// Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include "cuckoocache.h" #include "test/test_dash.h" #include "random.h" #include #include /** Test Suite for CuckooCache * * 1) All tests should have a deterministic result (using insecure rand * with deterministic seeds) * 2) Some test methods are templated to allow for easier testing * against new versions / comparing * 3) Results should be treated as a regression test, ie, did the behavior * change significantly from what was expected. This can be OK, depending on * the nature of the change, but requires updating the tests to reflect the new * expected behavior. For example improving the hit rate may cause some tests * using BOOST_CHECK_CLOSE to fail. * */ FastRandomContext insecure_rand(true); BOOST_AUTO_TEST_SUITE(cuckoocache_tests); /** insecure_GetRandHash fills in a uint256 from insecure_rand */ void insecure_GetRandHash(uint256& t) { uint32_t* ptr = (uint32_t*)t.begin(); for (uint8_t j = 0; j < 8; ++j) *(ptr++) = insecure_rand.rand32(); } /** Definition copied from /src/script/sigcache.cpp */ class uint256Hasher { public: template uint32_t operator()(const uint256& key) const { static_assert(hash_select <8, "SignatureCacheHasher only has 8 hashes available."); uint32_t u; std::memcpy(&u, key.begin() + 4 * hash_select, 4); return u; } }; /* Test that no values not inserted into the cache are read out of it. * * There are no repeats in the first 200000 insecure_GetRandHash calls */ BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes) { insecure_rand = FastRandomContext(true); CuckooCache::cache cc{}; cc.setup_bytes(32 << 20); uint256 v; for (int x = 0; x < 100000; ++x) { insecure_GetRandHash(v); cc.insert(v); } for (int x = 0; x < 100000; ++x) { insecure_GetRandHash(v); BOOST_CHECK(!cc.contains(v, false)); } }; /** This helper returns the hit rate when megabytes*load worth of entries are * inserted into a megabytes sized cache */ template double test_cache(size_t megabytes, double load) { insecure_rand = FastRandomContext(true); std::vector hashes; Cache set{}; size_t bytes = megabytes * (1 << 20); set.setup_bytes(bytes); uint32_t n_insert = static_cast(load * (bytes / sizeof(uint256))); hashes.resize(n_insert); for (uint32_t i = 0; i < n_insert; ++i) { uint32_t* ptr = (uint32_t*)hashes[i].begin(); for (uint8_t j = 0; j < 8; ++j) *(ptr++) = insecure_rand.rand32(); } /** We make a copy of the hashes because future optimizations of the * cuckoocache may overwrite the inserted element, so the test is * "future proofed". */ std::vector hashes_insert_copy = hashes; /** Do the insert */ for (uint256& h : hashes_insert_copy) set.insert(h); /** Count the hits */ uint32_t count = 0; for (uint256& h : hashes) count += set.contains(h, false); double hit_rate = ((double)count) / ((double)n_insert); return hit_rate; } /** The normalized hit rate for a given load. * * The semantics are a little confusing, so please see the below * explanation. * * Examples: * * 1) at load 0.5, we expect a perfect hit rate, so we multiply by * 1.0 * 2) at load 2.0, we expect to see half the entries, so a perfect hit rate * would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the * normalized hit rate. * * This is basically the right semantics, but has a bit of a glitch depending on * how you measure around load 1.0 as after load 1.0 your normalized hit rate * becomes effectively perfect, ignoring freshness. */ double normalize_hit_rate(double hits, double load) { return hits * std::max(load, 1.0); } /** Check the hit rate on loads ranging from 0.1 to 2.0 */ BOOST_AUTO_TEST_CASE(cuckoocache_hit_rate_ok) { /** Arbitrarily selected Hit Rate threshold that happens to work for this test * as a lower bound on performance. */ double HitRateThresh = 0.98; size_t megabytes = 32; for (double load = 0.1; load < 2; load *= 2) { double hits = test_cache>(megabytes, load); BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh); } } /** This helper checks that erased elements are preferentially inserted onto and * that the hit rate of "fresher" keys is reasonable*/ template void test_cache_erase(size_t megabytes) { double load = 1; insecure_rand = FastRandomContext(true); std::vector hashes; Cache set{}; size_t bytes = megabytes * (1 << 20); set.setup_bytes(bytes); uint32_t n_insert = static_cast(load * (bytes / sizeof(uint256))); hashes.resize(n_insert); for (uint32_t i = 0; i < n_insert; ++i) { uint32_t* ptr = (uint32_t*)hashes[i].begin(); for (uint8_t j = 0; j < 8; ++j) *(ptr++) = insecure_rand.rand32(); } /** We make a copy of the hashes because future optimizations of the * cuckoocache may overwrite the inserted element, so the test is * "future proofed". */ std::vector hashes_insert_copy = hashes; /** Insert the first half */ for (uint32_t i = 0; i < (n_insert / 2); ++i) set.insert(hashes_insert_copy[i]); /** Erase the first quarter */ for (uint32_t i = 0; i < (n_insert / 4); ++i) set.contains(hashes[i], true); /** Insert the second half */ for (uint32_t i = (n_insert / 2); i < n_insert; ++i) set.insert(hashes_insert_copy[i]); /** elements that we marked erased but that are still there */ size_t count_erased_but_contained = 0; /** elements that we did not erase but are older */ size_t count_stale = 0; /** elements that were most recently inserted */ size_t count_fresh = 0; for (uint32_t i = 0; i < (n_insert / 4); ++i) count_erased_but_contained += set.contains(hashes[i], false); for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) count_stale += set.contains(hashes[i], false); for (uint32_t i = (n_insert / 2); i < n_insert; ++i) count_fresh += set.contains(hashes[i], false); double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); // Check that our hit_rate_fresh is perfect BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); // Check that we have a more than 2x better hit rate on stale elements than // erased elements. BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); } BOOST_AUTO_TEST_CASE(cuckoocache_erase_ok) { size_t megabytes = 32; test_cache_erase>(megabytes); } template void test_cache_erase_parallel(size_t megabytes) { double load = 1; insecure_rand = FastRandomContext(true); std::vector hashes; Cache set{}; size_t bytes = megabytes * (1 << 20); set.setup_bytes(bytes); uint32_t n_insert = static_cast(load * (bytes / sizeof(uint256))); hashes.resize(n_insert); for (uint32_t i = 0; i < n_insert; ++i) { uint32_t* ptr = (uint32_t*)hashes[i].begin(); for (uint8_t j = 0; j < 8; ++j) *(ptr++) = insecure_rand.rand32(); } /** We make a copy of the hashes because future optimizations of the * cuckoocache may overwrite the inserted element, so the test is * "future proofed". */ std::vector hashes_insert_copy = hashes; boost::shared_mutex mtx; { /** Grab lock to make sure we release inserts */ boost::unique_lock l(mtx); /** Insert the first half */ for (uint32_t i = 0; i < (n_insert / 2); ++i) set.insert(hashes_insert_copy[i]); } /** Spin up 3 threads to run contains with erase. */ std::vector threads; /** Erase the first quarter */ for (uint32_t x = 0; x < 3; ++x) /** Each thread is emplaced with x copy-by-value */ threads.emplace_back([&, x] { boost::shared_lock l(mtx); size_t ntodo = (n_insert/4)/3; size_t start = ntodo*x; size_t end = ntodo*(x+1); for (uint32_t i = start; i < end; ++i) set.contains(hashes[i], true); }); /** Wait for all threads to finish */ for (std::thread& t : threads) t.join(); /** Grab lock to make sure we observe erases */ boost::unique_lock l(mtx); /** Insert the second half */ for (uint32_t i = (n_insert / 2); i < n_insert; ++i) set.insert(hashes_insert_copy[i]); /** elements that we marked erased but that are still there */ size_t count_erased_but_contained = 0; /** elements that we did not erase but are older */ size_t count_stale = 0; /** elements that were most recently inserted */ size_t count_fresh = 0; for (uint32_t i = 0; i < (n_insert / 4); ++i) count_erased_but_contained += set.contains(hashes[i], false); for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) count_stale += set.contains(hashes[i], false); for (uint32_t i = (n_insert / 2); i < n_insert; ++i) count_fresh += set.contains(hashes[i], false); double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); // Check that our hit_rate_fresh is perfect BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); // Check that we have a more than 2x better hit rate on stale elements than // erased elements. BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); } BOOST_AUTO_TEST_CASE(cuckoocache_erase_parallel_ok) { size_t megabytes = 32; test_cache_erase_parallel>(megabytes); } template void test_cache_generations() { // This test checks that for a simulation of network activity, the fresh hit // rate is never below 99%, and the number of times that it is worse than // 99.9% are less than 1% of the time. double min_hit_rate = 0.99; double tight_hit_rate = 0.999; double max_rate_less_than_tight_hit_rate = 0.01; // A cache that meets this specification is therefore shown to have a hit // rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) + // min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == 99.89% // hit rate with low variance. // We use deterministic values, but this test has also passed on many // iterations with non-deterministic values, so it isn't "overfit" to the // specific entropy in FastRandomContext(true) and implementation of the // cache. insecure_rand = FastRandomContext(true); // block_activity models a chunk of network activity. n_insert elements are // adde to the cache. The first and last n/4 are stored for removal later // and the middle n/2 are not stored. This models a network which uses half // the signatures of recently (since the last block) added transactions // immediately and never uses the other half. struct block_activity { std::vector reads; block_activity(uint32_t n_insert, Cache& c) : reads() { std::vector inserts; inserts.resize(n_insert); reads.reserve(n_insert / 2); for (uint32_t i = 0; i < n_insert; ++i) { uint32_t* ptr = (uint32_t*)inserts[i].begin(); for (uint8_t j = 0; j < 8; ++j) *(ptr++) = insecure_rand.rand32(); } for (uint32_t i = 0; i < n_insert / 4; ++i) reads.push_back(inserts[i]); for (uint32_t i = n_insert - (n_insert / 4); i < n_insert; ++i) reads.push_back(inserts[i]); for (auto h : inserts) c.insert(h); } }; const uint32_t BLOCK_SIZE = 10000; // We expect window size 60 to perform reasonably given that each epoch // stores 45% of the cache size (~472k). const uint32_t WINDOW_SIZE = 60; const uint32_t POP_AMOUNT = (BLOCK_SIZE / WINDOW_SIZE) / 2; const double load = 10; const size_t megabytes = 32; const size_t bytes = megabytes * (1 << 20); const uint32_t n_insert = static_cast(load * (bytes / sizeof(uint256))); std::vector hashes; Cache set{}; set.setup_bytes(bytes); hashes.reserve(n_insert / BLOCK_SIZE); std::deque last_few; uint32_t out_of_tight_tolerance = 0; uint32_t total = n_insert / BLOCK_SIZE; // we use the deque last_few to model a sliding window of blocks. at each // step, each of the last WINDOW_SIZE block_activities checks the cache for // POP_AMOUNT of the hashes that they inserted, and marks these erased. for (uint32_t i = 0; i < total; ++i) { if (last_few.size() == WINDOW_SIZE) last_few.pop_front(); last_few.emplace_back(BLOCK_SIZE, set); uint32_t count = 0; for (auto& act : last_few) for (uint32_t k = 0; k < POP_AMOUNT; ++k) { count += set.contains(act.reads.back(), true); act.reads.pop_back(); } // We use last_few.size() rather than WINDOW_SIZE for the correct // behavior on the first WINDOW_SIZE iterations where the deque is not // full yet. double hit = (double(count)) / (last_few.size() * POP_AMOUNT); // Loose Check that hit rate is above min_hit_rate BOOST_CHECK(hit > min_hit_rate); // Tighter check, count number of times we are less than tight_hit_rate // (and implicityly, greater than min_hit_rate) out_of_tight_tolerance += hit < tight_hit_rate; } // Check that being out of tolerance happens less than // max_rate_less_than_tight_hit_rate of the time BOOST_CHECK(double(out_of_tight_tolerance) / double(total) < max_rate_less_than_tight_hit_rate); } BOOST_AUTO_TEST_CASE(cuckoocache_generations) { test_cache_generations>(); } BOOST_AUTO_TEST_SUITE_END();