); } impl_t impl_ = impl_t::empty; }; } // namespace immer