// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef H_BITCOIN_SCRIPT #define H_BITCOIN_SCRIPT #include "key.h" #include "util.h" #include #include #include #include #include #include class CCoins; class CKeyStore; class CTransaction; static const unsigned int MAX_SCRIPT_ELEMENT_SIZE = 520; // bytes static const unsigned int MAX_OP_RETURN_RELAY = 40; // bytes class scriptnum_error : public std::runtime_error { public: explicit scriptnum_error(const std::string& str) : std::runtime_error(str) {} }; class CScriptNum { // Numeric opcodes (OP_1ADD, etc) are restricted to operating on 4-byte integers. // The semantics are subtle, though: operands must be in the range [-2^31 +1...2^31 -1], // but results may overflow (and are valid as long as they are not used in a subsequent // numeric operation). CScriptNum enforces those semantics by storing results as // an int64 and allowing out-of-range values to be returned as a vector of bytes but // throwing an exception if arithmetic is done or the result is interpreted as an integer. public: explicit CScriptNum(const int64_t& n) { m_value = n; } explicit CScriptNum(const std::vector& vch) { if (vch.size() > nMaxNumSize) throw scriptnum_error("CScriptNum(const std::vector&) : overflow"); m_value = set_vch(vch); } inline bool operator==(const int64_t& rhs) const { return m_value == rhs; } inline bool operator!=(const int64_t& rhs) const { return m_value != rhs; } inline bool operator<=(const int64_t& rhs) const { return m_value <= rhs; } inline bool operator< (const int64_t& rhs) const { return m_value < rhs; } inline bool operator>=(const int64_t& rhs) const { return m_value >= rhs; } inline bool operator> (const int64_t& rhs) const { return m_value > rhs; } inline bool operator==(const CScriptNum& rhs) const { return operator==(rhs.m_value); } inline bool operator!=(const CScriptNum& rhs) const { return operator!=(rhs.m_value); } inline bool operator<=(const CScriptNum& rhs) const { return operator<=(rhs.m_value); } inline bool operator< (const CScriptNum& rhs) const { return operator< (rhs.m_value); } inline bool operator>=(const CScriptNum& rhs) const { return operator>=(rhs.m_value); } inline bool operator> (const CScriptNum& rhs) const { return operator> (rhs.m_value); } inline CScriptNum operator+( const int64_t& rhs) const { return CScriptNum(m_value + rhs);} inline CScriptNum operator-( const int64_t& rhs) const { return CScriptNum(m_value - rhs);} inline CScriptNum operator+( const CScriptNum& rhs) const { return operator+(rhs.m_value); } inline CScriptNum operator-( const CScriptNum& rhs) const { return operator-(rhs.m_value); } inline CScriptNum& operator+=( const CScriptNum& rhs) { return operator+=(rhs.m_value); } inline CScriptNum& operator-=( const CScriptNum& rhs) { return operator-=(rhs.m_value); } inline CScriptNum operator-() const { assert(m_value != std::numeric_limits::min()); return CScriptNum(-m_value); } inline CScriptNum& operator=( const int64_t& rhs) { m_value = rhs; return *this; } inline CScriptNum& operator+=( const int64_t& rhs) { assert(rhs == 0 || (rhs > 0 && m_value <= std::numeric_limits::max() - rhs) || (rhs < 0 && m_value >= std::numeric_limits::min() - rhs)); m_value += rhs; return *this; } inline CScriptNum& operator-=( const int64_t& rhs) { assert(rhs == 0 || (rhs > 0 && m_value >= std::numeric_limits::min() + rhs) || (rhs < 0 && m_value <= std::numeric_limits::max() + rhs)); m_value -= rhs; return *this; } int getint() const { if (m_value > std::numeric_limits::max()) return std::numeric_limits::max(); else if (m_value < std::numeric_limits::min()) return std::numeric_limits::min(); return m_value; } std::vector getvch() const { return serialize(m_value); } static std::vector serialize(const int64_t& value) { if(value == 0) return std::vector(); std::vector result; const bool neg = value < 0; uint64_t absvalue = neg ? -value : value; while(absvalue) { result.push_back(absvalue & 0xff); absvalue >>= 8; } // - If the most significant byte is >= 0x80 and the value is positive, push a // new zero-byte to make the significant byte < 0x80 again. // - If the most significant byte is >= 0x80 and the value is negative, push a // new 0x80 byte that will be popped off when converting to an integral. // - If the most significant byte is < 0x80 and the value is negative, add // 0x80 to it, since it will be subtracted and interpreted as a negative when // converting to an integral. if (result.back() & 0x80) result.push_back(neg ? 0x80 : 0); else if (neg) result.back() |= 0x80; return result; } static const size_t nMaxNumSize = 4; private: static int64_t set_vch(const std::vector& vch) { if (vch.empty()) return 0; int64_t result = 0; for (size_t i = 0; i != vch.size(); ++i) result |= static_cast(vch[i]) << 8*i; // If the input vector's most significant byte is 0x80, remove it from // the result's msb and return a negative. if (vch.back() & 0x80) return -(result & ~(0x80 << (8 * (vch.size() - 1)))); return result; } int64_t m_value; }; /** Signature hash types/flags */ enum { SIGHASH_ALL = 1, SIGHASH_NONE = 2, SIGHASH_SINGLE = 3, SIGHASH_ANYONECANPAY = 0x80, }; /** Script verification flags */ enum { SCRIPT_VERIFY_NONE = 0, SCRIPT_VERIFY_P2SH = (1U << 0), // evaluate P2SH (BIP16) subscripts SCRIPT_VERIFY_STRICTENC = (1U << 1), // enforce strict conformance to DER and SEC2 for signatures and pubkeys SCRIPT_VERIFY_EVEN_S = (1U << 2), // enforce even S values in signatures (depends on STRICTENC) SCRIPT_VERIFY_NOCACHE = (1U << 3), // do not store results in signature cache (but do query it) SCRIPT_VERIFY_DERSIG = (1U << 4), // enforce signature encodings as defined by BIP 66 (which is a softfork, while STRICTENC is not) }; enum txnouttype { TX_NONSTANDARD, // 'standard' transaction types: TX_PUBKEY, TX_PUBKEYHASH, TX_SCRIPTHASH, TX_MULTISIG, TX_NULL_DATA, }; class CNoDestination { public: friend bool operator==(const CNoDestination &a, const CNoDestination &b) { return true; } friend bool operator<(const CNoDestination &a, const CNoDestination &b) { return true; } }; /** A txout script template with a specific destination. It is either: * * CNoDestination: no destination set * * CKeyID: TX_PUBKEYHASH destination * * CScriptID: TX_SCRIPTHASH destination * A CTxDestination is the internal data type encoded in a CBitcoinAddress */ typedef boost::variant CTxDestination; const char* GetTxnOutputType(txnouttype t); /** Script opcodes */ enum opcodetype { // push value OP_0 = 0x00, OP_FALSE = OP_0, OP_PUSHDATA1 = 0x4c, OP_PUSHDATA2 = 0x4d, OP_PUSHDATA4 = 0x4e, OP_1NEGATE = 0x4f, OP_RESERVED = 0x50, OP_1 = 0x51, OP_TRUE=OP_1, OP_2 = 0x52, OP_3 = 0x53, OP_4 = 0x54, OP_5 = 0x55, OP_6 = 0x56, OP_7 = 0x57, OP_8 = 0x58, OP_9 = 0x59, OP_10 = 0x5a, OP_11 = 0x5b, OP_12 = 0x5c, OP_13 = 0x5d, OP_14 = 0x5e, OP_15 = 0x5f, OP_16 = 0x60, // control OP_NOP = 0x61, OP_VER = 0x62, OP_IF = 0x63, OP_NOTIF = 0x64, OP_VERIF = 0x65, OP_VERNOTIF = 0x66, OP_ELSE = 0x67, OP_ENDIF = 0x68, OP_VERIFY = 0x69, OP_RETURN = 0x6a, // stack ops OP_TOALTSTACK = 0x6b, OP_FROMALTSTACK = 0x6c, OP_2DROP = 0x6d, OP_2DUP = 0x6e, OP_3DUP = 0x6f, OP_2OVER = 0x70, OP_2ROT = 0x71, OP_2SWAP = 0x72, OP_IFDUP = 0x73, OP_DEPTH = 0x74, OP_DROP = 0x75, OP_DUP = 0x76, OP_NIP = 0x77, OP_OVER = 0x78, OP_PICK = 0x79, OP_ROLL = 0x7a, OP_ROT = 0x7b, OP_SWAP = 0x7c, OP_TUCK = 0x7d, // splice ops OP_CAT = 0x7e, OP_SUBSTR = 0x7f, OP_LEFT = 0x80, OP_RIGHT = 0x81, OP_SIZE = 0x82, // bit logic OP_INVERT = 0x83, OP_AND = 0x84, OP_OR = 0x85, OP_XOR = 0x86, OP_EQUAL = 0x87, OP_EQUALVERIFY = 0x88, OP_RESERVED1 = 0x89, OP_RESERVED2 = 0x8a, // numeric OP_1ADD = 0x8b, OP_1SUB = 0x8c, OP_2MUL = 0x8d, OP_2DIV = 0x8e, OP_NEGATE = 0x8f, OP_ABS = 0x90, OP_NOT = 0x91, OP_0NOTEQUAL = 0x92, OP_ADD = 0x93, OP_SUB = 0x94, OP_MUL = 0x95, OP_DIV = 0x96, OP_MOD = 0x97, OP_LSHIFT = 0x98, OP_RSHIFT = 0x99, OP_BOOLAND = 0x9a, OP_BOOLOR = 0x9b, OP_NUMEQUAL = 0x9c, OP_NUMEQUALVERIFY = 0x9d, OP_NUMNOTEQUAL = 0x9e, OP_LESSTHAN = 0x9f, OP_GREATERTHAN = 0xa0, OP_LESSTHANOREQUAL = 0xa1, OP_GREATERTHANOREQUAL = 0xa2, OP_MIN = 0xa3, OP_MAX = 0xa4, OP_WITHIN = 0xa5, // crypto OP_RIPEMD160 = 0xa6, OP_SHA1 = 0xa7, OP_SHA256 = 0xa8, OP_HASH160 = 0xa9, OP_HASH256 = 0xaa, OP_CODESEPARATOR = 0xab, OP_CHECKSIG = 0xac, OP_CHECKSIGVERIFY = 0xad, OP_CHECKMULTISIG = 0xae, OP_CHECKMULTISIGVERIFY = 0xaf, // expansion OP_NOP1 = 0xb0, OP_NOP2 = 0xb1, OP_NOP3 = 0xb2, OP_NOP4 = 0xb3, OP_NOP5 = 0xb4, OP_NOP6 = 0xb5, OP_NOP7 = 0xb6, OP_NOP8 = 0xb7, OP_NOP9 = 0xb8, OP_NOP10 = 0xb9, // template matching params OP_SMALLDATA = 0xf9, OP_SMALLINTEGER = 0xfa, OP_PUBKEYS = 0xfb, OP_PUBKEYHASH = 0xfd, OP_PUBKEY = 0xfe, OP_INVALIDOPCODE = 0xff, }; const char* GetOpName(opcodetype opcode); inline std::string ValueString(const std::vector& vch) { if (vch.size() <= 4) return strprintf("%d", CScriptNum(vch).getint()); else return HexStr(vch); } inline std::string StackString(const std::vector >& vStack) { std::string str; BOOST_FOREACH(const std::vector& vch, vStack) { if (!str.empty()) str += " "; str += ValueString(vch); } return str; } /** Serialized script, used inside transaction inputs and outputs */ class CScript : public std::vector { protected: CScript& push_int64(int64_t n) { if (n == -1 || (n >= 1 && n <= 16)) { push_back(n + (OP_1 - 1)); } else { *this << CScriptNum::serialize(n); } return *this; } public: CScript() { } CScript(const CScript& b) : std::vector(b.begin(), b.end()) { } CScript(const_iterator pbegin, const_iterator pend) : std::vector(pbegin, pend) { } #ifndef _MSC_VER CScript(const unsigned char* pbegin, const unsigned char* pend) : std::vector(pbegin, pend) { } #endif CScript& operator+=(const CScript& b) { insert(end(), b.begin(), b.end()); return *this; } friend CScript operator+(const CScript& a, const CScript& b) { CScript ret = a; ret += b; return ret; } CScript(int64_t b) { operator<<(b); } explicit CScript(opcodetype b) { operator<<(b); } explicit CScript(const uint256& b) { operator<<(b); } explicit CScript(const CScriptNum& b) { operator<<(b); } explicit CScript(const std::vector& b) { operator<<(b); } CScript& operator<<(int64_t b) { return push_int64(b); } CScript& operator<<(opcodetype opcode) { if (opcode < 0 || opcode > 0xff) throw std::runtime_error("CScript::operator<<() : invalid opcode"); insert(end(), (unsigned char)opcode); return *this; } CScript& operator<<(const uint160& b) { insert(end(), sizeof(b)); insert(end(), (unsigned char*)&b, (unsigned char*)&b + sizeof(b)); return *this; } CScript& operator<<(const uint256& b) { insert(end(), sizeof(b)); insert(end(), (unsigned char*)&b, (unsigned char*)&b + sizeof(b)); return *this; } CScript& operator<<(const CPubKey& key) { assert(key.size() < OP_PUSHDATA1); insert(end(), (unsigned char)key.size()); insert(end(), key.begin(), key.end()); return *this; } CScript& operator<<(const CScriptNum& b) { *this << b.getvch(); return *this; } CScript& operator<<(const std::vector& b) { if (b.size() < OP_PUSHDATA1) { insert(end(), (unsigned char)b.size()); } else if (b.size() <= 0xff) { insert(end(), OP_PUSHDATA1); insert(end(), (unsigned char)b.size()); } else if (b.size() <= 0xffff) { insert(end(), OP_PUSHDATA2); unsigned short nSize = b.size(); insert(end(), (unsigned char*)&nSize, (unsigned char*)&nSize + sizeof(nSize)); } else { insert(end(), OP_PUSHDATA4); unsigned int nSize = b.size(); insert(end(), (unsigned char*)&nSize, (unsigned char*)&nSize + sizeof(nSize)); } insert(end(), b.begin(), b.end()); return *this; } CScript& operator<<(const CScript& b) { // I'm not sure if this should push the script or concatenate scripts. // If there's ever a use for pushing a script onto a script, delete this member fn assert(!"Warning: Pushing a CScript onto a CScript with << is probably not intended, use + to concatenate!"); return *this; } bool GetOp(iterator& pc, opcodetype& opcodeRet, std::vector& vchRet) { // Wrapper so it can be called with either iterator or const_iterator const_iterator pc2 = pc; bool fRet = GetOp2(pc2, opcodeRet, &vchRet); pc = begin() + (pc2 - begin()); return fRet; } bool GetOp(iterator& pc, opcodetype& opcodeRet) { const_iterator pc2 = pc; bool fRet = GetOp2(pc2, opcodeRet, NULL); pc = begin() + (pc2 - begin()); return fRet; } bool GetOp(const_iterator& pc, opcodetype& opcodeRet, std::vector& vchRet) const { return GetOp2(pc, opcodeRet, &vchRet); } bool GetOp(const_iterator& pc, opcodetype& opcodeRet) const { return GetOp2(pc, opcodeRet, NULL); } bool GetOp2(const_iterator& pc, opcodetype& opcodeRet, std::vector* pvchRet) const { opcodeRet = OP_INVALIDOPCODE; if (pvchRet) pvchRet->clear(); if (pc >= end()) return false; // Read instruction if (end() - pc < 1) return false; unsigned int opcode = *pc++; // Immediate operand if (opcode <= OP_PUSHDATA4) { unsigned int nSize = 0; if (opcode < OP_PUSHDATA1) { nSize = opcode; } else if (opcode == OP_PUSHDATA1) { if (end() - pc < 1) return false; nSize = *pc++; } else if (opcode == OP_PUSHDATA2) { if (end() - pc < 2) return false; nSize = 0; memcpy(&nSize, &pc[0], 2); pc += 2; } else if (opcode == OP_PUSHDATA4) { if (end() - pc < 4) return false; memcpy(&nSize, &pc[0], 4); pc += 4; } if (end() - pc < 0 || (unsigned int)(end() - pc) < nSize) return false; if (pvchRet) pvchRet->assign(pc, pc + nSize); pc += nSize; } opcodeRet = (opcodetype)opcode; return true; } // Encode/decode small integers: static int DecodeOP_N(opcodetype opcode) { if (opcode == OP_0) return 0; assert(opcode >= OP_1 && opcode <= OP_16); return (int)opcode - (int)(OP_1 - 1); } static opcodetype EncodeOP_N(int n) { assert(n >= 0 && n <= 16); if (n == 0) return OP_0; return (opcodetype)(OP_1+n-1); } int FindAndDelete(const CScript& b) { int nFound = 0; if (b.empty()) return nFound; iterator pc = begin(); opcodetype opcode; do { while (end() - pc >= (long)b.size() && memcmp(&pc[0], &b[0], b.size()) == 0) { erase(pc, pc + b.size()); ++nFound; } } while (GetOp(pc, opcode)); return nFound; } int Find(opcodetype op) const { int nFound = 0; opcodetype opcode; for (const_iterator pc = begin(); pc != end() && GetOp(pc, opcode);) if (opcode == op) ++nFound; return nFound; } // Pre-version-0.6, Dash always counted CHECKMULTISIGs // as 20 sigops. With pay-to-script-hash, that changed: // CHECKMULTISIGs serialized in scriptSigs are // counted more accurately, assuming they are of the form // ... OP_N CHECKMULTISIG ... unsigned int GetSigOpCount(bool fAccurate) const; // Accurately count sigOps, including sigOps in // pay-to-script-hash transactions: unsigned int GetSigOpCount(const CScript& scriptSig) const; bool IsNormalPaymentScript() const; bool IsPayToScriptHash() const; // Called by IsStandardTx and P2SH VerifyScript (which makes it consensus-critical). bool IsPushOnly() const; // Called by IsStandardTx. bool HasCanonicalPushes() const; // Returns whether the script is guaranteed to fail at execution, // regardless of the initial stack. This allows outputs to be pruned // instantly when entering the UTXO set. bool IsUnspendable() const { return (size() > 0 && *begin() == OP_RETURN); } void SetDestination(const CTxDestination& address); void SetMultisig(int nRequired, const std::vector& keys); void PrintHex() const { LogPrintf("CScript(%s)\n", HexStr(begin(), end(), true).c_str()); } std::string ToString() const { std::string str; opcodetype opcode; std::vector vch; const_iterator pc = begin(); while (pc < end()) { if (!str.empty()) str += " "; if (!GetOp(pc, opcode, vch)) { str += "[error]"; return str; } if (0 <= opcode && opcode <= OP_PUSHDATA4) str += ValueString(vch); else str += GetOpName(opcode); } return str; } void print() const { LogPrintf("%s\n", ToString().c_str()); } CScriptID GetID() const { return CScriptID(Hash160(*this)); } }; /** Compact serializer for scripts. * * It detects common cases and encodes them much more efficiently. * 3 special cases are defined: * * Pay to pubkey hash (encoded as 21 bytes) * * Pay to script hash (encoded as 21 bytes) * * Pay to pubkey starting with 0x02, 0x03 or 0x04 (encoded as 33 bytes) * * Other scripts up to 121 bytes require 1 byte + script length. Above * that, scripts up to 16505 bytes require 2 bytes + script length. */ class CScriptCompressor { private: // make this static for now (there are only 6 special scripts defined) // this can potentially be extended together with a new nVersion for // transactions, in which case this value becomes dependent on nVersion // and nHeight of the enclosing transaction. static const unsigned int nSpecialScripts = 6; CScript &script; protected: // These check for scripts for which a special case with a shorter encoding is defined. // They are implemented separately from the CScript test, as these test for exact byte // sequence correspondences, and are more strict. For example, IsToPubKey also verifies // whether the public key is valid (as invalid ones cannot be represented in compressed // form). bool IsToKeyID(CKeyID &hash) const; bool IsToScriptID(CScriptID &hash) const; bool IsToPubKey(CPubKey &pubkey) const; bool Compress(std::vector &out) const; unsigned int GetSpecialSize(unsigned int nSize) const; bool Decompress(unsigned int nSize, const std::vector &out); public: CScriptCompressor(CScript &scriptIn) : script(scriptIn) { } unsigned int GetSerializeSize(int nType, int nVersion) const { std::vector compr; if (Compress(compr)) return compr.size(); unsigned int nSize = script.size() + nSpecialScripts; return script.size() + VARINT(nSize).GetSerializeSize(nType, nVersion); } template void Serialize(Stream &s, int nType, int nVersion) const { std::vector compr; if (Compress(compr)) { s << CFlatData(&compr[0], &compr[compr.size()]); return; } unsigned int nSize = script.size() + nSpecialScripts; s << VARINT(nSize); s << CFlatData(&script[0], &script[script.size()]); } template void Unserialize(Stream &s, int nType, int nVersion) { unsigned int nSize = 0; s >> VARINT(nSize); if (nSize < nSpecialScripts) { std::vector vch(GetSpecialSize(nSize), 0x00); s >> REF(CFlatData(&vch[0], &vch[vch.size()])); Decompress(nSize, vch); return; } nSize -= nSpecialScripts; script.resize(nSize); s >> REF(CFlatData(&script[0], &script[script.size()])); } }; bool IsCanonicalPubKey(const std::vector &vchPubKey, unsigned int flags); bool IsCanonicalSignature(const std::vector &vchSig, unsigned int flags); bool EvalScript(std::vector >& stack, const CScript& script, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType); bool Solver(const CScript& scriptPubKey, txnouttype& typeRet, std::vector >& vSolutionsRet); int ScriptSigArgsExpected(txnouttype t, const std::vector >& vSolutions); bool IsStandard(const CScript& scriptPubKey, txnouttype& whichType); bool IsMine(const CKeyStore& keystore, const CScript& scriptPubKey); bool IsMine(const CKeyStore& keystore, const CTxDestination &dest); void ExtractAffectedKeys(const CKeyStore &keystore, const CScript& scriptPubKey, std::vector &vKeys); bool ExtractDestination(const CScript& scriptPubKey, CTxDestination& addressRet); bool ExtractDestinations(const CScript& scriptPubKey, txnouttype& typeRet, std::vector& addressRet, int& nRequiredRet); bool SignSignature(const CKeyStore& keystore, const CScript& fromPubKey, CTransaction& txTo, unsigned int nIn, int nHashType=SIGHASH_ALL); bool SignSignature(const CKeyStore& keystore, const CTransaction& txFrom, CTransaction& txTo, unsigned int nIn, int nHashType=SIGHASH_ALL); bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType); // Given two sets of signatures for scriptPubKey, possibly with OP_0 placeholders, // combine them intelligently and return the result. CScript CombineSignatures(CScript scriptPubKey, const CTransaction& txTo, unsigned int nIn, const CScript& scriptSig1, const CScript& scriptSig2); #endif