neobytes/src/key.cpp
Wladimir J. van der Laan 6a877e870e
Merge pull request #6034
a574899 chaincodes: abstract away more chaincode behavior [squashme] replace struct CCainCode with a typedef uint256 ChainCode (Cory Fields)
8cf1485 Abstract chaincodes into CChainCode (Pieter Wuille)
2015-05-06 18:37:49 +02:00

224 lines
6.6 KiB
C++

// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "key.h"
#include "arith_uint256.h"
#include "crypto/common.h"
#include "crypto/hmac_sha512.h"
#include "eccryptoverify.h"
#include "pubkey.h"
#include "random.h"
#include <secp256k1.h>
#include "ecwrapper.h"
static secp256k1_context_t* secp256k1_context = NULL;
bool CKey::Check(const unsigned char *vch) {
return eccrypto::Check(vch);
}
void CKey::MakeNewKey(bool fCompressedIn) {
RandAddSeedPerfmon();
do {
GetRandBytes(vch, sizeof(vch));
} while (!Check(vch));
fValid = true;
fCompressed = fCompressedIn;
}
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
fCompressed = fCompressedIn;
fValid = true;
return true;
}
CPrivKey CKey::GetPrivKey() const {
assert(fValid);
CPrivKey privkey;
int privkeylen, ret;
privkey.resize(279);
privkeylen = 279;
ret = secp256k1_ec_privkey_export(secp256k1_context, begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
assert(ret);
privkey.resize(privkeylen);
return privkey;
}
CPubKey CKey::GetPubKey() const {
assert(fValid);
CPubKey result;
int clen = 65;
int ret = secp256k1_ec_pubkey_create(secp256k1_context, (unsigned char*)result.begin(), &clen, begin(), fCompressed);
assert((int)result.size() == clen);
assert(ret);
assert(result.IsValid());
return result;
}
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const {
if (!fValid)
return false;
vchSig.resize(72);
int nSigLen = 72;
unsigned char extra_entropy[32] = {0};
WriteLE32(extra_entropy, test_case);
int ret = secp256k1_ecdsa_sign(secp256k1_context, hash.begin(), (unsigned char*)&vchSig[0], &nSigLen, begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
assert(ret);
vchSig.resize(nSigLen);
return true;
}
bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
if (pubkey.IsCompressed() != fCompressed) {
return false;
}
unsigned char rnd[8];
std::string str = "Bitcoin key verification\n";
GetRandBytes(rnd, sizeof(rnd));
uint256 hash;
CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin());
std::vector<unsigned char> vchSig;
Sign(hash, vchSig);
return pubkey.Verify(hash, vchSig);
}
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid)
return false;
vchSig.resize(65);
int rec = -1;
int ret = secp256k1_ecdsa_sign_compact(secp256k1_context, hash.begin(), &vchSig[1], begin(), secp256k1_nonce_function_rfc6979, NULL, &rec);
assert(ret);
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
return true;
}
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
fCompressed = vchPubKey.IsCompressed();
fValid = true;
if (fSkipCheck)
return true;
return VerifyPubKey(vchPubKey);
}
bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
assert(IsValid());
assert(IsCompressed());
unsigned char out[64];
LockObject(out);
if ((nChild >> 31) == 0) {
CPubKey pubkey = GetPubKey();
assert(pubkey.begin() + 33 == pubkey.end());
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
} else {
assert(begin() + 32 == end());
BIP32Hash(cc, nChild, 0, begin(), out);
}
memcpy(ccChild.begin(), out+32, 32);
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context, (unsigned char*)keyChild.begin(), out);
UnlockObject(out);
keyChild.fCompressed = true;
keyChild.fValid = ret;
return ret;
}
bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
out.nDepth = nDepth + 1;
CKeyID id = key.GetPubKey().GetID();
memcpy(&out.vchFingerprint[0], &id, 4);
out.nChild = nChild;
return key.Derive(out.key, out.chaincode, nChild, chaincode);
}
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
unsigned char out[64];
LockObject(out);
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
key.Set(&out[0], &out[32], true);
memcpy(chaincode.begin(), &out[32], 32);
UnlockObject(out);
nDepth = 0;
nChild = 0;
memset(vchFingerprint, 0, sizeof(vchFingerprint));
}
CExtPubKey CExtKey::Neuter() const {
CExtPubKey ret;
ret.nDepth = nDepth;
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
ret.nChild = nChild;
ret.pubkey = key.GetPubKey();
ret.chaincode = chaincode;
return ret;
}
void CExtKey::Encode(unsigned char code[74]) const {
code[0] = nDepth;
memcpy(code+1, vchFingerprint, 4);
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
memcpy(code+9, chaincode.begin(), 32);
code[41] = 0;
assert(key.size() == 32);
memcpy(code+42, key.begin(), 32);
}
void CExtKey::Decode(const unsigned char code[74]) {
nDepth = code[0];
memcpy(vchFingerprint, code+1, 4);
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
memcpy(chaincode.begin(), code+9, 32);
key.Set(code+42, code+74, true);
}
bool ECC_InitSanityCheck() {
if (!CECKey::SanityCheck()) {
return false;
}
CKey key;
key.MakeNewKey(true);
CPubKey pubkey = key.GetPubKey();
return key.VerifyPubKey(pubkey);
}
void ECC_Start() {
assert(secp256k1_context == NULL);
secp256k1_context_t *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
assert(ctx != NULL);
{
// Pass in a random blinding seed to the secp256k1 context.
unsigned char seed[32];
LockObject(seed);
GetRandBytes(seed, 32);
bool ret = secp256k1_context_randomize(ctx, seed);
assert(ret);
UnlockObject(seed);
}
secp256k1_context = ctx;
}
void ECC_Stop() {
secp256k1_context_t *ctx = secp256k1_context;
secp256k1_context = NULL;
if (ctx) {
secp256k1_context_destroy(ctx);
}
}