// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Copyright (c) 2014-2017 The Dash Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "miner.h" #include "amount.h" #include "chain.h" #include "chainparams.h" #include "coins.h" #include "consensus/consensus.h" #include "consensus/merkle.h" #include "consensus/validation.h" #include "hash.h" #include "validation.h" #include "net.h" #include "policy/policy.h" #include "pow.h" #include "primitives/transaction.h" #include "script/standard.h" #include "timedata.h" #include "txmempool.h" #include "util.h" #include "utilmoneystr.h" #include "masternode-payments.h" #include "masternode-sync.h" #include "validationinterface.h" #include "evo/specialtx.h" #include "evo/cbtx.h" #include "evo/simplifiedmns.h" #include "evo/deterministicmns.h" #include "llmq/quorums_blockprocessor.h" #include #include #include #include #include ////////////////////////////////////////////////////////////////////////////// // // DashMiner // // // Unconfirmed transactions in the memory pool often depend on other // transactions in the memory pool. When we select transactions from the // pool, we select by highest priority or fee rate, so we might consider // transactions that depend on transactions that aren't yet in the block. uint64_t nLastBlockTx = 0; uint64_t nLastBlockSize = 0; class ScoreCompare { public: ScoreCompare() {} bool operator()(const CTxMemPool::txiter a, const CTxMemPool::txiter b) { return CompareTxMemPoolEntryByScore()(*b,*a); // Convert to less than } }; int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev) { int64_t nOldTime = pblock->nTime; int64_t nNewTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); if (nOldTime < nNewTime) pblock->nTime = nNewTime; // Updating time can change work required on testnet: if (consensusParams.fPowAllowMinDifficultyBlocks) pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams); return nNewTime - nOldTime; } BlockAssembler::BlockAssembler(const CChainParams& _chainparams) : chainparams(_chainparams) { // Largest block you're willing to create: nBlockMaxSize = GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE); if (IsArgSet("-blockmintxfee")) { CAmount n = 0; ParseMoney(GetArg("-blockmintxfee", ""), n); blockMinFeeRate = CFeeRate(n); } else { blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE); } // Limit to between 1K and MAX_BLOCK_SIZE-1K for sanity: nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MaxBlockSize(fDIP0001ActiveAtTip)-1000), nBlockMaxSize)); } void BlockAssembler::resetBlock() { inBlock.clear(); // Reserve space for coinbase tx nBlockSize = 1000; nBlockSigOps = 100; // These counters do not include coinbase tx nBlockTx = 0; nFees = 0; lastFewTxs = 0; blockFinished = false; } std::unique_ptr BlockAssembler::CreateNewBlock(const CScript& scriptPubKeyIn) { int64_t nTimeStart = GetTimeMicros(); resetBlock(); pblocktemplate.reset(new CBlockTemplate()); if(!pblocktemplate.get()) return nullptr; pblock = &pblocktemplate->block; // pointer for convenience // Add dummy coinbase tx as first transaction pblock->vtx.emplace_back(); pblocktemplate->vTxFees.push_back(-1); // updated at end pblocktemplate->vTxSigOps.push_back(-1); // updated at end LOCK2(cs_main, mempool.cs); bool fDIP0003Active_context = VersionBitsState(chainActive.Tip(), chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0003, versionbitscache) == THRESHOLD_ACTIVE; CBlockIndex* pindexPrev = chainActive.Tip(); nHeight = pindexPrev->nHeight + 1; pblock->nVersion = ComputeBlockVersion(pindexPrev, chainparams.GetConsensus(), chainparams.BIP9CheckMasternodesUpgraded()); // -regtest only: allow overriding block.nVersion with // -blockversion=N to test forking scenarios if (chainparams.MineBlocksOnDemand()) pblock->nVersion = GetArg("-blockversion", pblock->nVersion); pblock->nTime = GetAdjustedTime(); const int64_t nMedianTimePast = pindexPrev->GetMedianTimePast(); nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST) ? nMedianTimePast : pblock->GetBlockTime(); if (fDIP0003Active_context) { for (auto& p : Params().GetConsensus().llmqs) { CTransactionRef qcTx; if (llmq::quorumBlockProcessor->GetMinableCommitmentTx(p.first, pindexPrev, qcTx)) { pblock->vtx.emplace_back(qcTx); pblocktemplate->vTxFees.emplace_back(0); pblocktemplate->vTxSigOps.emplace_back(0); } } } addPriorityTxs(); int nPackagesSelected = 0; int nDescendantsUpdated = 0; addPackageTxs(nPackagesSelected, nDescendantsUpdated); int64_t nTime1 = GetTimeMicros(); nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; LogPrintf("CreateNewBlock(): total size %u txs: %u fees: %ld sigops %d\n", nBlockSize, nBlockTx, nFees, nBlockSigOps); // Create coinbase transaction. CMutableTransaction coinbaseTx; coinbaseTx.vin.resize(1); coinbaseTx.vin[0].prevout.SetNull(); coinbaseTx.vout.resize(1); coinbaseTx.vout[0].scriptPubKey = scriptPubKeyIn; // NOTE: unlike in bitcoin, we need to pass PREVIOUS block height here CAmount blockReward = nFees + GetBlockSubsidy(pindexPrev->nBits, pindexPrev->nHeight, Params().GetConsensus()); // Compute regular coinbase transaction. coinbaseTx.vout[0].nValue = blockReward; if (!fDIP0003Active_context) { coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0; } else { coinbaseTx.vin[0].scriptSig = CScript() << OP_RETURN; coinbaseTx.nVersion = 3; coinbaseTx.nType = TRANSACTION_COINBASE; CCbTx cbTx; cbTx.nHeight = nHeight; CValidationState state; if (!CalcCbTxMerkleRootMNList(*pblock, pindexPrev, cbTx.merkleRootMNList, state)) { throw std::runtime_error(strprintf("%s: CalcSMLMerkleRootForNewBlock failed: %s", __func__, FormatStateMessage(state))); } SetTxPayload(coinbaseTx, cbTx); } // Update coinbase transaction with additional info about masternode and governance payments, // get some info back to pass to getblocktemplate FillBlockPayments(coinbaseTx, nHeight, blockReward, pblocktemplate->voutMasternodePayments, pblocktemplate->voutSuperblockPayments); // LogPrintf("CreateNewBlock -- nBlockHeight %d blockReward %lld txoutMasternode %s coinbaseTx %s", // nHeight, blockReward, pblocktemplate->txoutsMasternode.ToString(), coinbaseTx.ToString()); pblock->vtx[0] = MakeTransactionRef(std::move(coinbaseTx)); pblocktemplate->vTxFees[0] = -nFees; // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus()); pblock->nNonce = 0; pblocktemplate->nPrevBits = pindexPrev->nBits; pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(*pblock->vtx[0]); CValidationState state; if (!TestBlockValidity(state, chainparams, *pblock, pindexPrev, false, false)) { throw std::runtime_error(strprintf("%s: TestBlockValidity failed: %s", __func__, FormatStateMessage(state))); } int64_t nTime2 = GetTimeMicros(); LogPrint("bench", "CreateNewBlock() packages: %.2fms (%d packages, %d updated descendants), validity: %.2fms (total %.2fms)\n", 0.001 * (nTime1 - nTimeStart), nPackagesSelected, nDescendantsUpdated, 0.001 * (nTime2 - nTime1), 0.001 * (nTime2 - nTimeStart)); return std::move(pblocktemplate); } bool BlockAssembler::isStillDependent(CTxMemPool::txiter iter) { BOOST_FOREACH(CTxMemPool::txiter parent, mempool.GetMemPoolParents(iter)) { if (!inBlock.count(parent)) { return true; } } return false; } void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries& testSet) { for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end(); ) { // Only test txs not already in the block if (inBlock.count(*iit)) { testSet.erase(iit++); } else { iit++; } } } bool BlockAssembler::TestPackage(uint64_t packageSize, unsigned int packageSigOps) { if (nBlockSize + packageSize >= nBlockMaxSize) return false; if (nBlockSigOps + packageSigOps >= MaxBlockSigOps(fDIP0001ActiveAtTip)) return false; return true; } // Perform transaction-level checks before adding to block: // - transaction finality (locktime) bool BlockAssembler::TestPackageTransactions(const CTxMemPool::setEntries& package) { BOOST_FOREACH (const CTxMemPool::txiter it, package) { if (!IsFinalTx(it->GetTx(), nHeight, nLockTimeCutoff)) return false; } return true; } bool BlockAssembler::TestForBlock(CTxMemPool::txiter iter) { if (nBlockSize + iter->GetTxSize() >= nBlockMaxSize) { // If the block is so close to full that no more txs will fit // or if we've tried more than 50 times to fill remaining space // then flag that the block is finished if (nBlockSize > nBlockMaxSize - 100 || lastFewTxs > 50) { blockFinished = true; return false; } // Once we're within 1000 bytes of a full block, only look at 50 more txs // to try to fill the remaining space. if (nBlockSize > nBlockMaxSize - 1000) { lastFewTxs++; } return false; } unsigned int nMaxBlockSigOps = MaxBlockSigOps(fDIP0001ActiveAtTip); if (nBlockSigOps + iter->GetSigOpCount() >= nMaxBlockSigOps) { // If the block has room for no more sig ops then // flag that the block is finished if (nBlockSigOps > nMaxBlockSigOps - 2) { blockFinished = true; return false; } // Otherwise attempt to find another tx with fewer sigops // to put in the block. return false; } // Must check that lock times are still valid // This can be removed once MTP is always enforced // as long as reorgs keep the mempool consistent. if (!IsFinalTx(iter->GetTx(), nHeight, nLockTimeCutoff)) return false; return true; } void BlockAssembler::AddToBlock(CTxMemPool::txiter iter) { pblock->vtx.emplace_back(iter->GetSharedTx()); pblocktemplate->vTxFees.push_back(iter->GetFee()); pblocktemplate->vTxSigOps.push_back(iter->GetSigOpCount()); nBlockSize += iter->GetTxSize(); ++nBlockTx; nBlockSigOps += iter->GetSigOpCount(); nFees += iter->GetFee(); inBlock.insert(iter); bool fPrintPriority = GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY); if (fPrintPriority) { double dPriority = iter->GetPriority(nHeight); CAmount dummy; mempool.ApplyDeltas(iter->GetTx().GetHash(), dPriority, dummy); LogPrintf("priority %.1f fee %s txid %s\n", dPriority, CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(), iter->GetTx().GetHash().ToString()); } } int BlockAssembler::UpdatePackagesForAdded(const CTxMemPool::setEntries& alreadyAdded, indexed_modified_transaction_set &mapModifiedTx) { int nDescendantsUpdated = 0; BOOST_FOREACH(const CTxMemPool::txiter it, alreadyAdded) { CTxMemPool::setEntries descendants; mempool.CalculateDescendants(it, descendants); // Insert all descendants (not yet in block) into the modified set BOOST_FOREACH(CTxMemPool::txiter desc, descendants) { if (alreadyAdded.count(desc)) continue; ++nDescendantsUpdated; modtxiter mit = mapModifiedTx.find(desc); if (mit == mapModifiedTx.end()) { CTxMemPoolModifiedEntry modEntry(desc); modEntry.nSizeWithAncestors -= it->GetTxSize(); modEntry.nModFeesWithAncestors -= it->GetModifiedFee(); modEntry.nSigOpCountWithAncestors -= it->GetSigOpCount(); mapModifiedTx.insert(modEntry); } else { mapModifiedTx.modify(mit, update_for_parent_inclusion(it)); } } } return nDescendantsUpdated; } // Skip entries in mapTx that are already in a block or are present // in mapModifiedTx (which implies that the mapTx ancestor state is // stale due to ancestor inclusion in the block) // Also skip transactions that we've already failed to add. This can happen if // we consider a transaction in mapModifiedTx and it fails: we can then // potentially consider it again while walking mapTx. It's currently // guaranteed to fail again, but as a belt-and-suspenders check we put it in // failedTx and avoid re-evaluation, since the re-evaluation would be using // cached size/sigops/fee values that are not actually correct. bool BlockAssembler::SkipMapTxEntry(CTxMemPool::txiter it, indexed_modified_transaction_set &mapModifiedTx, CTxMemPool::setEntries &failedTx) { assert (it != mempool.mapTx.end()); if (mapModifiedTx.count(it) || inBlock.count(it) || failedTx.count(it)) return true; return false; } void BlockAssembler::SortForBlock(const CTxMemPool::setEntries& package, CTxMemPool::txiter entry, std::vector& sortedEntries) { // Sort package by ancestor count // If a transaction A depends on transaction B, then A's ancestor count // must be greater than B's. So this is sufficient to validly order the // transactions for block inclusion. sortedEntries.clear(); sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end()); std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount()); } // This transaction selection algorithm orders the mempool based // on feerate of a transaction including all unconfirmed ancestors. // Since we don't remove transactions from the mempool as we select them // for block inclusion, we need an alternate method of updating the feerate // of a transaction with its not-yet-selected ancestors as we go. // This is accomplished by walking the in-mempool descendants of selected // transactions and storing a temporary modified state in mapModifiedTxs. // Each time through the loop, we compare the best transaction in // mapModifiedTxs with the next transaction in the mempool to decide what // transaction package to work on next. void BlockAssembler::addPackageTxs(int &nPackagesSelected, int &nDescendantsUpdated) { // mapModifiedTx will store sorted packages after they are modified // because some of their txs are already in the block indexed_modified_transaction_set mapModifiedTx; // Keep track of entries that failed inclusion, to avoid duplicate work CTxMemPool::setEntries failedTx; // Start by adding all descendants of previously added txs to mapModifiedTx // and modifying them for their already included ancestors UpdatePackagesForAdded(inBlock, mapModifiedTx); CTxMemPool::indexed_transaction_set::index::type::iterator mi = mempool.mapTx.get().begin(); CTxMemPool::txiter iter; // Limit the number of attempts to add transactions to the block when it is // close to full; this is just a simple heuristic to finish quickly if the // mempool has a lot of entries. const int64_t MAX_CONSECUTIVE_FAILURES = 1000; int64_t nConsecutiveFailed = 0; while (mi != mempool.mapTx.get().end() || !mapModifiedTx.empty()) { // First try to find a new transaction in mapTx to evaluate. if (mi != mempool.mapTx.get().end() && SkipMapTxEntry(mempool.mapTx.project<0>(mi), mapModifiedTx, failedTx)) { ++mi; continue; } // Now that mi is not stale, determine which transaction to evaluate: // the next entry from mapTx, or the best from mapModifiedTx? bool fUsingModified = false; modtxscoreiter modit = mapModifiedTx.get().begin(); if (mi == mempool.mapTx.get().end()) { // We're out of entries in mapTx; use the entry from mapModifiedTx iter = modit->iter; fUsingModified = true; } else { // Try to compare the mapTx entry to the mapModifiedTx entry iter = mempool.mapTx.project<0>(mi); if (modit != mapModifiedTx.get().end() && CompareModifiedEntry()(*modit, CTxMemPoolModifiedEntry(iter))) { // The best entry in mapModifiedTx has higher score // than the one from mapTx. // Switch which transaction (package) to consider iter = modit->iter; fUsingModified = true; } else { // Either no entry in mapModifiedTx, or it's worse than mapTx. // Increment mi for the next loop iteration. ++mi; } } // We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't // contain anything that is inBlock. assert(!inBlock.count(iter)); uint64_t packageSize = iter->GetSizeWithAncestors(); CAmount packageFees = iter->GetModFeesWithAncestors(); unsigned int packageSigOps = iter->GetSigOpCountWithAncestors(); if (fUsingModified) { packageSize = modit->nSizeWithAncestors; packageFees = modit->nModFeesWithAncestors; packageSigOps = modit->nSigOpCountWithAncestors; } if (packageFees < blockMinFeeRate.GetFee(packageSize)) { // Everything else we might consider has a lower fee rate return; } if (!TestPackage(packageSize, packageSigOps)) { if (fUsingModified) { // Since we always look at the best entry in mapModifiedTx, // we must erase failed entries so that we can consider the // next best entry on the next loop iteration mapModifiedTx.get().erase(modit); failedTx.insert(iter); } ++nConsecutiveFailed; if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockSize > nBlockMaxSize - 1000) { // Give up if we're close to full and haven't succeeded in a while break; } continue; } CTxMemPool::setEntries ancestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; mempool.CalculateMemPoolAncestors(*iter, ancestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); onlyUnconfirmed(ancestors); ancestors.insert(iter); // Test if all tx's are Final if (!TestPackageTransactions(ancestors)) { if (fUsingModified) { mapModifiedTx.get().erase(modit); failedTx.insert(iter); } continue; } // This transaction will make it in; reset the failed counter. nConsecutiveFailed = 0; // Package can be added. Sort the entries in a valid order. std::vector sortedEntries; SortForBlock(ancestors, iter, sortedEntries); for (size_t i=0; i vecPriority; TxCoinAgePriorityCompare pricomparer; std::map waitPriMap; typedef std::map::iterator waitPriIter; double actualPriority = -1; vecPriority.reserve(mempool.mapTx.size()); for (CTxMemPool::indexed_transaction_set::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) { double dPriority = mi->GetPriority(nHeight); CAmount dummy; mempool.ApplyDeltas(mi->GetTx().GetHash(), dPriority, dummy); vecPriority.push_back(TxCoinAgePriority(dPriority, mi)); } std::make_heap(vecPriority.begin(), vecPriority.end(), pricomparer); CTxMemPool::txiter iter; while (!vecPriority.empty() && !blockFinished) { // add a tx from priority queue to fill the blockprioritysize iter = vecPriority.front().second; actualPriority = vecPriority.front().first; std::pop_heap(vecPriority.begin(), vecPriority.end(), pricomparer); vecPriority.pop_back(); // If tx already in block, skip if (inBlock.count(iter)) { assert(false); // shouldn't happen for priority txs continue; } // If tx is dependent on other mempool txs which haven't yet been included // then put it in the waitSet if (isStillDependent(iter)) { waitPriMap.insert(std::make_pair(iter, actualPriority)); continue; } // If this tx fits in the block add it, otherwise keep looping if (TestForBlock(iter)) { AddToBlock(iter); // If now that this txs is added we've surpassed our desired priority size // or have dropped below the AllowFreeThreshold, then we're done adding priority txs if (nBlockSize >= nBlockPrioritySize || !AllowFree(actualPriority)) { break; } // This tx was successfully added, so // add transactions that depend on this one to the priority queue to try again BOOST_FOREACH(CTxMemPool::txiter child, mempool.GetMemPoolChildren(iter)) { waitPriIter wpiter = waitPriMap.find(child); if (wpiter != waitPriMap.end()) { vecPriority.push_back(TxCoinAgePriority(wpiter->second,child)); std::push_heap(vecPriority.begin(), vecPriority.end(), pricomparer); waitPriMap.erase(wpiter); } } } } } void IncrementExtraNonce(CBlock* pblock, const CBlockIndex* pindexPrev, unsigned int& nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2 CMutableTransaction txCoinbase(*pblock->vtx[0]); txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce)) + COINBASE_FLAGS; assert(txCoinbase.vin[0].scriptSig.size() <= 100); pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase)); pblock->hashMerkleRoot = BlockMerkleRoot(*pblock); }