// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Copyright (c) 2014-2017 The Dash Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "wallet/wallet.h" #include "base58.h" #include "checkpoints.h" #include "chain.h" #include "coincontrol.h" #include "consensus/consensus.h" #include "consensus/validation.h" #include "key.h" #include "keystore.h" #include "main.h" #include "net.h" #include "policy/policy.h" #include "primitives/block.h" #include "primitives/transaction.h" #include "script/script.h" #include "script/sign.h" #include "timedata.h" #include "txmempool.h" #include "util.h" #include "utilmoneystr.h" #include "governance.h" #include "instantx.h" #include "keepass.h" #include "privatesend-client.h" #include "spork.h" #include #include #include #include using namespace std; /** Transaction fee set by the user */ CFeeRate payTxFee(DEFAULT_TRANSACTION_FEE); CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE; unsigned int nTxConfirmTarget = DEFAULT_TX_CONFIRM_TARGET; bool bSpendZeroConfChange = DEFAULT_SPEND_ZEROCONF_CHANGE; bool fSendFreeTransactions = DEFAULT_SEND_FREE_TRANSACTIONS; /** * Fees smaller than this (in duffs) are considered zero fee (for transaction creation) * Override with -mintxfee */ CFeeRate CWallet::minTxFee = CFeeRate(DEFAULT_TRANSACTION_MINFEE); /** * If fee estimation does not have enough data to provide estimates, use this fee instead. * Has no effect if not using fee estimation * Override with -fallbackfee */ CFeeRate CWallet::fallbackFee = CFeeRate(DEFAULT_FALLBACK_FEE); const uint256 CMerkleTx::ABANDON_HASH(uint256S("0000000000000000000000000000000000000000000000000000000000000001")); /** @defgroup mapWallet * * @{ */ struct CompareValueOnly { bool operator()(const pair >& t1, const pair >& t2) const { return t1.first < t2.first; } }; std::string COutput::ToString() const { return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->vout[i].nValue)); } int COutput::Priority() const { BOOST_FOREACH(CAmount d, CPrivateSend::GetStandardDenominations()) if(tx->vout[i].nValue == d) return 10000; if(tx->vout[i].nValue < 1*COIN) return 20000; //nondenom return largest first return -(tx->vout[i].nValue/COIN); } const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const { LOCK(cs_wallet); std::map::const_iterator it = mapWallet.find(hash); if (it == mapWallet.end()) return NULL; return &(it->second); } CPubKey CWallet::GenerateNewKey(uint32_t nAccountIndex, bool fInternal) { AssertLockHeld(cs_wallet); // mapKeyMetadata bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets CKey secret; // Create new metadata int64_t nCreationTime = GetTime(); CKeyMetadata metadata(nCreationTime); CPubKey pubkey; // use HD key derivation if HD was enabled during wallet creation if (IsHDEnabled()) { DeriveNewChildKey(metadata, secret, nAccountIndex, fInternal); pubkey = secret.GetPubKey(); } else { secret.MakeNewKey(fCompressed); // Compressed public keys were introduced in version 0.6.0 if (fCompressed) SetMinVersion(FEATURE_COMPRPUBKEY); pubkey = secret.GetPubKey(); assert(secret.VerifyPubKey(pubkey)); // Create new metadata mapKeyMetadata[pubkey.GetID()] = metadata; if (!nTimeFirstKey || nCreationTime < nTimeFirstKey) nTimeFirstKey = nCreationTime; if (!AddKeyPubKey(secret, pubkey)) throw std::runtime_error(std::string(__func__) + ": AddKey failed"); } return pubkey; } void CWallet::DeriveNewChildKey(const CKeyMetadata& metadata, CKey& secretRet, uint32_t nAccountIndex, bool fInternal) { CHDChain hdChainTmp; if (!GetHDChain(hdChainTmp)) { throw std::runtime_error(std::string(__func__) + ": GetHDChain failed"); } if (!DecryptHDChain(hdChainTmp)) throw std::runtime_error(std::string(__func__) + ": DecryptHDChainSeed failed"); // make sure seed matches this chain if (hdChainTmp.GetID() != hdChainTmp.GetSeedHash()) throw std::runtime_error(std::string(__func__) + ": Wrong HD chain!"); CHDAccount acc; if (!hdChainTmp.GetAccount(nAccountIndex, acc)) throw std::runtime_error(std::string(__func__) + ": Wrong HD account!"); // derive child key at next index, skip keys already known to the wallet CExtKey childKey; uint32_t nChildIndex = fInternal ? acc.nInternalChainCounter : acc.nExternalChainCounter; do { hdChainTmp.DeriveChildExtKey(nAccountIndex, fInternal, nChildIndex, childKey); // increment childkey index nChildIndex++; } while (HaveKey(childKey.key.GetPubKey().GetID())); secretRet = childKey.key; CPubKey pubkey = secretRet.GetPubKey(); assert(secretRet.VerifyPubKey(pubkey)); // store metadata mapKeyMetadata[pubkey.GetID()] = metadata; if (!nTimeFirstKey || metadata.nCreateTime < nTimeFirstKey) nTimeFirstKey = metadata.nCreateTime; // update the chain model in the database CHDChain hdChainCurrent; GetHDChain(hdChainCurrent); if (fInternal) { acc.nInternalChainCounter = nChildIndex; } else { acc.nExternalChainCounter = nChildIndex; } if (!hdChainCurrent.SetAccount(nAccountIndex, acc)) throw std::runtime_error(std::string(__func__) + ": SetAccount failed"); if (IsCrypted()) { if (!SetCryptedHDChain(hdChainCurrent, false)) throw std::runtime_error(std::string(__func__) + ": SetCryptedHDChain failed"); } else { if (!SetHDChain(hdChainCurrent, false)) throw std::runtime_error(std::string(__func__) + ": SetHDChain failed"); } if (!AddHDPubKey(childKey.Neuter(), fInternal)) throw std::runtime_error(std::string(__func__) + ": AddHDPubKey failed"); } bool CWallet::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const { LOCK(cs_wallet); std::map::const_iterator mi = mapHdPubKeys.find(address); if (mi != mapHdPubKeys.end()) { const CHDPubKey &hdPubKey = (*mi).second; vchPubKeyOut = hdPubKey.extPubKey.pubkey; return true; } else return CCryptoKeyStore::GetPubKey(address, vchPubKeyOut); } bool CWallet::GetKey(const CKeyID &address, CKey& keyOut) const { LOCK(cs_wallet); std::map::const_iterator mi = mapHdPubKeys.find(address); if (mi != mapHdPubKeys.end()) { // if the key has been found in mapHdPubKeys, derive it on the fly const CHDPubKey &hdPubKey = (*mi).second; CHDChain hdChainCurrent; if (!GetHDChain(hdChainCurrent)) throw std::runtime_error(std::string(__func__) + ": GetHDChain failed"); if (!DecryptHDChain(hdChainCurrent)) throw std::runtime_error(std::string(__func__) + ": DecryptHDChainSeed failed"); // make sure seed matches this chain if (hdChainCurrent.GetID() != hdChainCurrent.GetSeedHash()) throw std::runtime_error(std::string(__func__) + ": Wrong HD chain!"); CExtKey extkey; hdChainCurrent.DeriveChildExtKey(hdPubKey.nAccountIndex, hdPubKey.nChangeIndex != 0, hdPubKey.extPubKey.nChild, extkey); keyOut = extkey.key; return true; } else { return CCryptoKeyStore::GetKey(address, keyOut); } } bool CWallet::HaveKey(const CKeyID &address) const { LOCK(cs_wallet); if (mapHdPubKeys.count(address) > 0) return true; return CCryptoKeyStore::HaveKey(address); } bool CWallet::LoadHDPubKey(const CHDPubKey &hdPubKey) { AssertLockHeld(cs_wallet); mapHdPubKeys[hdPubKey.extPubKey.pubkey.GetID()] = hdPubKey; return true; } bool CWallet::AddHDPubKey(const CExtPubKey &extPubKey, bool fInternal) { AssertLockHeld(cs_wallet); CHDChain hdChainCurrent; GetHDChain(hdChainCurrent); CHDPubKey hdPubKey; hdPubKey.extPubKey = extPubKey; hdPubKey.hdchainID = hdChainCurrent.GetID(); hdPubKey.nChangeIndex = fInternal ? 1 : 0; mapHdPubKeys[extPubKey.pubkey.GetID()] = hdPubKey; // check if we need to remove from watch-only CScript script; script = GetScriptForDestination(extPubKey.pubkey.GetID()); if (HaveWatchOnly(script)) RemoveWatchOnly(script); script = GetScriptForRawPubKey(extPubKey.pubkey); if (HaveWatchOnly(script)) RemoveWatchOnly(script); if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteHDPubKey(hdPubKey, mapKeyMetadata[extPubKey.pubkey.GetID()]); } bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey) { AssertLockHeld(cs_wallet); // mapKeyMetadata if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey)) return false; // check if we need to remove from watch-only CScript script; script = GetScriptForDestination(pubkey.GetID()); if (HaveWatchOnly(script)) RemoveWatchOnly(script); script = GetScriptForRawPubKey(pubkey); if (HaveWatchOnly(script)) RemoveWatchOnly(script); if (!fFileBacked) return true; if (!IsCrypted()) { return CWalletDB(strWalletFile).WriteKey(pubkey, secret.GetPrivKey(), mapKeyMetadata[pubkey.GetID()]); } return true; } bool CWallet::AddCryptedKey(const CPubKey &vchPubKey, const vector &vchCryptedSecret) { if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret)) return false; if (!fFileBacked) return true; { LOCK(cs_wallet); if (pwalletdbEncryption) return pwalletdbEncryption->WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); else return CWalletDB(strWalletFile).WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); } return false; } bool CWallet::LoadKeyMetadata(const CPubKey &pubkey, const CKeyMetadata &meta) { AssertLockHeld(cs_wallet); // mapKeyMetadata if (meta.nCreateTime && (!nTimeFirstKey || meta.nCreateTime < nTimeFirstKey)) nTimeFirstKey = meta.nCreateTime; mapKeyMetadata[pubkey.GetID()] = meta; return true; } bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret) { return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret); } bool CWallet::AddCScript(const CScript& redeemScript) { if (!CCryptoKeyStore::AddCScript(redeemScript)) return false; if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteCScript(Hash160(redeemScript), redeemScript); } bool CWallet::LoadCScript(const CScript& redeemScript) { /* A sanity check was added in pull #3843 to avoid adding redeemScripts * that never can be redeemed. However, old wallets may still contain * these. Do not add them to the wallet and warn. */ if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE) { std::string strAddr = CBitcoinAddress(CScriptID(redeemScript)).ToString(); LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n", __func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr); return true; } return CCryptoKeyStore::AddCScript(redeemScript); } bool CWallet::AddWatchOnly(const CScript &dest) { if (!CCryptoKeyStore::AddWatchOnly(dest)) return false; nTimeFirstKey = 1; // No birthday information for watch-only keys. NotifyWatchonlyChanged(true); if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteWatchOnly(dest); } bool CWallet::RemoveWatchOnly(const CScript &dest) { AssertLockHeld(cs_wallet); if (!CCryptoKeyStore::RemoveWatchOnly(dest)) return false; if (!HaveWatchOnly()) NotifyWatchonlyChanged(false); if (fFileBacked) if (!CWalletDB(strWalletFile).EraseWatchOnly(dest)) return false; return true; } bool CWallet::LoadWatchOnly(const CScript &dest) { return CCryptoKeyStore::AddWatchOnly(dest); } bool CWallet::Unlock(const SecureString& strWalletPassphrase, bool fForMixingOnly) { SecureString strWalletPassphraseFinal; if (!IsLocked()) // was already fully unlocked, not only for mixing return true; // Verify KeePassIntegration if (strWalletPassphrase == "keepass" && GetBoolArg("-keepass", false)) { try { strWalletPassphraseFinal = keePassInt.retrievePassphrase(); } catch (std::exception& e) { LogPrintf("CWallet::Unlock could not retrieve passphrase from KeePass: Error: %s\n", e.what()); return false; } } else { strWalletPassphraseFinal = strWalletPassphrase; } CCrypter crypter; CKeyingMaterial vMasterKey; { LOCK(cs_wallet); BOOST_FOREACH(const MasterKeyMap::value_type& pMasterKey, mapMasterKeys) { if (!crypter.SetKeyFromPassphrase(strWalletPassphraseFinal, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey)) continue; // try another master key if (CCryptoKeyStore::Unlock(vMasterKey, fForMixingOnly)) { if(nWalletBackups == -2) { TopUpKeyPool(); LogPrintf("Keypool replenished, re-initializing automatic backups.\n"); nWalletBackups = GetArg("-createwalletbackups", 10); } return true; } } } return false; } bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase) { bool fWasLocked = IsLocked(true); bool bUseKeePass = false; SecureString strOldWalletPassphraseFinal; // Verify KeePassIntegration if(strOldWalletPassphrase == "keepass" && GetBoolArg("-keepass", false)) { bUseKeePass = true; try { strOldWalletPassphraseFinal = keePassInt.retrievePassphrase(); } catch (std::exception& e) { LogPrintf("CWallet::ChangeWalletPassphrase -- could not retrieve passphrase from KeePass: Error: %s\n", e.what()); return false; } } else { strOldWalletPassphraseFinal = strOldWalletPassphrase; } { LOCK(cs_wallet); Lock(); CCrypter crypter; CKeyingMaterial vMasterKey; BOOST_FOREACH(MasterKeyMap::value_type& pMasterKey, mapMasterKeys) { if(!crypter.SetKeyFromPassphrase(strOldWalletPassphraseFinal, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey)) return false; if (CCryptoKeyStore::Unlock(vMasterKey)) { int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime))); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2; if (pMasterKey.second.nDeriveIterations < 25000) pMasterKey.second.nDeriveIterations = 25000; LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Encrypt(vMasterKey, pMasterKey.second.vchCryptedKey)) return false; CWalletDB(strWalletFile).WriteMasterKey(pMasterKey.first, pMasterKey.second); if (fWasLocked) Lock(); // Update KeePass if necessary if(bUseKeePass) { LogPrintf("CWallet::ChangeWalletPassphrase -- Updating KeePass with new passphrase"); try { keePassInt.updatePassphrase(strNewWalletPassphrase); } catch (std::exception& e) { LogPrintf("CWallet::ChangeWalletPassphrase -- could not update passphrase in KeePass: Error: %s\n", e.what()); return false; } } return true; } } } return false; } void CWallet::SetBestChain(const CBlockLocator& loc) { CWalletDB walletdb(strWalletFile); walletdb.WriteBestBlock(loc); } bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit) { LOCK(cs_wallet); // nWalletVersion if (nWalletVersion >= nVersion) return true; // when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way if (fExplicit && nVersion > nWalletMaxVersion) nVersion = FEATURE_LATEST; nWalletVersion = nVersion; if (nVersion > nWalletMaxVersion) nWalletMaxVersion = nVersion; if (fFileBacked) { CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(strWalletFile); if (nWalletVersion > 40000) pwalletdb->WriteMinVersion(nWalletVersion); if (!pwalletdbIn) delete pwalletdb; } return true; } bool CWallet::SetMaxVersion(int nVersion) { LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion // cannot downgrade below current version if (nWalletVersion > nVersion) return false; nWalletMaxVersion = nVersion; return true; } set CWallet::GetConflicts(const uint256& txid) const { set result; AssertLockHeld(cs_wallet); std::map::const_iterator it = mapWallet.find(txid); if (it == mapWallet.end()) return result; const CWalletTx& wtx = it->second; std::pair range; BOOST_FOREACH(const CTxIn& txin, wtx.vin) { if (mapTxSpends.count(txin.prevout) <= 1) continue; // No conflict if zero or one spends range = mapTxSpends.equal_range(txin.prevout); for (TxSpends::const_iterator it = range.first; it != range.second; ++it) result.insert(it->second); } return result; } void CWallet::Flush(bool shutdown) { bitdb.Flush(shutdown); } bool CWallet::Verify(const string& walletFile, string& warningString, string& errorString) { if (!bitdb.Open(GetDataDir())) { // try moving the database env out of the way boost::filesystem::path pathDatabase = GetDataDir() / "database"; boost::filesystem::path pathDatabaseBak = GetDataDir() / strprintf("database.%d.bak", GetTime()); try { boost::filesystem::rename(pathDatabase, pathDatabaseBak); LogPrintf("Moved old %s to %s. Retrying.\n", pathDatabase.string(), pathDatabaseBak.string()); } catch (const boost::filesystem::filesystem_error&) { // failure is ok (well, not really, but it's not worse than what we started with) } // try again if (!bitdb.Open(GetDataDir())) { // if it still fails, it probably means we can't even create the database env string msg = strprintf(_("Error initializing wallet database environment %s!"), GetDataDir()); errorString += msg; return true; } } if (GetBoolArg("-salvagewallet", false)) { // Recover readable keypairs: if (!CWalletDB::Recover(bitdb, walletFile, true)) return false; } if (boost::filesystem::exists(GetDataDir() / walletFile)) { CDBEnv::VerifyResult r = bitdb.Verify(walletFile, CWalletDB::Recover); if (r == CDBEnv::RECOVER_OK) { warningString += strprintf(_("Warning: wallet.dat corrupt, data salvaged!" " Original wallet.dat saved as wallet.{timestamp}.bak in %s; if" " your balance or transactions are incorrect you should" " restore from a backup."), GetDataDir()); } if (r == CDBEnv::RECOVER_FAIL) errorString += _("wallet.dat corrupt, salvage failed"); } return true; } void CWallet::SyncMetaData(pair range) { // We want all the wallet transactions in range to have the same metadata as // the oldest (smallest nOrderPos). // So: find smallest nOrderPos: int nMinOrderPos = std::numeric_limits::max(); const CWalletTx* copyFrom = NULL; for (TxSpends::iterator it = range.first; it != range.second; ++it) { const uint256& hash = it->second; int n = mapWallet[hash].nOrderPos; if (n < nMinOrderPos) { nMinOrderPos = n; copyFrom = &mapWallet[hash]; } } // Now copy data from copyFrom to rest: for (TxSpends::iterator it = range.first; it != range.second; ++it) { const uint256& hash = it->second; CWalletTx* copyTo = &mapWallet[hash]; if (copyFrom == copyTo) continue; if (!copyFrom->IsEquivalentTo(*copyTo)) continue; copyTo->mapValue = copyFrom->mapValue; copyTo->vOrderForm = copyFrom->vOrderForm; // fTimeReceivedIsTxTime not copied on purpose // nTimeReceived not copied on purpose copyTo->nTimeSmart = copyFrom->nTimeSmart; copyTo->fFromMe = copyFrom->fFromMe; copyTo->strFromAccount = copyFrom->strFromAccount; // nOrderPos not copied on purpose // cached members not copied on purpose } } /** * Outpoint is spent if any non-conflicted transaction * spends it: */ bool CWallet::IsSpent(const uint256& hash, unsigned int n) const { const COutPoint outpoint(hash, n); pair range; range = mapTxSpends.equal_range(outpoint); for (TxSpends::const_iterator it = range.first; it != range.second; ++it) { const uint256& wtxid = it->second; std::map::const_iterator mit = mapWallet.find(wtxid); if (mit != mapWallet.end()) { int depth = mit->second.GetDepthInMainChain(); if (depth > 0 || (depth == 0 && !mit->second.isAbandoned())) return true; // Spent } } return false; } void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid) { mapTxSpends.insert(make_pair(outpoint, wtxid)); pair range; range = mapTxSpends.equal_range(outpoint); SyncMetaData(range); } void CWallet::AddToSpends(const uint256& wtxid) { assert(mapWallet.count(wtxid)); CWalletTx& thisTx = mapWallet[wtxid]; if (thisTx.IsCoinBase()) // Coinbases don't spend anything! return; BOOST_FOREACH(const CTxIn& txin, thisTx.vin) AddToSpends(txin.prevout, wtxid); } bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase) { if (IsCrypted()) return false; CKeyingMaterial vMasterKey; RandAddSeedPerfmon(); vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE); GetRandBytes(&vMasterKey[0], WALLET_CRYPTO_KEY_SIZE); CMasterKey kMasterKey; RandAddSeedPerfmon(); kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE); GetRandBytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE); CCrypter crypter; int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = 2500000 / ((double)(GetTimeMillis() - nStartTime)); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2; if (kMasterKey.nDeriveIterations < 25000) kMasterKey.nDeriveIterations = 25000; LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod)) return false; if (!crypter.Encrypt(vMasterKey, kMasterKey.vchCryptedKey)) return false; { LOCK(cs_wallet); mapMasterKeys[++nMasterKeyMaxID] = kMasterKey; if (fFileBacked) { assert(!pwalletdbEncryption); pwalletdbEncryption = new CWalletDB(strWalletFile); if (!pwalletdbEncryption->TxnBegin()) { delete pwalletdbEncryption; pwalletdbEncryption = NULL; return false; } pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey); } // must get current HD chain before EncryptKeys CHDChain hdChainCurrent; GetHDChain(hdChainCurrent); if (!EncryptKeys(vMasterKey)) { if (fFileBacked) { pwalletdbEncryption->TxnAbort(); delete pwalletdbEncryption; } // We now probably have half of our keys encrypted in memory, and half not... // die and let the user reload the unencrypted wallet. assert(false); } if (!hdChainCurrent.IsNull()) { assert(EncryptHDChain(vMasterKey)); CHDChain hdChainCrypted; assert(GetHDChain(hdChainCrypted)); DBG( printf("EncryptWallet -- current seed: '%s'\n", HexStr(hdChainCurrent.GetSeed()).c_str()); printf("EncryptWallet -- crypted seed: '%s'\n", HexStr(hdChainCrypted.GetSeed()).c_str()); ); // ids should match, seed hashes should not assert(hdChainCurrent.GetID() == hdChainCrypted.GetID()); assert(hdChainCurrent.GetSeedHash() != hdChainCrypted.GetSeedHash()); assert(SetCryptedHDChain(hdChainCrypted, false)); } // Encryption was introduced in version 0.4.0 SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true); if (fFileBacked) { if (!pwalletdbEncryption->TxnCommit()) { delete pwalletdbEncryption; // We now have keys encrypted in memory, but not on disk... // die to avoid confusion and let the user reload the unencrypted wallet. assert(false); } delete pwalletdbEncryption; pwalletdbEncryption = NULL; } Lock(); Unlock(strWalletPassphrase); // if we are not using HD, generate new keypool if(IsHDEnabled()) { TopUpKeyPool(); } else { NewKeyPool(); } Lock(); // Need to completely rewrite the wallet file; if we don't, bdb might keep // bits of the unencrypted private key in slack space in the database file. CDB::Rewrite(strWalletFile); // Update KeePass if necessary if(GetBoolArg("-keepass", false)) { LogPrintf("CWallet::EncryptWallet -- Updating KeePass with new passphrase"); try { keePassInt.updatePassphrase(strWalletPassphrase); } catch (std::exception& e) { LogPrintf("CWallet::EncryptWallet -- could not update passphrase in KeePass: Error: %s\n", e.what()); } } } NotifyStatusChanged(this); return true; } int64_t CWallet::IncOrderPosNext(CWalletDB *pwalletdb) { AssertLockHeld(cs_wallet); // nOrderPosNext int64_t nRet = nOrderPosNext++; if (pwalletdb) { pwalletdb->WriteOrderPosNext(nOrderPosNext); } else { CWalletDB(strWalletFile).WriteOrderPosNext(nOrderPosNext); } return nRet; } void CWallet::MarkDirty() { { LOCK(cs_wallet); BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) item.second.MarkDirty(); } fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; } bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFromLoadWallet, CWalletDB* pwalletdb) { uint256 hash = wtxIn.GetHash(); if (fFromLoadWallet) { mapWallet[hash] = wtxIn; CWalletTx& wtx = mapWallet[hash]; wtx.BindWallet(this); wtxOrdered.insert(make_pair(wtx.nOrderPos, TxPair(&wtx, (CAccountingEntry*)0))); AddToSpends(hash); BOOST_FOREACH(const CTxIn& txin, wtx.vin) { if (mapWallet.count(txin.prevout.hash)) { CWalletTx& prevtx = mapWallet[txin.prevout.hash]; if (prevtx.nIndex == -1 && !prevtx.hashUnset()) { MarkConflicted(prevtx.hashBlock, wtx.GetHash()); } } } } else { LOCK(cs_wallet); // Inserts only if not already there, returns tx inserted or tx found pair::iterator, bool> ret = mapWallet.insert(make_pair(hash, wtxIn)); CWalletTx& wtx = (*ret.first).second; wtx.BindWallet(this); bool fInsertedNew = ret.second; if (fInsertedNew) { wtx.nTimeReceived = GetAdjustedTime(); wtx.nOrderPos = IncOrderPosNext(pwalletdb); wtxOrdered.insert(make_pair(wtx.nOrderPos, TxPair(&wtx, (CAccountingEntry*)0))); wtx.nTimeSmart = wtx.nTimeReceived; if (!wtxIn.hashUnset()) { if (mapBlockIndex.count(wtxIn.hashBlock)) { int64_t latestNow = wtx.nTimeReceived; int64_t latestEntry = 0; { // Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future int64_t latestTolerated = latestNow + 300; const TxItems & txOrdered = wtxOrdered; for (TxItems::const_reverse_iterator it = txOrdered.rbegin(); it != txOrdered.rend(); ++it) { CWalletTx *const pwtx = (*it).second.first; if (pwtx == &wtx) continue; CAccountingEntry *const pacentry = (*it).second.second; int64_t nSmartTime; if (pwtx) { nSmartTime = pwtx->nTimeSmart; if (!nSmartTime) nSmartTime = pwtx->nTimeReceived; } else nSmartTime = pacentry->nTime; if (nSmartTime <= latestTolerated) { latestEntry = nSmartTime; if (nSmartTime > latestNow) latestNow = nSmartTime; break; } } } int64_t blocktime = mapBlockIndex[wtxIn.hashBlock]->GetBlockTime(); wtx.nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow)); } else LogPrintf("AddToWallet(): found %s in block %s not in index\n", wtxIn.GetHash().ToString(), wtxIn.hashBlock.ToString()); } AddToSpends(hash); } bool fUpdated = false; if (!fInsertedNew) { // Merge if (!wtxIn.hashUnset() && wtxIn.hashBlock != wtx.hashBlock) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } // If no longer abandoned, update if (wtxIn.hashBlock.IsNull() && wtx.isAbandoned()) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } if (wtxIn.nIndex != -1 && (wtxIn.nIndex != wtx.nIndex)) { wtx.nIndex = wtxIn.nIndex; fUpdated = true; } if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe) { wtx.fFromMe = wtxIn.fFromMe; fUpdated = true; } } //// debug print LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : "")); // Write to disk if (fInsertedNew || fUpdated) if (!wtx.WriteToDisk(pwalletdb)) return false; // Break debit/credit balance caches: wtx.MarkDirty(); // Notify UI of new or updated transaction NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED); // notify an external script when a wallet transaction comes in or is updated std::string strCmd = GetArg("-walletnotify", ""); if ( !strCmd.empty()) { boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; } return true; } /** * Add a transaction to the wallet, or update it. * pblock is optional, but should be provided if the transaction is known to be in a block. * If fUpdate is true, existing transactions will be updated. */ bool CWallet::AddToWalletIfInvolvingMe(const CTransaction& tx, const CBlock* pblock, bool fUpdate) { { AssertLockHeld(cs_wallet); if (pblock) { BOOST_FOREACH(const CTxIn& txin, tx.vin) { std::pair range = mapTxSpends.equal_range(txin.prevout); while (range.first != range.second) { if (range.first->second != tx.GetHash()) { LogPrintf("Transaction %s (in block %s) conflicts with wallet transaction %s (both spend %s:%i)\n", tx.GetHash().ToString(), pblock->GetHash().ToString(), range.first->second.ToString(), range.first->first.hash.ToString(), range.first->first.n); MarkConflicted(pblock->GetHash(), range.first->second); } range.first++; } } } bool fExisted = mapWallet.count(tx.GetHash()) != 0; if (fExisted && !fUpdate) return false; if (fExisted || IsMine(tx) || IsFromMe(tx)) { CWalletTx wtx(this,tx); // Get merkle branch if transaction was found in a block if (pblock) wtx.SetMerkleBranch(*pblock); // Do not flush the wallet here for performance reasons // this is safe, as in case of a crash, we rescan the necessary blocks on startup through our SetBestChain-mechanism CWalletDB walletdb(strWalletFile, "r+", false); return AddToWallet(wtx, false, &walletdb); } } return false; } bool CWallet::AbandonTransaction(const uint256& hashTx) { LOCK2(cs_main, cs_wallet); // Do not flush the wallet here for performance reasons CWalletDB walletdb(strWalletFile, "r+", false); std::set todo; std::set done; // Can't mark abandoned if confirmed or in mempool assert(mapWallet.count(hashTx)); CWalletTx& origtx = mapWallet[hashTx]; if (origtx.GetDepthInMainChain() > 0 || origtx.InMempool()) { return false; } todo.insert(hashTx); while (!todo.empty()) { uint256 now = *todo.begin(); todo.erase(now); done.insert(now); assert(mapWallet.count(now)); CWalletTx& wtx = mapWallet[now]; int currentconfirm = wtx.GetDepthInMainChain(); // If the orig tx was not in block, none of its spends can be assert(currentconfirm <= 0); // if (currentconfirm < 0) {Tx and spends are already conflicted, no need to abandon} if (currentconfirm == 0 && !wtx.isAbandoned()) { // If the orig tx was not in block/mempool, none of its spends can be in mempool assert(!wtx.InMempool()); wtx.nIndex = -1; wtx.setAbandoned(); wtx.MarkDirty(); wtx.WriteToDisk(&walletdb); NotifyTransactionChanged(this, wtx.GetHash(), CT_UPDATED); // Iterate over all its outputs, and mark transactions in the wallet that spend them abandoned too TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(hashTx, 0)); while (iter != mapTxSpends.end() && iter->first.hash == now) { if (!done.count(iter->second)) { todo.insert(iter->second); } iter++; } // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be recomputed BOOST_FOREACH(const CTxIn& txin, wtx.vin) { if (mapWallet.count(txin.prevout.hash)) mapWallet[txin.prevout.hash].MarkDirty(); } } } fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; return true; } void CWallet::MarkConflicted(const uint256& hashBlock, const uint256& hashTx) { LOCK2(cs_main, cs_wallet); int conflictconfirms = 0; if (mapBlockIndex.count(hashBlock)) { CBlockIndex* pindex = mapBlockIndex[hashBlock]; if (chainActive.Contains(pindex)) { conflictconfirms = -(chainActive.Height() - pindex->nHeight + 1); } } // If number of conflict confirms cannot be determined, this means // that the block is still unknown or not yet part of the main chain, // for example when loading the wallet during a reindex. Do nothing in that // case. if (conflictconfirms >= 0) return; // Do not flush the wallet here for performance reasons CWalletDB walletdb(strWalletFile, "r+", false); std::set todo; std::set done; todo.insert(hashTx); while (!todo.empty()) { uint256 now = *todo.begin(); todo.erase(now); done.insert(now); assert(mapWallet.count(now)); CWalletTx& wtx = mapWallet[now]; int currentconfirm = wtx.GetDepthInMainChain(); if (conflictconfirms < currentconfirm) { // Block is 'more conflicted' than current confirm; update. // Mark transaction as conflicted with this block. wtx.nIndex = -1; wtx.hashBlock = hashBlock; wtx.MarkDirty(); wtx.WriteToDisk(&walletdb); // Iterate over all its outputs, and mark transactions in the wallet that spend them conflicted too TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(now, 0)); while (iter != mapTxSpends.end() && iter->first.hash == now) { if (!done.count(iter->second)) { todo.insert(iter->second); } iter++; } // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be recomputed BOOST_FOREACH(const CTxIn& txin, wtx.vin) { if (mapWallet.count(txin.prevout.hash)) mapWallet[txin.prevout.hash].MarkDirty(); } } } fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; } void CWallet::SyncTransaction(const CTransaction& tx, const CBlock* pblock) { LOCK2(cs_main, cs_wallet); if (!AddToWalletIfInvolvingMe(tx, pblock, true)) return; // Not one of ours // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be // recomputed, also: BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (mapWallet.count(txin.prevout.hash)) mapWallet[txin.prevout.hash].MarkDirty(); } fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; } isminetype CWallet::IsMine(const CTxIn &txin) const { { LOCK(cs_wallet); map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.vout.size()) return IsMine(prev.vout[txin.prevout.n]); } } return ISMINE_NO; } CAmount CWallet::GetDebit(const CTxIn &txin, const isminefilter& filter) const { { LOCK(cs_wallet); map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.vout.size()) if (IsMine(prev.vout[txin.prevout.n]) & filter) return prev.vout[txin.prevout.n].nValue; } } return 0; } // Recursively determine the rounds of a given input (How deep is the PrivateSend chain for a given input) int CWallet::GetRealInputPrivateSendRounds(CTxIn txin, int nRounds) const { static std::map mDenomWtxes; if(nRounds >= 16) return 15; // 16 rounds max uint256 hash = txin.prevout.hash; unsigned int nout = txin.prevout.n; const CWalletTx* wtx = GetWalletTx(hash); if(wtx != NULL) { std::map::const_iterator mdwi = mDenomWtxes.find(hash); if (mdwi == mDenomWtxes.end()) { // not known yet, let's add it LogPrint("privatesend", "GetRealInputPrivateSendRounds INSERTING %s\n", hash.ToString()); mDenomWtxes[hash] = CMutableTransaction(*wtx); } else if(mDenomWtxes[hash].vout[nout].nRounds != -10) { // found and it's not an initial value, just return it return mDenomWtxes[hash].vout[nout].nRounds; } // bounds check if (nout >= wtx->vout.size()) { // should never actually hit this LogPrint("privatesend", "GetRealInputPrivateSendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, -4); return -4; } if (IsCollateralAmount(wtx->vout[nout].nValue)) { mDenomWtxes[hash].vout[nout].nRounds = -3; LogPrint("privatesend", "GetRealInputPrivateSendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } //make sure the final output is non-denominate if (!IsDenominatedAmount(wtx->vout[nout].nValue)) { //NOT DENOM mDenomWtxes[hash].vout[nout].nRounds = -2; LogPrint("privatesend", "GetRealInputPrivateSendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } bool fAllDenoms = true; BOOST_FOREACH(CTxOut out, wtx->vout) { fAllDenoms = fAllDenoms && IsDenominatedAmount(out.nValue); } // this one is denominated but there is another non-denominated output found in the same tx if (!fAllDenoms) { mDenomWtxes[hash].vout[nout].nRounds = 0; LogPrint("privatesend", "GetRealInputPrivateSendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } int nShortest = -10; // an initial value, should be no way to get this by calculations bool fDenomFound = false; // only denoms here so let's look up BOOST_FOREACH(CTxIn txinNext, wtx->vin) { if (IsMine(txinNext)) { int n = GetRealInputPrivateSendRounds(txinNext, nRounds + 1); // denom found, find the shortest chain or initially assign nShortest with the first found value if(n >= 0 && (n < nShortest || nShortest == -10)) { nShortest = n; fDenomFound = true; } } } mDenomWtxes[hash].vout[nout].nRounds = fDenomFound ? (nShortest >= 15 ? 16 : nShortest + 1) // good, we a +1 to the shortest one but only 16 rounds max allowed : 0; // too bad, we are the fist one in that chain LogPrint("privatesend", "GetRealInputPrivateSendRounds UPDATED %s %3d %3d\n", hash.ToString(), nout, mDenomWtxes[hash].vout[nout].nRounds); return mDenomWtxes[hash].vout[nout].nRounds; } return nRounds - 1; } // respect current settings int CWallet::GetInputPrivateSendRounds(CTxIn txin) const { LOCK(cs_wallet); int realPrivateSendRounds = GetRealInputPrivateSendRounds(txin, 0); return realPrivateSendRounds > privateSendClient.nPrivateSendRounds ? privateSendClient.nPrivateSendRounds : realPrivateSendRounds; } bool CWallet::IsDenominated(const CTxIn &txin) const { LOCK(cs_wallet); map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.vout.size()) { return IsDenominatedAmount(prev.vout[txin.prevout.n].nValue); } } return false; } bool CWallet::IsDenominatedAmount(CAmount nInputAmount) const { BOOST_FOREACH(CAmount d, CPrivateSend::GetStandardDenominations()) if(nInputAmount == d) return true; return false; } isminetype CWallet::IsMine(const CTxOut& txout) const { return ::IsMine(*this, txout.scriptPubKey); } CAmount CWallet::GetCredit(const CTxOut& txout, const isminefilter& filter) const { if (!MoneyRange(txout.nValue)) throw std::runtime_error("CWallet::GetCredit(): value out of range"); return ((IsMine(txout) & filter) ? txout.nValue : 0); } bool CWallet::IsChange(const CTxOut& txout) const { // TODO: fix handling of 'change' outputs. The assumption is that any // payment to a script that is ours, but is not in the address book // is change. That assumption is likely to break when we implement multisignature // wallets that return change back into a multi-signature-protected address; // a better way of identifying which outputs are 'the send' and which are // 'the change' will need to be implemented (maybe extend CWalletTx to remember // which output, if any, was change). if (::IsMine(*this, txout.scriptPubKey)) { CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address)) return true; LOCK(cs_wallet); if (!mapAddressBook.count(address)) return true; } return false; } CAmount CWallet::GetChange(const CTxOut& txout) const { if (!MoneyRange(txout.nValue)) throw std::runtime_error("CWallet::GetChange(): value out of range"); return (IsChange(txout) ? txout.nValue : 0); } void CWallet::GenerateNewHDChain() { CHDChain newHdChain; std::string strSeed = GetArg("-hdseed", "not hex"); if(mapArgs.count("-hdseed") && IsHex(strSeed)) { std::vector vchSeed = ParseHex(strSeed); if (!newHdChain.SetSeed(SecureVector(vchSeed.begin(), vchSeed.end()), true)) throw std::runtime_error(std::string(__func__) + ": SetSeed failed"); } else { if (mapArgs.count("-hdseed") && !IsHex(strSeed)) LogPrintf("CWallet::GenerateNewHDChain -- Incorrect seed, generating random one instead\n"); // NOTE: empty mnemonic means "generate a new one for me" std::string strMnemonic = GetArg("-mnemonic", ""); // NOTE: default mnemonic passphrase is an empty string std::string strMnemonicPassphrase = GetArg("-mnemonicpassphrase", ""); SecureVector vchMnemonic(strMnemonic.begin(), strMnemonic.end()); SecureVector vchMnemonicPassphrase(strMnemonicPassphrase.begin(), strMnemonicPassphrase.end()); if (!newHdChain.SetMnemonic(vchMnemonic, vchMnemonicPassphrase, true)) throw std::runtime_error(std::string(__func__) + ": SetMnemonic failed"); } newHdChain.Debug(__func__); if (!SetHDChain(newHdChain, false)) throw std::runtime_error(std::string(__func__) + ": SetHDChain failed"); // clean up mapArgs.erase("-hdseed"); mapArgs.erase("-mnemonic"); mapArgs.erase("-mnemonicpassphrase"); } bool CWallet::SetHDChain(const CHDChain& chain, bool memonly) { LOCK(cs_wallet); if (!CCryptoKeyStore::SetHDChain(chain)) return false; if (!memonly && !CWalletDB(strWalletFile).WriteHDChain(chain)) throw std::runtime_error(std::string(__func__) + ": WriteHDChain failed"); return true; } bool CWallet::SetCryptedHDChain(const CHDChain& chain, bool memonly) { LOCK(cs_wallet); if (!CCryptoKeyStore::SetCryptedHDChain(chain)) return false; if (!memonly) { if (!fFileBacked) return false; if (pwalletdbEncryption) { if (!pwalletdbEncryption->WriteCryptedHDChain(chain)) throw std::runtime_error(std::string(__func__) + ": WriteCryptedHDChain failed"); } else { if (!CWalletDB(strWalletFile).WriteCryptedHDChain(chain)) throw std::runtime_error(std::string(__func__) + ": WriteCryptedHDChain failed"); } } return true; } bool CWallet::GetDecryptedHDChain(CHDChain& hdChainRet) { LOCK(cs_wallet); CHDChain hdChainTmp; if (!GetHDChain(hdChainTmp)) { return false; } if (!DecryptHDChain(hdChainTmp)) return false; // make sure seed matches this chain if (hdChainTmp.GetID() != hdChainTmp.GetSeedHash()) return false; hdChainRet = hdChainTmp; return true; } bool CWallet::IsHDEnabled() { CHDChain hdChainCurrent; return GetHDChain(hdChainCurrent); } bool CWallet::IsMine(const CTransaction& tx) const { BOOST_FOREACH(const CTxOut& txout, tx.vout) if (IsMine(txout)) return true; return false; } bool CWallet::IsFromMe(const CTransaction& tx) const { return (GetDebit(tx, ISMINE_ALL) > 0); } CAmount CWallet::GetDebit(const CTransaction& tx, const isminefilter& filter) const { CAmount nDebit = 0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { nDebit += GetDebit(txin, filter); if (!MoneyRange(nDebit)) throw std::runtime_error("CWallet::GetDebit(): value out of range"); } return nDebit; } CAmount CWallet::GetCredit(const CTransaction& tx, const isminefilter& filter) const { CAmount nCredit = 0; BOOST_FOREACH(const CTxOut& txout, tx.vout) { nCredit += GetCredit(txout, filter); if (!MoneyRange(nCredit)) throw std::runtime_error("CWallet::GetCredit(): value out of range"); } return nCredit; } CAmount CWallet::GetChange(const CTransaction& tx) const { CAmount nChange = 0; BOOST_FOREACH(const CTxOut& txout, tx.vout) { nChange += GetChange(txout); if (!MoneyRange(nChange)) throw std::runtime_error("CWallet::GetChange(): value out of range"); } return nChange; } int64_t CWalletTx::GetTxTime() const { int64_t n = nTimeSmart; return n ? n : nTimeReceived; } int CWalletTx::GetRequestCount() const { // Returns -1 if it wasn't being tracked int nRequests = -1; { LOCK(pwallet->cs_wallet); if (IsCoinBase()) { // Generated block if (!hashUnset()) { map::const_iterator mi = pwallet->mapRequestCount.find(hashBlock); if (mi != pwallet->mapRequestCount.end()) nRequests = (*mi).second; } } else { // Did anyone request this transaction? map::const_iterator mi = pwallet->mapRequestCount.find(GetHash()); if (mi != pwallet->mapRequestCount.end()) { nRequests = (*mi).second; // How about the block it's in? if (nRequests == 0 && !hashUnset()) { map::const_iterator mi = pwallet->mapRequestCount.find(hashBlock); if (mi != pwallet->mapRequestCount.end()) nRequests = (*mi).second; else nRequests = 1; // If it's in someone else's block it must have got out } } } } return nRequests; } void CWalletTx::GetAmounts(list& listReceived, list& listSent, CAmount& nFee, string& strSentAccount, const isminefilter& filter) const { nFee = 0; listReceived.clear(); listSent.clear(); strSentAccount = strFromAccount; // Compute fee: CAmount nDebit = GetDebit(filter); if (nDebit > 0) // debit>0 means we signed/sent this transaction { CAmount nValueOut = GetValueOut(); nFee = nDebit - nValueOut; } // Sent/received. for (unsigned int i = 0; i < vout.size(); ++i) { const CTxOut& txout = vout[i]; isminetype fIsMine = pwallet->IsMine(txout); // Only need to handle txouts if AT LEAST one of these is true: // 1) they debit from us (sent) // 2) the output is to us (received) if (nDebit > 0) { // Don't report 'change' txouts if (pwallet->IsChange(txout)) continue; } else if (!(fIsMine & filter)) continue; // In either case, we need to get the destination address CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address) && !txout.scriptPubKey.IsUnspendable()) { LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n", this->GetHash().ToString()); address = CNoDestination(); } COutputEntry output = {address, txout.nValue, (int)i}; // If we are debited by the transaction, add the output as a "sent" entry if (nDebit > 0) listSent.push_back(output); // If we are receiving the output, add it as a "received" entry if (fIsMine & filter) listReceived.push_back(output); } } void CWalletTx::GetAccountAmounts(const string& strAccount, CAmount& nReceived, CAmount& nSent, CAmount& nFee, const isminefilter& filter) const { nReceived = nSent = nFee = 0; CAmount allFee; string strSentAccount; list listReceived; list listSent; GetAmounts(listReceived, listSent, allFee, strSentAccount, filter); if (strAccount == strSentAccount) { BOOST_FOREACH(const COutputEntry& s, listSent) nSent += s.amount; nFee = allFee; } { LOCK(pwallet->cs_wallet); BOOST_FOREACH(const COutputEntry& r, listReceived) { if (pwallet->mapAddressBook.count(r.destination)) { map::const_iterator mi = pwallet->mapAddressBook.find(r.destination); if (mi != pwallet->mapAddressBook.end() && (*mi).second.name == strAccount) nReceived += r.amount; } else if (strAccount.empty()) { nReceived += r.amount; } } } } bool CWalletTx::WriteToDisk(CWalletDB *pwalletdb) { return pwalletdb->WriteTx(GetHash(), *this); } /** * Scan the block chain (starting in pindexStart) for transactions * from or to us. If fUpdate is true, found transactions that already * exist in the wallet will be updated. */ int CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate) { int ret = 0; int64_t nNow = GetTime(); const CChainParams& chainParams = Params(); CBlockIndex* pindex = pindexStart; { LOCK2(cs_main, cs_wallet); // no need to read and scan block, if block was created before // our wallet birthday (as adjusted for block time variability) while (pindex && nTimeFirstKey && (pindex->GetBlockTime() < (nTimeFirstKey - 7200))) pindex = chainActive.Next(pindex); ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup double dProgressStart = Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), pindex, false); double dProgressTip = Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), chainActive.Tip(), false); while (pindex) { if (pindex->nHeight % 100 == 0 && dProgressTip - dProgressStart > 0.0) ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), pindex, false) - dProgressStart) / (dProgressTip - dProgressStart) * 100)))); CBlock block; ReadBlockFromDisk(block, pindex, Params().GetConsensus()); BOOST_FOREACH(CTransaction& tx, block.vtx) { if (AddToWalletIfInvolvingMe(tx, &block, fUpdate)) ret++; } pindex = chainActive.Next(pindex); if (GetTime() >= nNow + 60) { nNow = GetTime(); LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), pindex)); } } ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI } return ret; } void CWallet::ReacceptWalletTransactions() { // If transactions aren't being broadcasted, don't let them into local mempool either if (!fBroadcastTransactions) return; LOCK2(cs_main, cs_wallet); std::map mapSorted; // Sort pending wallet transactions based on their initial wallet insertion order BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) { const uint256& wtxid = item.first; CWalletTx& wtx = item.second; assert(wtx.GetHash() == wtxid); int nDepth = wtx.GetDepthInMainChain(); if (!wtx.IsCoinBase() && (nDepth == 0 && !wtx.isAbandoned())) { mapSorted.insert(std::make_pair(wtx.nOrderPos, &wtx)); } } // Try to add wallet transactions to memory pool BOOST_FOREACH(PAIRTYPE(const int64_t, CWalletTx*)& item, mapSorted) { CWalletTx& wtx = *(item.second); LOCK(mempool.cs); wtx.AcceptToMemoryPool(false); } } bool CWalletTx::RelayWalletTransaction(CConnman* connman, std::string strCommand) { assert(pwallet->GetBroadcastTransactions()); if (!IsCoinBase()) { if (GetDepthInMainChain() == 0 && !isAbandoned() && InMempool()) { uint256 hash = GetHash(); LogPrintf("Relaying wtx %s\n", hash.ToString()); if(strCommand == NetMsgType::TXLOCKREQUEST) { instantsend.ProcessTxLockRequest(((CTxLockRequest)*this)); } if (connman) { connman->RelayTransaction((CTransaction)*this); return true; } } } return false; } set CWalletTx::GetConflicts() const { set result; if (pwallet != NULL) { uint256 myHash = GetHash(); result = pwallet->GetConflicts(myHash); result.erase(myHash); } return result; } CAmount CWalletTx::GetDebit(const isminefilter& filter) const { if (vin.empty()) return 0; CAmount debit = 0; if(filter & ISMINE_SPENDABLE) { if (fDebitCached) debit += nDebitCached; else { nDebitCached = pwallet->GetDebit(*this, ISMINE_SPENDABLE); fDebitCached = true; debit += nDebitCached; } } if(filter & ISMINE_WATCH_ONLY) { if(fWatchDebitCached) debit += nWatchDebitCached; else { nWatchDebitCached = pwallet->GetDebit(*this, ISMINE_WATCH_ONLY); fWatchDebitCached = true; debit += nWatchDebitCached; } } return debit; } CAmount CWalletTx::GetCredit(const isminefilter& filter) const { // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; int64_t credit = 0; if (filter & ISMINE_SPENDABLE) { // GetBalance can assume transactions in mapWallet won't change if (fCreditCached) credit += nCreditCached; else { nCreditCached = pwallet->GetCredit(*this, ISMINE_SPENDABLE); fCreditCached = true; credit += nCreditCached; } } if (filter & ISMINE_WATCH_ONLY) { if (fWatchCreditCached) credit += nWatchCreditCached; else { nWatchCreditCached = pwallet->GetCredit(*this, ISMINE_WATCH_ONLY); fWatchCreditCached = true; credit += nWatchCreditCached; } } return credit; } CAmount CWalletTx::GetImmatureCredit(bool fUseCache) const { if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain()) { if (fUseCache && fImmatureCreditCached) return nImmatureCreditCached; nImmatureCreditCached = pwallet->GetCredit(*this, ISMINE_SPENDABLE); fImmatureCreditCached = true; return nImmatureCreditCached; } return 0; } CAmount CWalletTx::GetAvailableCredit(bool fUseCache) const { if (pwallet == 0) return 0; // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; if (fUseCache && fAvailableCreditCached) return nAvailableCreditCached; CAmount nCredit = 0; uint256 hashTx = GetHash(); for (unsigned int i = 0; i < vout.size(); i++) { if (!pwallet->IsSpent(hashTx, i)) { const CTxOut &txout = vout[i]; nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE); if (!MoneyRange(nCredit)) throw std::runtime_error("CWalletTx::GetAvailableCredit() : value out of range"); } } nAvailableCreditCached = nCredit; fAvailableCreditCached = true; return nCredit; } CAmount CWalletTx::GetImmatureWatchOnlyCredit(const bool& fUseCache) const { if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain()) { if (fUseCache && fImmatureWatchCreditCached) return nImmatureWatchCreditCached; nImmatureWatchCreditCached = pwallet->GetCredit(*this, ISMINE_WATCH_ONLY); fImmatureWatchCreditCached = true; return nImmatureWatchCreditCached; } return 0; } CAmount CWalletTx::GetAvailableWatchOnlyCredit(const bool& fUseCache) const { if (pwallet == 0) return 0; // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; if (fUseCache && fAvailableWatchCreditCached) return nAvailableWatchCreditCached; CAmount nCredit = 0; for (unsigned int i = 0; i < vout.size(); i++) { if (!pwallet->IsSpent(GetHash(), i)) { const CTxOut &txout = vout[i]; nCredit += pwallet->GetCredit(txout, ISMINE_WATCH_ONLY); if (!MoneyRange(nCredit)) throw std::runtime_error("CWalletTx::GetAvailableCredit() : value out of range"); } } nAvailableWatchCreditCached = nCredit; fAvailableWatchCreditCached = true; return nCredit; } CAmount CWalletTx::GetAnonymizedCredit(bool fUseCache) const { if (pwallet == 0) return 0; // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; if (fUseCache && fAnonymizedCreditCached) return nAnonymizedCreditCached; CAmount nCredit = 0; uint256 hashTx = GetHash(); for (unsigned int i = 0; i < vout.size(); i++) { const CTxOut &txout = vout[i]; const CTxIn txin = CTxIn(hashTx, i); if(pwallet->IsSpent(hashTx, i) || !pwallet->IsDenominated(txin)) continue; const int nRounds = pwallet->GetInputPrivateSendRounds(txin); if(nRounds >= privateSendClient.nPrivateSendRounds){ nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE); if (!MoneyRange(nCredit)) throw std::runtime_error("CWalletTx::GetAnonymizedCredit() : value out of range"); } } nAnonymizedCreditCached = nCredit; fAnonymizedCreditCached = true; return nCredit; } CAmount CWalletTx::GetDenominatedCredit(bool unconfirmed, bool fUseCache) const { if (pwallet == 0) return 0; // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; int nDepth = GetDepthInMainChain(false); if(nDepth < 0) return 0; bool isUnconfirmed = IsTrusted() && nDepth == 0; if(unconfirmed != isUnconfirmed) return 0; if (fUseCache) { if(unconfirmed && fDenomUnconfCreditCached) return nDenomUnconfCreditCached; else if (!unconfirmed && fDenomConfCreditCached) return nDenomConfCreditCached; } CAmount nCredit = 0; uint256 hashTx = GetHash(); for (unsigned int i = 0; i < vout.size(); i++) { const CTxOut &txout = vout[i]; if(pwallet->IsSpent(hashTx, i) || !pwallet->IsDenominatedAmount(vout[i].nValue)) continue; nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE); if (!MoneyRange(nCredit)) throw std::runtime_error("CWalletTx::GetDenominatedCredit() : value out of range"); } if(unconfirmed) { nDenomUnconfCreditCached = nCredit; fDenomUnconfCreditCached = true; } else { nDenomConfCreditCached = nCredit; fDenomConfCreditCached = true; } return nCredit; } CAmount CWalletTx::GetChange() const { if (fChangeCached) return nChangeCached; nChangeCached = pwallet->GetChange(*this); fChangeCached = true; return nChangeCached; } bool CWalletTx::InMempool() const { LOCK(mempool.cs); if (mempool.exists(GetHash())) { return true; } return false; } bool CWalletTx::IsTrusted() const { // Quick answer in most cases if (!CheckFinalTx(*this)) return false; int nDepth = GetDepthInMainChain(); if (nDepth >= 1) return true; if (nDepth < 0) return false; if (!bSpendZeroConfChange || !IsFromMe(ISMINE_ALL)) // using wtx's cached debit return false; // Don't trust unconfirmed transactions from us unless they are in the mempool. if (!InMempool()) return false; // Trusted if all inputs are from us and are in the mempool: BOOST_FOREACH(const CTxIn& txin, vin) { // Transactions not sent by us: not trusted const CWalletTx* parent = pwallet->GetWalletTx(txin.prevout.hash); if (parent == NULL) return false; const CTxOut& parentOut = parent->vout[txin.prevout.n]; if (pwallet->IsMine(parentOut) != ISMINE_SPENDABLE) return false; } return true; } bool CWalletTx::IsEquivalentTo(const CWalletTx& tx) const { CMutableTransaction tx1 = *this; CMutableTransaction tx2 = tx; for (unsigned int i = 0; i < tx1.vin.size(); i++) tx1.vin[i].scriptSig = CScript(); for (unsigned int i = 0; i < tx2.vin.size(); i++) tx2.vin[i].scriptSig = CScript(); return CTransaction(tx1) == CTransaction(tx2); } std::vector CWallet::ResendWalletTransactionsBefore(int64_t nTime, CConnman* connman) { std::vector result; LOCK(cs_wallet); // Sort them in chronological order multimap mapSorted; BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) { CWalletTx& wtx = item.second; // Don't rebroadcast if newer than nTime: if (wtx.nTimeReceived > nTime) continue; mapSorted.insert(make_pair(wtx.nTimeReceived, &wtx)); } BOOST_FOREACH(PAIRTYPE(const unsigned int, CWalletTx*)& item, mapSorted) { CWalletTx& wtx = *item.second; if (wtx.RelayWalletTransaction(connman)) result.push_back(wtx.GetHash()); } return result; } void CWallet::ResendWalletTransactions(int64_t nBestBlockTime, CConnman* connman) { // Do this infrequently and randomly to avoid giving away // that these are our transactions. if (GetTime() < nNextResend || !fBroadcastTransactions) return; bool fFirst = (nNextResend == 0); nNextResend = GetTime() + GetRand(30 * 60); if (fFirst) return; // Only do it if there's been a new block since last time if (nBestBlockTime < nLastResend) return; nLastResend = GetTime(); // Rebroadcast unconfirmed txes older than 5 minutes before the last // block was found: std::vector relayed = ResendWalletTransactionsBefore(nBestBlockTime-5*60, connman); if (!relayed.empty()) LogPrintf("%s: rebroadcast %u unconfirmed transactions\n", __func__, relayed.size()); } /** @} */ // end of mapWallet /** @defgroup Actions * * @{ */ CAmount CWallet::GetBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } CAmount CWallet::GetAnonymizableBalance(bool fSkipDenominated, bool fSkipUnconfirmed) const { if(fLiteMode) return 0; std::vector vecTally; if(!SelectCoinsGrouppedByAddresses(vecTally, fSkipDenominated, true, fSkipUnconfirmed)) return 0; CAmount nTotal = 0; const CAmount nSmallestDenom = CPrivateSend::GetSmallestDenomination(); const CAmount nMixingCollateral = CPrivateSend::GetCollateralAmount(); BOOST_FOREACH(CompactTallyItem& item, vecTally) { bool fIsDenominated = IsDenominatedAmount(item.nAmount); if(fSkipDenominated && fIsDenominated) continue; // assume that the fee to create denoms should be mixing collateral at max if(item.nAmount >= nSmallestDenom + (fIsDenominated ? 0 : nMixingCollateral)) nTotal += item.nAmount; } return nTotal; } CAmount CWallet::GetAnonymizedBalance() const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAnonymizedCredit(); } } return nTotal; } // Note: calculated including unconfirmed, // that's ok as long as we use it for informational purposes only float CWallet::GetAverageAnonymizedRounds() const { if(fLiteMode) return 0; int nTotal = 0; int nCount = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; uint256 hash = (*it).first; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { CTxIn txin = CTxIn(hash, i); if(IsSpent(hash, i) || IsMine(pcoin->vout[i]) != ISMINE_SPENDABLE || !IsDenominated(txin)) continue; nTotal += GetInputPrivateSendRounds(txin); nCount++; } } } if(nCount == 0) return 0; return (float)nTotal/nCount; } // Note: calculated including unconfirmed, // that's ok as long as we use it for informational purposes only CAmount CWallet::GetNormalizedAnonymizedBalance() const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; uint256 hash = (*it).first; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { CTxIn txin = CTxIn(hash, i); if(IsSpent(hash, i) || IsMine(pcoin->vout[i]) != ISMINE_SPENDABLE || !IsDenominated(txin)) continue; if (pcoin->GetDepthInMainChain() < 0) continue; int nRounds = GetInputPrivateSendRounds(txin); nTotal += pcoin->vout[i].nValue * nRounds / privateSendClient.nPrivateSendRounds; } } } return nTotal; } CAmount CWallet::GetNeedsToBeAnonymizedBalance(CAmount nMinBalance) const { if(fLiteMode) return 0; CAmount nAnonymizedBalance = GetAnonymizedBalance(); CAmount nNeedsToAnonymizeBalance = privateSendClient.nPrivateSendAmount*COIN - nAnonymizedBalance; // try to overshoot target DS balance up to nMinBalance nNeedsToAnonymizeBalance += nMinBalance; CAmount nAnonymizableBalance = GetAnonymizableBalance(); // anonymizable balance is way too small if(nAnonymizableBalance < nMinBalance) return 0; // not enough funds to anonymze amount we want, try the max we can if(nNeedsToAnonymizeBalance > nAnonymizableBalance) nNeedsToAnonymizeBalance = nAnonymizableBalance; // we should never exceed the pool max if (nNeedsToAnonymizeBalance > CPrivateSend::GetMaxPoolAmount()) nNeedsToAnonymizeBalance = CPrivateSend::GetMaxPoolAmount(); return nNeedsToAnonymizeBalance; } CAmount CWallet::GetDenominatedBalance(bool unconfirmed) const { if(fLiteMode) return 0; CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetDenominatedCredit(unconfirmed); } } return nTotal; } CAmount CWallet::GetUnconfirmedBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool()) nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } CAmount CWallet::GetImmatureBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetImmatureCredit(); } } return nTotal; } CAmount CWallet::GetWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } CAmount CWallet::GetUnconfirmedWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool()) nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } CAmount CWallet::GetImmatureWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetImmatureWatchOnlyCredit(); } } return nTotal; } void CWallet::AvailableCoins(vector& vCoins, bool fOnlyConfirmed, const CCoinControl *coinControl, bool fIncludeZeroValue, AvailableCoinsType nCoinType, bool fUseInstantSend) const { vCoins.clear(); { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const uint256& wtxid = it->first; const CWalletTx* pcoin = &(*it).second; if (!CheckFinalTx(*pcoin)) continue; if (fOnlyConfirmed && !pcoin->IsTrusted()) continue; if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0) continue; int nDepth = pcoin->GetDepthInMainChain(false); // do not use IX for inputs that have less then INSTANTSEND_CONFIRMATIONS_REQUIRED blockchain confirmations if (fUseInstantSend && nDepth < INSTANTSEND_CONFIRMATIONS_REQUIRED) continue; // We should not consider coins which aren't at least in our mempool // It's possible for these to be conflicted via ancestors which we may never be able to detect if (nDepth == 0 && !pcoin->InMempool()) continue; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { bool found = false; if(nCoinType == ONLY_DENOMINATED) { found = IsDenominatedAmount(pcoin->vout[i].nValue); } else if(nCoinType == ONLY_NOT1000IFMN) { found = !(fMasterNode && pcoin->vout[i].nValue == 1000*COIN); } else if(nCoinType == ONLY_NONDENOMINATED_NOT1000IFMN) { if (IsCollateralAmount(pcoin->vout[i].nValue)) continue; // do not use collateral amounts found = !IsDenominatedAmount(pcoin->vout[i].nValue); if(found && fMasterNode) found = pcoin->vout[i].nValue != 1000*COIN; // do not use Hot MN funds } else if(nCoinType == ONLY_1000) { found = pcoin->vout[i].nValue == 1000*COIN; } else if(nCoinType == ONLY_PRIVATESEND_COLLATERAL) { found = IsCollateralAmount(pcoin->vout[i].nValue); } else { found = true; } if(!found) continue; isminetype mine = IsMine(pcoin->vout[i]); if (!(IsSpent(wtxid, i)) && mine != ISMINE_NO && (!IsLockedCoin((*it).first, i) || nCoinType == ONLY_1000) && (pcoin->vout[i].nValue > 0 || fIncludeZeroValue) && (!coinControl || !coinControl->HasSelected() || coinControl->fAllowOtherInputs || coinControl->IsSelected((*it).first, i))) vCoins.push_back(COutput(pcoin, i, nDepth, ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (coinControl && coinControl->fAllowWatchOnly && (mine & ISMINE_WATCH_SOLVABLE) != ISMINE_NO))); } } } } static void ApproximateBestSubset(vector > >vValue, const CAmount& nTotalLower, const CAmount& nTargetValue, vector& vfBest, CAmount& nBest, int iterations = 1000) { vector vfIncluded; vfBest.assign(vValue.size(), true); nBest = nTotalLower; seed_insecure_rand(); for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++) { vfIncluded.assign(vValue.size(), false); CAmount nTotal = 0; bool fReachedTarget = false; for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++) { for (unsigned int i = 0; i < vValue.size(); i++) { //The solver here uses a randomized algorithm, //the randomness serves no real security purpose but is just //needed to prevent degenerate behavior and it is important //that the rng is fast. We do not use a constant random sequence, //because there may be some privacy improvement by making //the selection random. if (nPass == 0 ? insecure_rand()&1 : !vfIncluded[i]) { nTotal += vValue[i].first; vfIncluded[i] = true; if (nTotal >= nTargetValue) { fReachedTarget = true; if (nTotal < nBest) { nBest = nTotal; vfBest = vfIncluded; } nTotal -= vValue[i].first; vfIncluded[i] = false; } } } } } //Reduces the approximate best subset by removing any inputs that are smaller than the surplus of nTotal beyond nTargetValue. for (unsigned int i = 0; i < vValue.size(); i++) { if (vfBest[i] && (nBest - vValue[i].first) >= nTargetValue ) { vfBest[i] = false; nBest -= vValue[i].first; } } } // move denoms down bool less_then_denom (const COutput& out1, const COutput& out2) { const CWalletTx *pcoin1 = out1.tx; const CWalletTx *pcoin2 = out2.tx; bool found1 = false; bool found2 = false; BOOST_FOREACH(CAmount d, CPrivateSend::GetStandardDenominations()) // loop through predefined denoms { if(pcoin1->vout[out1.i].nValue == d) found1 = true; if(pcoin2->vout[out2.i].nValue == d) found2 = true; } return (!found1 && found2); } bool CWallet::SelectCoinsMinConf(const CAmount& nTargetValue, int nConfMine, int nConfTheirs, vector vCoins, set >& setCoinsRet, CAmount& nValueRet) const { setCoinsRet.clear(); nValueRet = 0; // List of values less than target pair > coinLowestLarger; coinLowestLarger.first = std::numeric_limits::max(); coinLowestLarger.second.first = NULL; vector > > vValue; CAmount nTotalLower = 0; random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt); // move denoms down on the list sort(vCoins.begin(), vCoins.end(), less_then_denom); // try to find nondenom first to prevent unneeded spending of mixed coins for (unsigned int tryDenom = 0; tryDenom < 2; tryDenom++) { LogPrint("selectcoins", "tryDenom: %d\n", tryDenom); vValue.clear(); nTotalLower = 0; BOOST_FOREACH(const COutput &output, vCoins) { if (!output.fSpendable) continue; const CWalletTx *pcoin = output.tx; // if (fDebug) LogPrint("selectcoins", "value %s confirms %d\n", FormatMoney(pcoin->vout[output.i].nValue), output.nDepth); if (output.nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? nConfMine : nConfTheirs)) continue; int i = output.i; CAmount n = pcoin->vout[i].nValue; if (tryDenom == 0 && IsDenominatedAmount(n)) continue; // we don't want denom values on first run pair > coin = make_pair(n,make_pair(pcoin, i)); if (n == nTargetValue) { setCoinsRet.insert(coin.second); nValueRet += coin.first; return true; } else if (n < nTargetValue + MIN_CHANGE) { vValue.push_back(coin); nTotalLower += n; } else if (n < coinLowestLarger.first) { coinLowestLarger = coin; } } if (nTotalLower == nTargetValue) { for (unsigned int i = 0; i < vValue.size(); ++i) { setCoinsRet.insert(vValue[i].second); nValueRet += vValue[i].first; } return true; } if (nTotalLower < nTargetValue) { if (coinLowestLarger.second.first == NULL) // there is no input larger than nTargetValue { if (tryDenom == 0) // we didn't look at denom yet, let's do it continue; else // we looked at everything possible and didn't find anything, no luck return false; } setCoinsRet.insert(coinLowestLarger.second); nValueRet += coinLowestLarger.first; return true; } // nTotalLower > nTargetValue break; } // Solve subset sum by stochastic approximation sort(vValue.rbegin(), vValue.rend(), CompareValueOnly()); vector vfBest; CAmount nBest; ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest); if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE) ApproximateBestSubset(vValue, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest); // If we have a bigger coin and (either the stochastic approximation didn't find a good solution, // or the next bigger coin is closer), return the bigger coin if (coinLowestLarger.second.first && ((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || coinLowestLarger.first <= nBest)) { setCoinsRet.insert(coinLowestLarger.second); nValueRet += coinLowestLarger.first; } else { string s = "CWallet::SelectCoinsMinConf best subset: "; for (unsigned int i = 0; i < vValue.size(); i++) { if (vfBest[i]) { setCoinsRet.insert(vValue[i].second); nValueRet += vValue[i].first; s += FormatMoney(vValue[i].first) + " "; } } LogPrint("selectcoins", "%s - total %s\n", s, FormatMoney(nBest)); } return true; } bool CWallet::SelectCoins(const CAmount& nTargetValue, set >& setCoinsRet, CAmount& nValueRet, const CCoinControl* coinControl, AvailableCoinsType nCoinType, bool fUseInstantSend) const { // Note: this function should never be used for "always free" tx types like dstx vector vCoins; AvailableCoins(vCoins, true, coinControl, false, nCoinType, fUseInstantSend); // coin control -> return all selected outputs (we want all selected to go into the transaction for sure) if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs) { BOOST_FOREACH(const COutput& out, vCoins) { if(!out.fSpendable) continue; if(nCoinType == ONLY_DENOMINATED) { CTxIn txin = CTxIn(out.tx->GetHash(),out.i); int nRounds = GetInputPrivateSendRounds(txin); // make sure it's actually anonymized if(nRounds < privateSendClient.nPrivateSendRounds) continue; } nValueRet += out.tx->vout[out.i].nValue; setCoinsRet.insert(make_pair(out.tx, out.i)); } return (nValueRet >= nTargetValue); } //if we're doing only denominated, we need to round up to the nearest smallest denomination if(nCoinType == ONLY_DENOMINATED) { std::vector vecPrivateSendDenominations = CPrivateSend::GetStandardDenominations(); CAmount nSmallestDenom = vecPrivateSendDenominations.back(); // Make outputs by looping through denominations, from large to small BOOST_FOREACH(CAmount nDenom, vecPrivateSendDenominations) { BOOST_FOREACH(const COutput& out, vCoins) { //make sure it's the denom we're looking for, round the amount up to smallest denom if(out.tx->vout[out.i].nValue == nDenom && nValueRet + nDenom < nTargetValue + nSmallestDenom) { CTxIn txin = CTxIn(out.tx->GetHash(),out.i); int nRounds = GetInputPrivateSendRounds(txin); // make sure it's actually anonymized if(nRounds < privateSendClient.nPrivateSendRounds) continue; nValueRet += nDenom; setCoinsRet.insert(make_pair(out.tx, out.i)); } } } return (nValueRet >= nTargetValue); } // calculate value from preset inputs and store them set > setPresetCoins; CAmount nValueFromPresetInputs = 0; std::vector vPresetInputs; if (coinControl) coinControl->ListSelected(vPresetInputs); BOOST_FOREACH(const COutPoint& outpoint, vPresetInputs) { map::const_iterator it = mapWallet.find(outpoint.hash); if (it != mapWallet.end()) { const CWalletTx* pcoin = &it->second; // Clearly invalid input, fail if (pcoin->vout.size() <= outpoint.n) return false; nValueFromPresetInputs += pcoin->vout[outpoint.n].nValue; setPresetCoins.insert(make_pair(pcoin, outpoint.n)); } else return false; // TODO: Allow non-wallet inputs } // remove preset inputs from vCoins for (vector::iterator it = vCoins.begin(); it != vCoins.end() && coinControl && coinControl->HasSelected();) { if (setPresetCoins.count(make_pair(it->tx, it->i))) it = vCoins.erase(it); else ++it; } bool res = nTargetValue <= nValueFromPresetInputs || SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 1, 6, vCoins, setCoinsRet, nValueRet) || SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 1, 1, vCoins, setCoinsRet, nValueRet) || (bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, vCoins, setCoinsRet, nValueRet)); // because SelectCoinsMinConf clears the setCoinsRet, we now add the possible inputs to the coinset setCoinsRet.insert(setPresetCoins.begin(), setPresetCoins.end()); // add preset inputs to the total value selected nValueRet += nValueFromPresetInputs; return res; } struct CompareByPriority { bool operator()(const COutput& t1, const COutput& t2) const { return t1.Priority() > t2.Priority(); } }; bool CWallet::FundTransaction(CMutableTransaction& tx, CAmount &nFeeRet, int& nChangePosRet, std::string& strFailReason, bool includeWatching) { vector vecSend; // Turn the txout set into a CRecipient vector BOOST_FOREACH(const CTxOut& txOut, tx.vout) { CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, false}; vecSend.push_back(recipient); } CCoinControl coinControl; coinControl.fAllowOtherInputs = true; coinControl.fAllowWatchOnly = includeWatching; BOOST_FOREACH(const CTxIn& txin, tx.vin) coinControl.Select(txin.prevout); CReserveKey reservekey(this); CWalletTx wtx; if (!CreateTransaction(vecSend, wtx, reservekey, nFeeRet, nChangePosRet, strFailReason, &coinControl, false)) return false; if (nChangePosRet != -1) tx.vout.insert(tx.vout.begin() + nChangePosRet, wtx.vout[nChangePosRet]); // Add new txins (keeping original txin scriptSig/order) BOOST_FOREACH(const CTxIn& txin, wtx.vin) { bool found = false; BOOST_FOREACH(const CTxIn& origTxIn, tx.vin) { if (txin.prevout.hash == origTxIn.prevout.hash && txin.prevout.n == origTxIn.prevout.n) { found = true; break; } } if (!found) tx.vin.push_back(txin); } return true; } bool CWallet::SelectCoinsByDenominations(int nDenom, CAmount nValueMin, CAmount nValueMax, std::vector& vecTxInRet, std::vector& vCoinsRet, CAmount& nValueRet, int nPrivateSendRoundsMin, int nPrivateSendRoundsMax) { vecTxInRet.clear(); vCoinsRet.clear(); nValueRet = 0; vector vCoins; AvailableCoins(vCoins, true, NULL, false, ONLY_DENOMINATED); std::random_shuffle(vCoins.rbegin(), vCoins.rend(), GetRandInt); // ( bit on if present ) // bit 0 - 100DASH+1 // bit 1 - 10DASH+1 // bit 2 - 1DASH+1 // bit 3 - .1DASH+1 std::vector vecBits; if (!CPrivateSend::GetDenominationsBits(nDenom, vecBits)) { return false; } int nDenomResult = 0; std::vector vecPrivateSendDenominations = CPrivateSend::GetStandardDenominations(); InsecureRand insecureRand; BOOST_FOREACH(const COutput& out, vCoins) { // masternode-like input should not be selected by AvailableCoins now anyway //if(out.tx->vout[out.i].nValue == 1000*COIN) continue; if(nValueRet + out.tx->vout[out.i].nValue <= nValueMax){ CTxIn txin = CTxIn(out.tx->GetHash(), out.i); int nRounds = GetInputPrivateSendRounds(txin); if(nRounds >= nPrivateSendRoundsMax) continue; if(nRounds < nPrivateSendRoundsMin) continue; BOOST_FOREACH(int nBit, vecBits) { if(out.tx->vout[out.i].nValue == vecPrivateSendDenominations[nBit]) { if(nValueRet >= nValueMin) { //randomly reduce the max amount we'll submit (for anonymity) nValueMax -= insecureRand(nValueMax/5); //on average use 50% of the inputs or less int r = insecureRand(vCoins.size()); if((int)vecTxInRet.size() > r) return true; } txin.prevPubKey = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey nValueRet += out.tx->vout[out.i].nValue; vecTxInRet.push_back(txin); vCoinsRet.push_back(out); nDenomResult |= 1 << nBit; } } } } return nValueRet >= nValueMin && nDenom == nDenomResult; } struct CompareByAmount { bool operator()(const CompactTallyItem& t1, const CompactTallyItem& t2) const { return t1.nAmount > t2.nAmount; } }; bool CWallet::SelectCoinsGrouppedByAddresses(std::vector& vecTallyRet, bool fSkipDenominated, bool fAnonymizable, bool fSkipUnconfirmed) const { LOCK2(cs_main, cs_wallet); isminefilter filter = ISMINE_SPENDABLE; // try to use cache for already confirmed anonymizable inputs if(fAnonymizable && fSkipUnconfirmed) { if(fSkipDenominated && fAnonymizableTallyCachedNonDenom) { vecTallyRet = vecAnonymizableTallyCachedNonDenom; LogPrint("selectcoins", "SelectCoinsGrouppedByAddresses - using cache for non-denom inputs %d\n", vecTallyRet.size()); return vecTallyRet.size() > 0; } if(!fSkipDenominated && fAnonymizableTallyCached) { vecTallyRet = vecAnonymizableTallyCached; LogPrint("selectcoins", "SelectCoinsGrouppedByAddresses - using cache for all inputs %d\n", vecTallyRet.size()); return vecTallyRet.size() > 0; } } CAmount nSmallestDenom = CPrivateSend::GetSmallestDenomination(); // Tally map mapTally; for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx& wtx = (*it).second; if(wtx.IsCoinBase() && wtx.GetBlocksToMaturity() > 0) continue; if(fSkipUnconfirmed && !wtx.IsTrusted()) continue; for (unsigned int i = 0; i < wtx.vout.size(); i++) { CTxDestination address; if (!ExtractDestination(wtx.vout[i].scriptPubKey, address)) continue; isminefilter mine = ::IsMine(*this, address); if(!(mine & filter)) continue; if(IsSpent(wtx.GetHash(), i) || IsLockedCoin(wtx.GetHash(), i)) continue; if(fSkipDenominated && IsDenominatedAmount(wtx.vout[i].nValue)) continue; if(fAnonymizable) { // ignore collaterals if(IsCollateralAmount(wtx.vout[i].nValue)) continue; if(fMasterNode && wtx.vout[i].nValue == 1000*COIN) continue; // ignore outputs that are 10 times smaller then the smallest denomination // otherwise they will just lead to higher fee / lower priority if(wtx.vout[i].nValue <= nSmallestDenom/10) continue; // ignore anonymized if(GetInputPrivateSendRounds(CTxIn(wtx.GetHash(), i)) >= privateSendClient.nPrivateSendRounds) continue; } CompactTallyItem& item = mapTally[address]; item.address = address; item.nAmount += wtx.vout[i].nValue; item.vecTxIn.push_back(CTxIn(wtx.GetHash(), i)); } } // construct resulting vector vecTallyRet.clear(); BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, CompactTallyItem)& item, mapTally) { if(fAnonymizable && item.second.nAmount < nSmallestDenom) continue; vecTallyRet.push_back(item.second); } // order by amounts per address, from smallest to largest sort(vecTallyRet.rbegin(), vecTallyRet.rend(), CompareByAmount()); // cache already confirmed anonymizable entries for later use if(fAnonymizable && fSkipUnconfirmed) { if(fSkipDenominated) { vecAnonymizableTallyCachedNonDenom = vecTallyRet; fAnonymizableTallyCachedNonDenom = true; } else { vecAnonymizableTallyCached = vecTallyRet; fAnonymizableTallyCached = true; } } // debug std::string strMessage = "SelectCoinsGrouppedByAddresses - vecTallyRet:\n"; BOOST_FOREACH(CompactTallyItem& item, vecTallyRet) strMessage += strprintf(" %s %f\n", item.address.ToString().c_str(), float(item.nAmount)/COIN); LogPrint("selectcoins", "%s", strMessage); return vecTallyRet.size() > 0; } bool CWallet::SelectCoinsDark(CAmount nValueMin, CAmount nValueMax, std::vector& vecTxInRet, CAmount& nValueRet, int nPrivateSendRoundsMin, int nPrivateSendRoundsMax) const { CCoinControl *coinControl=NULL; vecTxInRet.clear(); nValueRet = 0; vector vCoins; AvailableCoins(vCoins, true, coinControl, false, nPrivateSendRoundsMin < 0 ? ONLY_NONDENOMINATED_NOT1000IFMN : ONLY_DENOMINATED); //order the array so largest nondenom are first, then denominations, then very small inputs. sort(vCoins.rbegin(), vCoins.rend(), CompareByPriority()); BOOST_FOREACH(const COutput& out, vCoins) { //do not allow inputs less than 1/10th of minimum value if(out.tx->vout[out.i].nValue < nValueMin/10) continue; //do not allow collaterals to be selected if(IsCollateralAmount(out.tx->vout[out.i].nValue)) continue; if(fMasterNode && out.tx->vout[out.i].nValue == 1000*COIN) continue; //masternode input if(nValueRet + out.tx->vout[out.i].nValue <= nValueMax){ CTxIn txin = CTxIn(out.tx->GetHash(),out.i); int nRounds = GetInputPrivateSendRounds(txin); if(nRounds >= nPrivateSendRoundsMax) continue; if(nRounds < nPrivateSendRoundsMin) continue; txin.prevPubKey = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey nValueRet += out.tx->vout[out.i].nValue; vecTxInRet.push_back(txin); } } return nValueRet >= nValueMin; } bool CWallet::GetCollateralTxIn(CTxIn& txinRet, CAmount& nValueRet) const { vector vCoins; AvailableCoins(vCoins); BOOST_FOREACH(const COutput& out, vCoins) { if(IsCollateralAmount(out.tx->vout[out.i].nValue)) { txinRet = CTxIn(out.tx->GetHash(), out.i); txinRet.prevPubKey = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey nValueRet = out.tx->vout[out.i].nValue; return true; } } return false; } bool CWallet::GetMasternodeVinAndKeys(CTxIn& txinRet, CPubKey& pubKeyRet, CKey& keyRet, std::string strTxHash, std::string strOutputIndex) { // wait for reindex and/or import to finish if (fImporting || fReindex) return false; // Find possible candidates std::vector vPossibleCoins; AvailableCoins(vPossibleCoins, true, NULL, false, ONLY_1000); if(vPossibleCoins.empty()) { LogPrintf("CWallet::GetMasternodeVinAndKeys -- Could not locate any valid masternode vin\n"); return false; } if(strTxHash.empty()) // No output specified, select the first one return GetVinAndKeysFromOutput(vPossibleCoins[0], txinRet, pubKeyRet, keyRet); // Find specific vin uint256 txHash = uint256S(strTxHash); int nOutputIndex = atoi(strOutputIndex.c_str()); BOOST_FOREACH(COutput& out, vPossibleCoins) if(out.tx->GetHash() == txHash && out.i == nOutputIndex) // found it! return GetVinAndKeysFromOutput(out, txinRet, pubKeyRet, keyRet); LogPrintf("CWallet::GetMasternodeVinAndKeys -- Could not locate specified masternode vin\n"); return false; } bool CWallet::GetVinAndKeysFromOutput(COutput out, CTxIn& txinRet, CPubKey& pubKeyRet, CKey& keyRet) { // wait for reindex and/or import to finish if (fImporting || fReindex) return false; CScript pubScript; txinRet = CTxIn(out.tx->GetHash(), out.i); pubScript = out.tx->vout[out.i].scriptPubKey; // the inputs PubKey CTxDestination address1; ExtractDestination(pubScript, address1); CBitcoinAddress address2(address1); CKeyID keyID; if (!address2.GetKeyID(keyID)) { LogPrintf("CWallet::GetVinAndKeysFromOutput -- Address does not refer to a key\n"); return false; } if (!GetKey(keyID, keyRet)) { LogPrintf ("CWallet::GetVinAndKeysFromOutput -- Private key for address is not known\n"); return false; } pubKeyRet = keyRet.GetPubKey(); return true; } int CWallet::CountInputsWithAmount(CAmount nInputAmount) { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()){ int nDepth = pcoin->GetDepthInMainChain(false); for (unsigned int i = 0; i < pcoin->vout.size(); i++) { COutput out = COutput(pcoin, i, nDepth, true); CTxIn txin = CTxIn(out.tx->GetHash(), out.i); if(out.tx->vout[out.i].nValue != nInputAmount) continue; if(!IsDenominatedAmount(pcoin->vout[i].nValue)) continue; if(IsSpent(out.tx->GetHash(), i) || IsMine(pcoin->vout[i]) != ISMINE_SPENDABLE || !IsDenominated(txin)) continue; nTotal++; } } } } return nTotal; } bool CWallet::HasCollateralInputs(bool fOnlyConfirmed) const { vector vCoins; AvailableCoins(vCoins, fOnlyConfirmed, NULL, false, ONLY_PRIVATESEND_COLLATERAL); return !vCoins.empty(); } bool CWallet::IsCollateralAmount(CAmount nInputAmount) const { // collateral inputs should always be a 2x..4x of mixing collateral return nInputAmount > CPrivateSend::GetCollateralAmount() && nInputAmount <= CPrivateSend::GetMaxCollateralAmount() && nInputAmount % CPrivateSend::GetCollateralAmount() == 0; } bool CWallet::CreateCollateralTransaction(CMutableTransaction& txCollateral, std::string& strReason) { txCollateral.vin.clear(); txCollateral.vout.clear(); CReserveKey reservekey(this); CAmount nValue = 0; CTxIn txinCollateral; if (!GetCollateralTxIn(txinCollateral, nValue)) { strReason = "PrivateSend requires a collateral transaction and could not locate an acceptable input!"; return false; } // make our change address CScript scriptChange; CPubKey vchPubKey; assert(reservekey.GetReservedKey(vchPubKey, true)); // should never fail, as we just unlocked scriptChange = GetScriptForDestination(vchPubKey.GetID()); reservekey.KeepKey(); txCollateral.vin.push_back(txinCollateral); //pay collateral charge in fees CTxOut txout = CTxOut(nValue - CPrivateSend::GetCollateralAmount(), scriptChange); txCollateral.vout.push_back(txout); if(!SignSignature(*this, txinCollateral.prevPubKey, txCollateral, 0, int(SIGHASH_ALL|SIGHASH_ANYONECANPAY))) { strReason = "Unable to sign collateral transaction!"; return false; } return true; } bool CWallet::GetBudgetSystemCollateralTX(CTransaction& tx, uint256 hash, CAmount amount, bool fUseInstantSend) { CWalletTx wtx; if(GetBudgetSystemCollateralTX(wtx, hash, amount, fUseInstantSend)){ tx = (CTransaction)wtx; return true; } return false; } bool CWallet::GetBudgetSystemCollateralTX(CWalletTx& tx, uint256 hash, CAmount amount, bool fUseInstantSend) { // make our change address CReserveKey reservekey(this); CScript scriptChange; scriptChange << OP_RETURN << ToByteVector(hash); CAmount nFeeRet = 0; int nChangePosRet = -1; std::string strFail = ""; vector< CRecipient > vecSend; vecSend.push_back((CRecipient){scriptChange, amount, false}); CCoinControl *coinControl=NULL; bool success = CreateTransaction(vecSend, tx, reservekey, nFeeRet, nChangePosRet, strFail, coinControl, true, ALL_COINS, fUseInstantSend); if(!success){ LogPrintf("CWallet::GetBudgetSystemCollateralTX -- Error: %s\n", strFail); return false; } return true; } bool CWallet::ConvertList(std::vector vecTxIn, std::vector& vecAmounts) { BOOST_FOREACH(CTxIn txin, vecTxIn) { if (mapWallet.count(txin.prevout.hash)) { CWalletTx& wtx = mapWallet[txin.prevout.hash]; if(txin.prevout.n < wtx.vout.size()){ vecAmounts.push_back(wtx.vout[txin.prevout.n].nValue); } } else { LogPrintf("CWallet::ConvertList -- Couldn't find transaction\n"); } } return true; } bool CWallet::CreateTransaction(const vector& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, CAmount& nFeeRet, int& nChangePosRet, std::string& strFailReason, const CCoinControl* coinControl, bool sign, AvailableCoinsType nCoinType, bool fUseInstantSend) { CAmount nFeePay = fUseInstantSend ? CTxLockRequest().GetMinFee() : 0; CAmount nValue = 0; unsigned int nSubtractFeeFromAmount = 0; BOOST_FOREACH (const CRecipient& recipient, vecSend) { if (nValue < 0 || recipient.nAmount < 0) { strFailReason = _("Transaction amounts must be positive"); return false; } nValue += recipient.nAmount; if (recipient.fSubtractFeeFromAmount) nSubtractFeeFromAmount++; } if (vecSend.empty() || nValue < 0) { strFailReason = _("Transaction amounts must be positive"); return false; } wtxNew.fTimeReceivedIsTxTime = true; wtxNew.BindWallet(this); CMutableTransaction txNew; // Discourage fee sniping. // // For a large miner the value of the transactions in the best block and // the mempool can exceed the cost of deliberately attempting to mine two // blocks to orphan the current best block. By setting nLockTime such that // only the next block can include the transaction, we discourage this // practice as the height restricted and limited blocksize gives miners // considering fee sniping fewer options for pulling off this attack. // // A simple way to think about this is from the wallet's point of view we // always want the blockchain to move forward. By setting nLockTime this // way we're basically making the statement that we only want this // transaction to appear in the next block; we don't want to potentially // encourage reorgs by allowing transactions to appear at lower heights // than the next block in forks of the best chain. // // Of course, the subsidy is high enough, and transaction volume low // enough, that fee sniping isn't a problem yet, but by implementing a fix // now we ensure code won't be written that makes assumptions about // nLockTime that preclude a fix later. txNew.nLockTime = chainActive.Height(); // Secondly occasionally randomly pick a nLockTime even further back, so // that transactions that are delayed after signing for whatever reason, // e.g. high-latency mix networks and some CoinJoin implementations, have // better privacy. if (GetRandInt(10) == 0) txNew.nLockTime = std::max(0, (int)txNew.nLockTime - GetRandInt(100)); assert(txNew.nLockTime <= (unsigned int)chainActive.Height()); assert(txNew.nLockTime < LOCKTIME_THRESHOLD); { LOCK2(cs_main, cs_wallet); { nFeeRet = 0; if(nFeePay > 0) nFeeRet = nFeePay; // Start with no fee and loop until there is enough fee while (true) { txNew.vin.clear(); txNew.vout.clear(); wtxNew.fFromMe = true; nChangePosRet = -1; bool fFirst = true; CAmount nValueToSelect = nValue; if (nSubtractFeeFromAmount == 0) nValueToSelect += nFeeRet; double dPriority = 0; // vouts to the payees BOOST_FOREACH (const CRecipient& recipient, vecSend) { CTxOut txout(recipient.nAmount, recipient.scriptPubKey); if (recipient.fSubtractFeeFromAmount) { txout.nValue -= nFeeRet / nSubtractFeeFromAmount; // Subtract fee equally from each selected recipient if (fFirst) // first receiver pays the remainder not divisible by output count { fFirst = false; txout.nValue -= nFeeRet % nSubtractFeeFromAmount; } } if (txout.IsDust(::minRelayTxFee)) { if (recipient.fSubtractFeeFromAmount && nFeeRet > 0) { if (txout.nValue < 0) strFailReason = _("The transaction amount is too small to pay the fee"); else strFailReason = _("The transaction amount is too small to send after the fee has been deducted"); } else strFailReason = _("Transaction amount too small"); return false; } txNew.vout.push_back(txout); } // Choose coins to use set > setCoins; CAmount nValueIn = 0; if (!SelectCoins(nValueToSelect, setCoins, nValueIn, coinControl, nCoinType, fUseInstantSend)) { if (nCoinType == ONLY_NOT1000IFMN) { strFailReason = _("Unable to locate enough funds for this transaction that are not equal 1000 DASH."); } else if (nCoinType == ONLY_NONDENOMINATED_NOT1000IFMN) { strFailReason = _("Unable to locate enough PrivateSend non-denominated funds for this transaction that are not equal 1000 DASH."); } else if (nCoinType == ONLY_DENOMINATED) { strFailReason = _("Unable to locate enough PrivateSend denominated funds for this transaction."); strFailReason += " " + _("PrivateSend uses exact denominated amounts to send funds, you might simply need to anonymize some more coins."); } else if (nValueIn < nValueToSelect) { strFailReason = _("Insufficient funds."); } if (fUseInstantSend) { if (nValueIn > sporkManager.GetSporkValue(SPORK_5_INSTANTSEND_MAX_VALUE)*COIN) { strFailReason += " " + strprintf(_("InstantSend doesn't support sending values that high yet. Transactions are currently limited to %1 DASH."), sporkManager.GetSporkValue(SPORK_5_INSTANTSEND_MAX_VALUE)); } else { // could be not true but most likely that's the reason strFailReason += " " + strprintf(_("InstantSend requires inputs with at least %d confirmations, you might need to wait a few minutes and try again."), INSTANTSEND_CONFIRMATIONS_REQUIRED); } } return false; } BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins) { CAmount nCredit = pcoin.first->vout[pcoin.second].nValue; //The coin age after the next block (depth+1) is used instead of the current, //reflecting an assumption the user would accept a bit more delay for //a chance at a free transaction. //But mempool inputs might still be in the mempool, so their age stays 0 int age = pcoin.first->GetDepthInMainChain(); assert(age >= 0); if (age != 0) age += 1; dPriority += (double)nCredit * age; } const CAmount nChange = nValueIn - nValueToSelect; CTxOut newTxOut; if (nChange > 0) { //over pay for denominated transactions if (nCoinType == ONLY_DENOMINATED) { nFeeRet += nChange; wtxNew.mapValue["DS"] = "1"; // recheck skipped denominations during next mixing privateSendClient.ClearSkippedDenominations(); } else { // Fill a vout to ourself // TODO: pass in scriptChange instead of reservekey so // change transaction isn't always pay-to-dash-address CScript scriptChange; // coin control: send change to custom address if (coinControl && !boost::get(&coinControl->destChange)) scriptChange = GetScriptForDestination(coinControl->destChange); // no coin control: send change to newly generated address else { // Note: We use a new key here to keep it from being obvious which side is the change. // The drawback is that by not reusing a previous key, the change may be lost if a // backup is restored, if the backup doesn't have the new private key for the change. // If we reused the old key, it would be possible to add code to look for and // rediscover unknown transactions that were written with keys of ours to recover // post-backup change. // Reserve a new key pair from key pool CPubKey vchPubKey; if (!reservekey.GetReservedKey(vchPubKey, true)) { strFailReason = _("Keypool ran out, please call keypoolrefill first"); return false; } scriptChange = GetScriptForDestination(vchPubKey.GetID()); } newTxOut = CTxOut(nChange, scriptChange); // We do not move dust-change to fees, because the sender would end up paying more than requested. // This would be against the purpose of the all-inclusive feature. // So instead we raise the change and deduct from the recipient. if (nSubtractFeeFromAmount > 0 && newTxOut.IsDust(::minRelayTxFee)) { CAmount nDust = newTxOut.GetDustThreshold(::minRelayTxFee) - newTxOut.nValue; newTxOut.nValue += nDust; // raise change until no more dust for (unsigned int i = 0; i < vecSend.size(); i++) // subtract from first recipient { if (vecSend[i].fSubtractFeeFromAmount) { txNew.vout[i].nValue -= nDust; if (txNew.vout[i].IsDust(::minRelayTxFee)) { strFailReason = _("The transaction amount is too small to send after the fee has been deducted"); return false; } break; } } } // Never create dust outputs; if we would, just // add the dust to the fee. if (newTxOut.IsDust(::minRelayTxFee)) { nFeeRet += nChange; reservekey.ReturnKey(); } else { // Insert change txn at random position: nChangePosRet = GetRandInt(txNew.vout.size()+1); vector::iterator position = txNew.vout.begin()+nChangePosRet; txNew.vout.insert(position, newTxOut); } } } else reservekey.ReturnKey(); // Fill vin // // Note how the sequence number is set to max()-1 so that the // nLockTime set above actually works. BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins){ CTxIn txin = CTxIn(coin.first->GetHash(),coin.second,CScript(), std::numeric_limits::max()-1); txin.prevPubKey = coin.first->vout[coin.second].scriptPubKey; txNew.vin.push_back(txin); } sort(txNew.vin.begin(), txNew.vin.end(), CompareInputBIP69()); sort(txNew.vout.begin(), txNew.vout.end(), CompareOutputBIP69()); // If there was change output added before, we must update its position now if (nChangePosRet != -1) { int i = 0; BOOST_FOREACH(const CTxOut& txOut, txNew.vout) { if (txOut == newTxOut) { nChangePosRet = i; break; } i++; } } // Sign int nIn = 0; CTransaction txNewConst(txNew); BOOST_FOREACH(const CTxIn& txin, txNew.vin) { bool signSuccess; const CScript& scriptPubKey = txin.prevPubKey; CScript& scriptSigRes = txNew.vin[nIn].scriptSig; if (sign) signSuccess = ProduceSignature(TransactionSignatureCreator(this, &txNewConst, nIn, SIGHASH_ALL), scriptPubKey, scriptSigRes); else signSuccess = ProduceSignature(DummySignatureCreator(this), scriptPubKey, scriptSigRes); if (!signSuccess) { strFailReason = _("Signing transaction failed"); return false; } nIn++; } unsigned int nBytes = ::GetSerializeSize(txNew, SER_NETWORK, PROTOCOL_VERSION); // Remove scriptSigs if we used dummy signatures for fee calculation if (!sign) { BOOST_FOREACH (CTxIn& txin, txNew.vin) txin.scriptSig = CScript(); } // Embed the constructed transaction data in wtxNew. *static_cast(&wtxNew) = CTransaction(txNew); // Limit size if (nBytes >= MAX_STANDARD_TX_SIZE) { strFailReason = _("Transaction too large"); return false; } dPriority = wtxNew.ComputePriority(dPriority, nBytes); // Can we complete this as a free transaction? if (fSendFreeTransactions && nBytes <= MAX_FREE_TRANSACTION_CREATE_SIZE) { // Not enough fee: enough priority? double dPriorityNeeded = mempool.estimateSmartPriority(nTxConfirmTarget); // Require at least hard-coded AllowFree. if (dPriority >= dPriorityNeeded && AllowFree(dPriority)) break; // Small enough, and priority high enough, to send for free // if (dPriorityNeeded > 0 && dPriority >= dPriorityNeeded) // break; } CAmount nFeeNeeded = max(nFeePay, GetMinimumFee(nBytes, nTxConfirmTarget, mempool)); if (coinControl && nFeeNeeded > 0 && coinControl->nMinimumTotalFee > nFeeNeeded) { nFeeNeeded = coinControl->nMinimumTotalFee; } if(fUseInstantSend) { nFeeNeeded = std::max(nFeeNeeded, CTxLockRequest(txNew).GetMinFee()); } // If we made it here and we aren't even able to meet the relay fee on the next pass, give up // because we must be at the maximum allowed fee. if (nFeeNeeded < ::minRelayTxFee.GetFee(nBytes)) { strFailReason = _("Transaction too large for fee policy"); return false; } if (nFeeRet >= nFeeNeeded) break; // Done, enough fee included. // Include more fee and try again. nFeeRet = nFeeNeeded; continue; } } } return true; } /** * Call after CreateTransaction unless you want to abort */ bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey, CConnman* connman, std::string strCommand) { { LOCK2(cs_main, cs_wallet); LogPrintf("CommitTransaction:\n%s", wtxNew.ToString()); { // This is only to keep the database open to defeat the auto-flush for the // duration of this scope. This is the only place where this optimization // maybe makes sense; please don't do it anywhere else. CWalletDB* pwalletdb = fFileBacked ? new CWalletDB(strWalletFile,"r+") : NULL; // Take key pair from key pool so it won't be used again reservekey.KeepKey(); // Add tx to wallet, because if it has change it's also ours, // otherwise just for transaction history. AddToWallet(wtxNew, false, pwalletdb); // Notify that old coins are spent set updated_hahes; BOOST_FOREACH(const CTxIn& txin, wtxNew.vin) { // notify only once if(updated_hahes.find(txin.prevout.hash) != updated_hahes.end()) continue; CWalletTx &coin = mapWallet[txin.prevout.hash]; coin.BindWallet(this); NotifyTransactionChanged(this, txin.prevout.hash, CT_UPDATED); updated_hahes.insert(txin.prevout.hash); } if (fFileBacked) delete pwalletdb; } // Track how many getdata requests our transaction gets mapRequestCount[wtxNew.GetHash()] = 0; if (fBroadcastTransactions) { // Broadcast if (!wtxNew.AcceptToMemoryPool(false)) { // This must not fail. The transaction has already been signed and recorded. LogPrintf("CommitTransaction(): Error: Transaction not valid\n"); return false; } wtxNew.RelayWalletTransaction(connman, strCommand); } } return true; } bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry, CWalletDB & pwalletdb) { if (!pwalletdb.WriteAccountingEntry_Backend(acentry)) return false; laccentries.push_back(acentry); CAccountingEntry & entry = laccentries.back(); wtxOrdered.insert(make_pair(entry.nOrderPos, TxPair((CWalletTx*)0, &entry))); return true; } CAmount CWallet::GetRequiredFee(unsigned int nTxBytes) { return std::max(minTxFee.GetFee(nTxBytes), ::minRelayTxFee.GetFee(nTxBytes)); } CAmount CWallet::GetMinimumFee(unsigned int nTxBytes, unsigned int nConfirmTarget, const CTxMemPool& pool) { // payTxFee is user-set "I want to pay this much" CAmount nFeeNeeded = payTxFee.GetFee(nTxBytes); // User didn't set: use -txconfirmtarget to estimate... if (nFeeNeeded == 0) { int estimateFoundTarget = nConfirmTarget; nFeeNeeded = pool.estimateSmartFee(nConfirmTarget, &estimateFoundTarget).GetFee(nTxBytes); // ... unless we don't have enough mempool data for estimatefee, then use fallbackFee if (nFeeNeeded == 0) nFeeNeeded = fallbackFee.GetFee(nTxBytes); } // prevent user from paying a fee below minRelayTxFee or minTxFee nFeeNeeded = std::max(nFeeNeeded, GetRequiredFee(nTxBytes)); // But always obey the maximum if (nFeeNeeded > maxTxFee) nFeeNeeded = maxTxFee; return nFeeNeeded; } DBErrors CWallet::LoadWallet(bool& fFirstRunRet) { if (!fFileBacked) return DB_LOAD_OK; fFirstRunRet = false; DBErrors nLoadWalletRet = CWalletDB(strWalletFile,"cr+").LoadWallet(this); if (nLoadWalletRet == DB_NEED_REWRITE) { if (CDB::Rewrite(strWalletFile, "\x04pool")) { LOCK(cs_wallet); setInternalKeyPool.clear(); setExternalKeyPool.clear(); nKeysLeftSinceAutoBackup = 0; // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nLoadWalletRet != DB_LOAD_OK) return nLoadWalletRet; fFirstRunRet = !vchDefaultKey.IsValid(); uiInterface.LoadWallet(this); return DB_LOAD_OK; } DBErrors CWallet::ZapWalletTx(std::vector& vWtx) { if (!fFileBacked) return DB_LOAD_OK; DBErrors nZapWalletTxRet = CWalletDB(strWalletFile,"cr+").ZapWalletTx(this, vWtx); if (nZapWalletTxRet == DB_NEED_REWRITE) { if (CDB::Rewrite(strWalletFile, "\x04pool")) { LOCK(cs_wallet); setInternalKeyPool.clear(); setExternalKeyPool.clear(); nKeysLeftSinceAutoBackup = 0; // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nZapWalletTxRet != DB_LOAD_OK) return nZapWalletTxRet; return DB_LOAD_OK; } bool CWallet::SetAddressBook(const CTxDestination& address, const string& strName, const string& strPurpose) { bool fUpdated = false; { LOCK(cs_wallet); // mapAddressBook std::map::iterator mi = mapAddressBook.find(address); fUpdated = mi != mapAddressBook.end(); mapAddressBook[address].name = strName; if (!strPurpose.empty()) /* update purpose only if requested */ mapAddressBook[address].purpose = strPurpose; } NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO, strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) ); if (!fFileBacked) return false; if (!strPurpose.empty() && !CWalletDB(strWalletFile).WritePurpose(CBitcoinAddress(address).ToString(), strPurpose)) return false; return CWalletDB(strWalletFile).WriteName(CBitcoinAddress(address).ToString(), strName); } bool CWallet::DelAddressBook(const CTxDestination& address) { { LOCK(cs_wallet); // mapAddressBook if(fFileBacked) { // Delete destdata tuples associated with address std::string strAddress = CBitcoinAddress(address).ToString(); BOOST_FOREACH(const PAIRTYPE(string, string) &item, mapAddressBook[address].destdata) { CWalletDB(strWalletFile).EraseDestData(strAddress, item.first); } } mapAddressBook.erase(address); } NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address) != ISMINE_NO, "", CT_DELETED); if (!fFileBacked) return false; CWalletDB(strWalletFile).ErasePurpose(CBitcoinAddress(address).ToString()); return CWalletDB(strWalletFile).EraseName(CBitcoinAddress(address).ToString()); } bool CWallet::SetDefaultKey(const CPubKey &vchPubKey) { if (fFileBacked) { if (!CWalletDB(strWalletFile).WriteDefaultKey(vchPubKey)) return false; } vchDefaultKey = vchPubKey; return true; } /** * Mark old keypool keys as used, * and generate all new keys */ bool CWallet::NewKeyPool() { { LOCK(cs_wallet); CWalletDB walletdb(strWalletFile); BOOST_FOREACH(int64_t nIndex, setInternalKeyPool) { walletdb.ErasePool(nIndex); } setInternalKeyPool.clear(); BOOST_FOREACH(int64_t nIndex, setExternalKeyPool) { walletdb.ErasePool(nIndex); } setExternalKeyPool.clear(); privateSendClient.fEnablePrivateSend = false; nKeysLeftSinceAutoBackup = 0; if (!TopUpKeyPool()) return false; LogPrintf("CWallet::NewKeyPool rewrote keypool\n"); } return true; } size_t CWallet::KeypoolCountExternalKeys() { AssertLockHeld(cs_wallet); // setExternalKeyPool return setExternalKeyPool.size(); } size_t CWallet::KeypoolCountInternalKeys() { AssertLockHeld(cs_wallet); // setInternalKeyPool return setInternalKeyPool.size(); } bool CWallet::TopUpKeyPool(unsigned int kpSize) { { LOCK(cs_wallet); if (IsLocked(true)) return false; // Top up key pool unsigned int nTargetSize; if (kpSize > 0) nTargetSize = kpSize; else nTargetSize = max(GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0); // count amount of available keys (internal, external) // make sure the keypool of external and internal keys fits the user selected target (-keypool) int64_t amountExternal = setExternalKeyPool.size(); int64_t amountInternal = setInternalKeyPool.size(); int64_t missingExternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - amountExternal, (int64_t) 0); int64_t missingInternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - amountInternal, (int64_t) 0); if (!IsHDEnabled()) { // don't create extra internal keys missingInternal = 0; } else { nTargetSize *= 2; } bool fInternal = false; CWalletDB walletdb(strWalletFile); for (int64_t i = missingInternal + missingExternal; i--;) { int64_t nEnd = 1; if (i < missingInternal) { fInternal = true; } if (!setInternalKeyPool.empty()) { nEnd = *(--setInternalKeyPool.end()) + 1; } if (!setExternalKeyPool.empty()) { nEnd = std::max(nEnd, *(--setExternalKeyPool.end()) + 1); } // TODO: implement keypools for all accounts? if (!walletdb.WritePool(nEnd, CKeyPool(GenerateNewKey(0, fInternal), fInternal))) throw runtime_error("TopUpKeyPool(): writing generated key failed"); if (fInternal) { setInternalKeyPool.insert(nEnd); } else { setExternalKeyPool.insert(nEnd); } LogPrintf("keypool added key %d, size=%u, internal=%d\n", nEnd, setInternalKeyPool.size() + setExternalKeyPool.size(), fInternal); double dProgress = 100.f * nEnd / (nTargetSize + 1); std::string strMsg = strprintf(_("Loading wallet... (%3.2f %%)"), dProgress); uiInterface.InitMessage(strMsg); } } return true; } void CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool, bool fInternal) { nIndex = -1; keypool.vchPubKey = CPubKey(); { LOCK(cs_wallet); if (!IsLocked(true)) TopUpKeyPool(); fInternal = fInternal && IsHDEnabled(); std::set& setKeyPool = fInternal ? setInternalKeyPool : setExternalKeyPool; // Get the oldest key if(setKeyPool.empty()) return; CWalletDB walletdb(strWalletFile); nIndex = *setKeyPool.begin(); setKeyPool.erase(nIndex); if (!walletdb.ReadPool(nIndex, keypool)) { throw std::runtime_error(std::string(__func__) + ": read failed"); } if (!HaveKey(keypool.vchPubKey.GetID())) { throw std::runtime_error(std::string(__func__) + ": unknown key in key pool"); } if (keypool.fInternal != fInternal) { throw std::runtime_error(std::string(__func__) + ": keypool entry misclassified"); } assert(keypool.vchPubKey.IsValid()); LogPrintf("keypool reserve %d\n", nIndex); } } void CWallet::KeepKey(int64_t nIndex) { // Remove from key pool if (fFileBacked) { CWalletDB walletdb(strWalletFile); walletdb.ErasePool(nIndex); nKeysLeftSinceAutoBackup = nWalletBackups ? nKeysLeftSinceAutoBackup - 1 : 0; } LogPrintf("keypool keep %d\n", nIndex); } void CWallet::ReturnKey(int64_t nIndex, bool fInternal) { // Return to key pool { LOCK(cs_wallet); if (fInternal) { setInternalKeyPool.insert(nIndex); } else { setExternalKeyPool.insert(nIndex); } } LogPrintf("keypool return %d\n", nIndex); } bool CWallet::GetKeyFromPool(CPubKey& result, bool fInternal) { int64_t nIndex = 0; CKeyPool keypool; { LOCK(cs_wallet); ReserveKeyFromKeyPool(nIndex, keypool, fInternal); if (nIndex == -1) { if (IsLocked(true)) return false; // TODO: implement keypool for all accouts? result = GenerateNewKey(0, fInternal); return true; } KeepKey(nIndex); result = keypool.vchPubKey; } return true; } static int64_t GetOldestKeyInPool(const std::set& setKeyPool, CWalletDB& walletdb) { CKeyPool keypool; int64_t nIndex = *(setKeyPool.begin()); if (!walletdb.ReadPool(nIndex, keypool)) { throw std::runtime_error(std::string(__func__) + ": read oldest key in keypool failed"); } assert(keypool.vchPubKey.IsValid()); return keypool.nTime; } int64_t CWallet::GetOldestKeyPoolTime() { LOCK(cs_wallet); // if the keypool is empty, return if (setExternalKeyPool.empty() && setInternalKeyPool.empty()) return GetTime(); CWalletDB walletdb(strWalletFile); int64_t oldestKey = -1; // load oldest key from keypool, get time and return if (!setInternalKeyPool.empty()) { oldestKey = std::max(GetOldestKeyInPool(setInternalKeyPool, walletdb), oldestKey); } if (!setExternalKeyPool.empty()) { oldestKey = std::max(GetOldestKeyInPool(setExternalKeyPool, walletdb), oldestKey); } return oldestKey; } std::map CWallet::GetAddressBalances() { map balances; { LOCK(cs_wallet); BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet) { CWalletTx *pcoin = &walletEntry.second; if (!CheckFinalTx(*pcoin) || !pcoin->IsTrusted()) continue; if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0) continue; int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? 0 : 1)) continue; for (unsigned int i = 0; i < pcoin->vout.size(); i++) { CTxDestination addr; if (!IsMine(pcoin->vout[i])) continue; if(!ExtractDestination(pcoin->vout[i].scriptPubKey, addr)) continue; CAmount n = IsSpent(walletEntry.first, i) ? 0 : pcoin->vout[i].nValue; if (!balances.count(addr)) balances[addr] = 0; balances[addr] += n; } } } return balances; } set< set > CWallet::GetAddressGroupings() { AssertLockHeld(cs_wallet); // mapWallet set< set > groupings; set grouping; BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet) { CWalletTx *pcoin = &walletEntry.second; if (pcoin->vin.size() > 0) { bool any_mine = false; // group all input addresses with each other BOOST_FOREACH(CTxIn txin, pcoin->vin) { CTxDestination address; if(!IsMine(txin)) /* If this input isn't mine, ignore it */ continue; if(!ExtractDestination(mapWallet[txin.prevout.hash].vout[txin.prevout.n].scriptPubKey, address)) continue; grouping.insert(address); any_mine = true; } // group change with input addresses if (any_mine) { BOOST_FOREACH(CTxOut txout, pcoin->vout) if (IsChange(txout)) { CTxDestination txoutAddr; if(!ExtractDestination(txout.scriptPubKey, txoutAddr)) continue; grouping.insert(txoutAddr); } } if (grouping.size() > 0) { groupings.insert(grouping); grouping.clear(); } } // group lone addrs by themselves for (unsigned int i = 0; i < pcoin->vout.size(); i++) if (IsMine(pcoin->vout[i])) { CTxDestination address; if(!ExtractDestination(pcoin->vout[i].scriptPubKey, address)) continue; grouping.insert(address); groupings.insert(grouping); grouping.clear(); } } set< set* > uniqueGroupings; // a set of pointers to groups of addresses map< CTxDestination, set* > setmap; // map addresses to the unique group containing it BOOST_FOREACH(set grouping, groupings) { // make a set of all the groups hit by this new group set< set* > hits; map< CTxDestination, set* >::iterator it; BOOST_FOREACH(CTxDestination address, grouping) if ((it = setmap.find(address)) != setmap.end()) hits.insert((*it).second); // merge all hit groups into a new single group and delete old groups set* merged = new set(grouping); BOOST_FOREACH(set* hit, hits) { merged->insert(hit->begin(), hit->end()); uniqueGroupings.erase(hit); delete hit; } uniqueGroupings.insert(merged); // update setmap BOOST_FOREACH(CTxDestination element, *merged) setmap[element] = merged; } set< set > ret; BOOST_FOREACH(set* uniqueGrouping, uniqueGroupings) { ret.insert(*uniqueGrouping); delete uniqueGrouping; } return ret; } std::set CWallet::GetAccountAddresses(const std::string& strAccount) const { LOCK(cs_wallet); set result; BOOST_FOREACH(const PAIRTYPE(CTxDestination, CAddressBookData)& item, mapAddressBook) { const CTxDestination& address = item.first; const string& strName = item.second.name; if (strName == strAccount) result.insert(address); } return result; } bool CReserveKey::GetReservedKey(CPubKey& pubkey, bool fInternalIn) { if (nIndex == -1) { CKeyPool keypool; pwallet->ReserveKeyFromKeyPool(nIndex, keypool, fInternalIn); if (nIndex != -1) { vchPubKey = keypool.vchPubKey; } else { return false; } fInternal = keypool.fInternal; } assert(vchPubKey.IsValid()); pubkey = vchPubKey; return true; } void CReserveKey::KeepKey() { if (nIndex != -1) { pwallet->KeepKey(nIndex); } nIndex = -1; vchPubKey = CPubKey(); } void CReserveKey::ReturnKey() { if (nIndex != -1) { pwallet->ReturnKey(nIndex, fInternal); } nIndex = -1; vchPubKey = CPubKey(); } static void LoadReserveKeysToSet(std::set& setAddress, const std::set& setKeyPool, CWalletDB& walletdb) { BOOST_FOREACH(const int64_t& id, setKeyPool) { CKeyPool keypool; if (!walletdb.ReadPool(id, keypool)) throw runtime_error("GetAllReserveKeyHashes(): read failed"); assert(keypool.vchPubKey.IsValid()); CKeyID keyID = keypool.vchPubKey.GetID(); setAddress.insert(keyID); } } void CWallet::GetAllReserveKeys(std::set& setAddress) const { setAddress.clear(); CWalletDB walletdb(strWalletFile); LOCK2(cs_main, cs_wallet); LoadReserveKeysToSet(setAddress, setInternalKeyPool, walletdb); LoadReserveKeysToSet(setAddress, setExternalKeyPool, walletdb); BOOST_FOREACH (const CKeyID& keyID, setAddress) { if (!HaveKey(keyID)) { throw std::runtime_error(std::string(__func__) + ": unknown key in key pool"); } } } bool CWallet::UpdatedTransaction(const uint256 &hashTx) { { LOCK(cs_wallet); // Only notify UI if this transaction is in this wallet map::const_iterator mi = mapWallet.find(hashTx); if (mi != mapWallet.end()){ NotifyTransactionChanged(this, hashTx, CT_UPDATED); return true; } } return false; } void CWallet::GetScriptForMining(boost::shared_ptr &script) { boost::shared_ptr rKey(new CReserveKey(this)); CPubKey pubkey; if (!rKey->GetReservedKey(pubkey, false)) return; script = rKey; script->reserveScript = CScript() << ToByteVector(pubkey) << OP_CHECKSIG; } void CWallet::LockCoin(COutPoint& output) { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.insert(output); std::map::iterator it = mapWallet.find(output.hash); if (it != mapWallet.end()) it->second.MarkDirty(); // recalculate all credits for this tx fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; } void CWallet::UnlockCoin(COutPoint& output) { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.erase(output); std::map::iterator it = mapWallet.find(output.hash); if (it != mapWallet.end()) it->second.MarkDirty(); // recalculate all credits for this tx fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; } void CWallet::UnlockAllCoins() { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.clear(); } bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const { AssertLockHeld(cs_wallet); // setLockedCoins COutPoint outpt(hash, n); return (setLockedCoins.count(outpt) > 0); } void CWallet::ListLockedCoins(std::vector& vOutpts) { AssertLockHeld(cs_wallet); // setLockedCoins for (std::set::iterator it = setLockedCoins.begin(); it != setLockedCoins.end(); it++) { COutPoint outpt = (*it); vOutpts.push_back(outpt); } } /** @} */ // end of Actions class CAffectedKeysVisitor : public boost::static_visitor { private: const CKeyStore &keystore; std::vector &vKeys; public: CAffectedKeysVisitor(const CKeyStore &keystoreIn, std::vector &vKeysIn) : keystore(keystoreIn), vKeys(vKeysIn) {} void Process(const CScript &script) { txnouttype type; std::vector vDest; int nRequired; if (ExtractDestinations(script, type, vDest, nRequired)) { BOOST_FOREACH(const CTxDestination &dest, vDest) boost::apply_visitor(*this, dest); } } void operator()(const CKeyID &keyId) { if (keystore.HaveKey(keyId)) vKeys.push_back(keyId); } void operator()(const CScriptID &scriptId) { CScript script; if (keystore.GetCScript(scriptId, script)) Process(script); } void operator()(const CNoDestination &none) {} }; void CWallet::GetKeyBirthTimes(std::map &mapKeyBirth) const { AssertLockHeld(cs_wallet); // mapKeyMetadata mapKeyBirth.clear(); // get birth times for keys with metadata for (std::map::const_iterator it = mapKeyMetadata.begin(); it != mapKeyMetadata.end(); it++) if (it->second.nCreateTime) mapKeyBirth[it->first] = it->second.nCreateTime; // map in which we'll infer heights of other keys CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganised; use a 144-block safety margin std::map mapKeyFirstBlock; std::set setKeys; GetKeys(setKeys); BOOST_FOREACH(const CKeyID &keyid, setKeys) { if (mapKeyBirth.count(keyid) == 0) mapKeyFirstBlock[keyid] = pindexMax; } setKeys.clear(); // if there are no such keys, we're done if (mapKeyFirstBlock.empty()) return; // find first block that affects those keys, if there are any left std::vector vAffected; for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); it++) { // iterate over all wallet transactions... const CWalletTx &wtx = (*it).second; BlockMap::const_iterator blit = mapBlockIndex.find(wtx.hashBlock); if (blit != mapBlockIndex.end() && chainActive.Contains(blit->second)) { // ... which are already in a block int nHeight = blit->second->nHeight; BOOST_FOREACH(const CTxOut &txout, wtx.vout) { // iterate over all their outputs CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey); BOOST_FOREACH(const CKeyID &keyid, vAffected) { // ... and all their affected keys std::map::iterator rit = mapKeyFirstBlock.find(keyid); if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight) rit->second = blit->second; } vAffected.clear(); } } } // Extract block timestamps for those keys for (std::map::const_iterator it = mapKeyFirstBlock.begin(); it != mapKeyFirstBlock.end(); it++) mapKeyBirth[it->first] = it->second->GetBlockTime() - 7200; // block times can be 2h off } bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { if (boost::get(&dest)) return false; mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); if (!fFileBacked) return true; return CWalletDB(strWalletFile).WriteDestData(CBitcoinAddress(dest).ToString(), key, value); } bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key) { if (!mapAddressBook[dest].destdata.erase(key)) return false; if (!fFileBacked) return true; return CWalletDB(strWalletFile).EraseDestData(CBitcoinAddress(dest).ToString(), key); } bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); return true; } bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const { std::map::const_iterator i = mapAddressBook.find(dest); if(i != mapAddressBook.end()) { CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key); if(j != i->second.destdata.end()) { if(value) *value = j->second; return true; } } return false; } CKeyPool::CKeyPool() { nTime = GetTime(); fInternal = false; } CKeyPool::CKeyPool(const CPubKey& vchPubKeyIn, bool fInternalIn) { nTime = GetTime(); vchPubKey = vchPubKeyIn; fInternal = fInternalIn; } CWalletKey::CWalletKey(int64_t nExpires) { nTimeCreated = (nExpires ? GetTime() : 0); nTimeExpires = nExpires; } int CMerkleTx::SetMerkleBranch(const CBlock& block) { AssertLockHeld(cs_main); CBlock blockTmp; // Update the tx's hashBlock hashBlock = block.GetHash(); // Locate the transaction for (nIndex = 0; nIndex < (int)block.vtx.size(); nIndex++) if (block.vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == (int)block.vtx.size()) { nIndex = -1; LogPrintf("ERROR: SetMerkleBranch(): couldn't find tx in block\n"); return 0; } // Is the tx in a block that's in the main chain BlockMap::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; const CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) return 0; return chainActive.Height() - pindex->nHeight + 1; } int CMerkleTx::GetDepthInMainChain(const CBlockIndex* &pindexRet, bool enableIX) const { int nResult; if (hashUnset()) nResult = 0; else { AssertLockHeld(cs_main); // Find the block it claims to be in BlockMap::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) nResult = 0; else { CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) nResult = 0; else { pindexRet = pindex; nResult = ((nIndex == -1) ? (-1) : 1) * (chainActive.Height() - pindex->nHeight + 1); if (nResult == 0 && !mempool.exists(GetHash())) return -1; // Not in chain, not in mempool } } } if(enableIX && nResult < 6 && instantsend.IsLockedInstantSendTransaction(GetHash())) return nInstantSendDepth + nResult; return nResult; } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return max(0, (COINBASE_MATURITY+1) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(bool fLimitFree, bool fRejectAbsurdFee) { CValidationState state; return ::AcceptToMemoryPool(mempool, state, *this, fLimitFree, NULL, false, fRejectAbsurdFee); }