// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_COINS_H #define BITCOIN_COINS_H #include "core.h" #include "serialize.h" #include "uint256.h" #include #include #include /** pruned version of CTransaction: only retains metadata and unspent transaction outputs * * Serialized format: * - VARINT(nVersion) * - VARINT(nCode) * - unspentness bitvector, for vout[2] and further; least significant byte first * - the non-spent CTxOuts (via CTxOutCompressor) * - VARINT(nHeight) * * The nCode value consists of: * - bit 1: IsCoinBase() * - bit 2: vout[0] is not spent * - bit 4: vout[1] is not spent * - The higher bits encode N, the number of non-zero bytes in the following bitvector. * - In case both bit 2 and bit 4 are unset, they encode N-1, as there must be at * least one non-spent output). * * Example: 0104835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e * <><><--------------------------------------------><----> * | \ | / * version code vout[1] height * * - version = 1 * - code = 4 (vout[1] is not spent, and 0 non-zero bytes of bitvector follow) * - unspentness bitvector: as 0 non-zero bytes follow, it has length 0 * - vout[1]: 835800816115944e077fe7c803cfa57f29b36bf87c1d35 * * 8358: compact amount representation for 60000000000 (600 BTC) * * 00: special txout type pay-to-pubkey-hash * * 816115944e077fe7c803cfa57f29b36bf87c1d35: address uint160 * - height = 203998 * * * Example: 0109044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4eebbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b * <><><--><--------------------------------------------------><----------------------------------------------><----> * / \ \ | | / * version code unspentness vout[4] vout[16] height * * - version = 1 * - code = 9 (coinbase, neither vout[0] or vout[1] are unspent, * 2 (1, +1 because both bit 2 and bit 4 are unset) non-zero bitvector bytes follow) * - unspentness bitvector: bits 2 (0x04) and 14 (0x4000) are set, so vout[2+2] and vout[14+2] are unspent * - vout[4]: 86ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4ee * * 86ef97d579: compact amount representation for 234925952 (2.35 BTC) * * 00: special txout type pay-to-pubkey-hash * * 61b01caab50f1b8e9c50a5057eb43c2d9563a4ee: address uint160 * - vout[16]: bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4 * * bbd123: compact amount representation for 110397 (0.001 BTC) * * 00: special txout type pay-to-pubkey-hash * * 8c988f1a4a4de2161e0f50aac7f17e7f9555caa4: address uint160 * - height = 120891 */ class CCoins { public: // whether transaction is a coinbase bool fCoinBase; // unspent transaction outputs; spent outputs are .IsNull(); spent outputs at the end of the array are dropped std::vector vout; // at which height this transaction was included in the active block chain int nHeight; // version of the CTransaction; accesses to this value should probably check for nHeight as well, // as new tx version will probably only be introduced at certain heights int nVersion; // construct a CCoins from a CTransaction, at a given height CCoins(const CTransaction &tx, int nHeightIn) : fCoinBase(tx.IsCoinBase()), vout(tx.vout), nHeight(nHeightIn), nVersion(tx.nVersion) { ClearUnspendable(); } // empty constructor CCoins() : fCoinBase(false), vout(0), nHeight(0), nVersion(0) { } // remove spent outputs at the end of vout void Cleanup() { while (vout.size() > 0 && vout.back().IsNull()) vout.pop_back(); if (vout.empty()) std::vector().swap(vout); } void ClearUnspendable() { BOOST_FOREACH(CTxOut &txout, vout) { if (txout.scriptPubKey.IsUnspendable()) txout.SetNull(); } Cleanup(); } void swap(CCoins &to) { std::swap(to.fCoinBase, fCoinBase); to.vout.swap(vout); std::swap(to.nHeight, nHeight); std::swap(to.nVersion, nVersion); } // equality test friend bool operator==(const CCoins &a, const CCoins &b) { // Empty CCoins objects are always equal. if (a.IsPruned() && b.IsPruned()) return true; return a.fCoinBase == b.fCoinBase && a.nHeight == b.nHeight && a.nVersion == b.nVersion && a.vout == b.vout; } friend bool operator!=(const CCoins &a, const CCoins &b) { return !(a == b); } void CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const; bool IsCoinBase() const { return fCoinBase; } unsigned int GetSerializeSize(int nType, int nVersion) const { unsigned int nSize = 0; unsigned int nMaskSize = 0, nMaskCode = 0; CalcMaskSize(nMaskSize, nMaskCode); bool fFirst = vout.size() > 0 && !vout[0].IsNull(); bool fSecond = vout.size() > 1 && !vout[1].IsNull(); assert(fFirst || fSecond || nMaskCode); unsigned int nCode = 8*(nMaskCode - (fFirst || fSecond ? 0 : 1)) + (fCoinBase ? 1 : 0) + (fFirst ? 2 : 0) + (fSecond ? 4 : 0); // version nSize += ::GetSerializeSize(VARINT(this->nVersion), nType, nVersion); // size of header code nSize += ::GetSerializeSize(VARINT(nCode), nType, nVersion); // spentness bitmask nSize += nMaskSize; // txouts themself for (unsigned int i = 0; i < vout.size(); i++) if (!vout[i].IsNull()) nSize += ::GetSerializeSize(CTxOutCompressor(REF(vout[i])), nType, nVersion); // height nSize += ::GetSerializeSize(VARINT(nHeight), nType, nVersion); return nSize; } template void Serialize(Stream &s, int nType, int nVersion) const { unsigned int nMaskSize = 0, nMaskCode = 0; CalcMaskSize(nMaskSize, nMaskCode); bool fFirst = vout.size() > 0 && !vout[0].IsNull(); bool fSecond = vout.size() > 1 && !vout[1].IsNull(); assert(fFirst || fSecond || nMaskCode); unsigned int nCode = 8*(nMaskCode - (fFirst || fSecond ? 0 : 1)) + (fCoinBase ? 1 : 0) + (fFirst ? 2 : 0) + (fSecond ? 4 : 0); // version ::Serialize(s, VARINT(this->nVersion), nType, nVersion); // header code ::Serialize(s, VARINT(nCode), nType, nVersion); // spentness bitmask for (unsigned int b = 0; b void Unserialize(Stream &s, int nType, int nVersion) { unsigned int nCode = 0; // version ::Unserialize(s, VARINT(this->nVersion), nType, nVersion); // header code ::Unserialize(s, VARINT(nCode), nType, nVersion); fCoinBase = nCode & 1; std::vector vAvail(2, false); vAvail[0] = nCode & 2; vAvail[1] = nCode & 4; unsigned int nMaskCode = (nCode / 8) + ((nCode & 6) != 0 ? 0 : 1); // spentness bitmask while (nMaskCode > 0) { unsigned char chAvail = 0; ::Unserialize(s, chAvail, nType, nVersion); for (unsigned int p = 0; p < 8; p++) { bool f = (chAvail & (1 << p)) != 0; vAvail.push_back(f); } if (chAvail != 0) nMaskCode--; } // txouts themself vout.assign(vAvail.size(), CTxOut()); for (unsigned int i = 0; i < vAvail.size(); i++) { if (vAvail[i]) ::Unserialize(s, REF(CTxOutCompressor(vout[i])), nType, nVersion); } // coinbase height ::Unserialize(s, VARINT(nHeight), nType, nVersion); Cleanup(); } // mark an outpoint spent, and construct undo information bool Spend(const COutPoint &out, CTxInUndo &undo); // mark a vout spent bool Spend(int nPos); // check whether a particular output is still available bool IsAvailable(unsigned int nPos) const { return (nPos < vout.size() && !vout[nPos].IsNull()); } // check whether the entire CCoins is spent // note that only !IsPruned() CCoins can be serialized bool IsPruned() const { BOOST_FOREACH(const CTxOut &out, vout) if (!out.IsNull()) return false; return true; } }; struct CCoinsStats { int nHeight; uint256 hashBlock; uint64_t nTransactions; uint64_t nTransactionOutputs; uint64_t nSerializedSize; uint256 hashSerialized; int64_t nTotalAmount; CCoinsStats() : nHeight(0), hashBlock(0), nTransactions(0), nTransactionOutputs(0), nSerializedSize(0), hashSerialized(0), nTotalAmount(0) {} }; /** Abstract view on the open txout dataset. */ class CCoinsView { public: // Retrieve the CCoins (unspent transaction outputs) for a given txid virtual bool GetCoins(const uint256 &txid, CCoins &coins); // Modify the CCoins for a given txid virtual bool SetCoins(const uint256 &txid, const CCoins &coins); // Just check whether we have data for a given txid. // This may (but cannot always) return true for fully spent transactions virtual bool HaveCoins(const uint256 &txid); // Retrieve the block hash whose state this CCoinsView currently represents virtual uint256 GetBestBlock(); // Modify the currently active block hash virtual bool SetBestBlock(const uint256 &hashBlock); // Do a bulk modification (multiple SetCoins + one SetBestBlock) virtual bool BatchWrite(const std::map &mapCoins, const uint256 &hashBlock); // Calculate statistics about the unspent transaction output set virtual bool GetStats(CCoinsStats &stats); // As we use CCoinsViews polymorphically, have a virtual destructor virtual ~CCoinsView() {} }; /** CCoinsView backed by another CCoinsView */ class CCoinsViewBacked : public CCoinsView { protected: CCoinsView *base; public: CCoinsViewBacked(CCoinsView &viewIn); bool GetCoins(const uint256 &txid, CCoins &coins); bool SetCoins(const uint256 &txid, const CCoins &coins); bool HaveCoins(const uint256 &txid); uint256 GetBestBlock(); bool SetBestBlock(const uint256 &hashBlock); void SetBackend(CCoinsView &viewIn); bool BatchWrite(const std::map &mapCoins, const uint256 &hashBlock); bool GetStats(CCoinsStats &stats); }; /** CCoinsView that adds a memory cache for transactions to another CCoinsView */ class CCoinsViewCache : public CCoinsViewBacked { protected: uint256 hashBlock; std::map cacheCoins; public: CCoinsViewCache(CCoinsView &baseIn, bool fDummy = false); // Standard CCoinsView methods bool GetCoins(const uint256 &txid, CCoins &coins); bool SetCoins(const uint256 &txid, const CCoins &coins); bool HaveCoins(const uint256 &txid); uint256 GetBestBlock(); bool SetBestBlock(const uint256 &hashBlock); bool BatchWrite(const std::map &mapCoins, const uint256 &hashBlock); // Return a modifiable reference to a CCoins. Check HaveCoins first. // Many methods explicitly require a CCoinsViewCache because of this method, to reduce // copying. CCoins &GetCoins(const uint256 &txid); // Push the modifications applied to this cache to its base. // Failure to call this method before destruction will cause the changes to be forgotten. bool Flush(); // Calculate the size of the cache (in number of transactions) unsigned int GetCacheSize(); /** Amount of darkcoins coming in to a transaction Note that lightweight clients may not know anything besides the hash of previous transactions, so may not be able to calculate this. @param[in] tx transaction for which we are checking input total @return Sum of value of all inputs (scriptSigs) */ int64_t GetValueIn(const CTransaction& tx); // Check whether all prevouts of the transaction are present in the UTXO set represented by this view bool HaveInputs(const CTransaction& tx); // Return priority of tx at height nHeight double GetPriority(const CTransaction &tx, int nHeight); const CTxOut &GetOutputFor(const CTxIn& input); private: std::map::iterator FetchCoins(const uint256 &txid); }; #endif