neobytes/src/main.cpp

4684 lines
172 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Copyright (c) 2014 vertoe & the Darkcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "main.h"
#include "addrman.h"
#include "alert.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "checkqueue.h"
#include "init.h"
#include "net.h"
#include "txdb.h"
#include "txmempool.h"
#include "ui_interface.h"
#include "util.h"
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
using namespace std;
using namespace boost;
#if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
#endif
//
// Global state
//
CCriticalSection cs_main;
CTxMemPool mempool;
map<uint256, CBlockIndex*> mapBlockIndex;
CChain chainActive;
CChain chainMostWork;
int64_t nTimeBestReceived = 0;
int nScriptCheckThreads = 0;
bool fImporting = false;
bool fReindex = false;
bool fBenchmark = false;
bool fTxIndex = false;
unsigned int nCoinCacheSize = 5000;
/** Fees smaller than this (in satoshi) are considered zero fee (for transaction creation) */
int64_t CTransaction::nMinTxFee = 10000; // Override with -mintxfee
/** Fees smaller than this (in satoshi) are considered zero fee (for relaying and mining) */
int64_t CTransaction::nMinRelayTxFee = 1000;
struct COrphanBlock {
uint256 hashBlock;
uint256 hashPrev;
vector<unsigned char> vchBlock;
};
map<uint256, COrphanBlock*> mapOrphanBlocks;
multimap<uint256, COrphanBlock*> mapOrphanBlocksByPrev;
struct COrphanTx {
CTransaction tx;
NodeId fromPeer;
};
map<uint256, COrphanTx> mapOrphanTransactions;
map<uint256, set<uint256> > mapOrphanTransactionsByPrev;
void EraseOrphansFor(NodeId peer);
// Constant stuff for coinbase transactions we create:
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
// Internal stuff
namespace {
struct CBlockIndexWorkComparator
{
bool operator()(CBlockIndex *pa, CBlockIndex *pb) {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
CBlockIndex *pindexBestInvalid;
// may contain all CBlockIndex*'s that have validness >=BLOCK_VALID_TRANSACTIONS, and must contain those who aren't failed
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexValid;
CCriticalSection cs_LastBlockFile;
CBlockFileInfo infoLastBlockFile;
int nLastBlockFile = 0;
// Every received block is assigned a unique and increasing identifier, so we
// know which one to give priority in case of a fork.
CCriticalSection cs_nBlockSequenceId;
// Blocks loaded from disk are assigned id 0, so start the counter at 1.
uint32_t nBlockSequenceId = 1;
// Sources of received blocks, to be able to send them reject messages or ban
// them, if processing happens afterwards. Protected by cs_main.
map<uint256, NodeId> mapBlockSource;
// Blocks that are in flight, and that are in the queue to be downloaded.
// Protected by cs_main.
struct QueuedBlock {
uint256 hash;
int64_t nTime; // Time of "getdata" request in microseconds.
int nQueuedBefore; // Number of blocks in flight at the time of request.
};
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> > mapBlocksInFlight;
map<uint256, pair<NodeId, list<uint256>::iterator> > mapBlocksToDownload;
}
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
namespace {
struct CMainSignals {
// Notifies listeners of updated transaction data (passing hash, transaction, and optionally the block it is found in.
boost::signals2::signal<void (const uint256 &, const CTransaction &, const CBlock *)> SyncTransaction;
// Notifies listeners of an erased transaction (currently disabled, requires transaction replacement).
boost::signals2::signal<void (const uint256 &)> EraseTransaction;
// Notifies listeners of an updated transaction without new data (for now: a coinbase potentially becoming visible).
boost::signals2::signal<void (const uint256 &)> UpdatedTransaction;
// Notifies listeners of a new active block chain.
boost::signals2::signal<void (const CBlockLocator &)> SetBestChain;
// Notifies listeners about an inventory item being seen on the network.
boost::signals2::signal<void (const uint256 &)> Inventory;
// Tells listeners to broadcast their data.
boost::signals2::signal<void ()> Broadcast;
} g_signals;
}
void RegisterWallet(CWalletInterface* pwalletIn) {
g_signals.SyncTransaction.connect(boost::bind(&CWalletInterface::SyncTransaction, pwalletIn, _1, _2, _3));
g_signals.EraseTransaction.connect(boost::bind(&CWalletInterface::EraseFromWallet, pwalletIn, _1));
g_signals.UpdatedTransaction.connect(boost::bind(&CWalletInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.SetBestChain.connect(boost::bind(&CWalletInterface::SetBestChain, pwalletIn, _1));
g_signals.Inventory.connect(boost::bind(&CWalletInterface::Inventory, pwalletIn, _1));
g_signals.Broadcast.connect(boost::bind(&CWalletInterface::ResendWalletTransactions, pwalletIn));
}
void UnregisterWallet(CWalletInterface* pwalletIn) {
g_signals.Broadcast.disconnect(boost::bind(&CWalletInterface::ResendWalletTransactions, pwalletIn));
g_signals.Inventory.disconnect(boost::bind(&CWalletInterface::Inventory, pwalletIn, _1));
g_signals.SetBestChain.disconnect(boost::bind(&CWalletInterface::SetBestChain, pwalletIn, _1));
g_signals.UpdatedTransaction.disconnect(boost::bind(&CWalletInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.EraseTransaction.disconnect(boost::bind(&CWalletInterface::EraseFromWallet, pwalletIn, _1));
g_signals.SyncTransaction.disconnect(boost::bind(&CWalletInterface::SyncTransaction, pwalletIn, _1, _2, _3));
}
void UnregisterAllWallets() {
g_signals.Broadcast.disconnect_all_slots();
g_signals.Inventory.disconnect_all_slots();
g_signals.SetBestChain.disconnect_all_slots();
g_signals.UpdatedTransaction.disconnect_all_slots();
g_signals.EraseTransaction.disconnect_all_slots();
g_signals.SyncTransaction.disconnect_all_slots();
}
void SyncWithWallets(const uint256 &hash, const CTransaction &tx, const CBlock *pblock) {
g_signals.SyncTransaction(hash, tx, pblock);
}
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
namespace {
struct CBlockReject {
unsigned char chRejectCode;
string strRejectReason;
uint256 hashBlock;
};
// Maintain validation-specific state about nodes, protected by cs_main, instead
// by CNode's own locks. This simplifies asynchronous operation, where
// processing of incoming data is done after the ProcessMessage call returns,
// and we're no longer holding the node's locks.
struct CNodeState {
// Accumulated misbehaviour score for this peer.
int nMisbehavior;
// Whether this peer should be disconnected and banned.
bool fShouldBan;
// String name of this peer (debugging/logging purposes).
std::string name;
// List of asynchronously-determined block rejections to notify this peer about.
std::vector<CBlockReject> rejects;
list<QueuedBlock> vBlocksInFlight;
int nBlocksInFlight;
list<uint256> vBlocksToDownload;
int nBlocksToDownload;
int64_t nLastBlockReceive;
int64_t nLastBlockProcess;
CNodeState() {
nMisbehavior = 0;
fShouldBan = false;
nBlocksToDownload = 0;
nBlocksInFlight = 0;
nLastBlockReceive = 0;
nLastBlockProcess = 0;
}
};
// Map maintaining per-node state. Requires cs_main.
map<NodeId, CNodeState> mapNodeState;
// Requires cs_main.
CNodeState *State(NodeId pnode) {
map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end())
return NULL;
return &it->second;
}
int GetHeight()
{
LOCK(cs_main);
return chainActive.Height();
}
void InitializeNode(NodeId nodeid, const CNode *pnode) {
LOCK(cs_main);
CNodeState &state = mapNodeState.insert(std::make_pair(nodeid, CNodeState())).first->second;
state.name = pnode->addrName;
}
void FinalizeNode(NodeId nodeid) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight)
mapBlocksInFlight.erase(entry.hash);
BOOST_FOREACH(const uint256& hash, state->vBlocksToDownload)
mapBlocksToDownload.erase(hash);
EraseOrphansFor(nodeid);
mapNodeState.erase(nodeid);
}
// Requires cs_main.
void MarkBlockAsReceived(const uint256 &hash, NodeId nodeFrom = -1) {
map<uint256, pair<NodeId, list<uint256>::iterator> >::iterator itToDownload = mapBlocksToDownload.find(hash);
if (itToDownload != mapBlocksToDownload.end()) {
CNodeState *state = State(itToDownload->second.first);
state->vBlocksToDownload.erase(itToDownload->second.second);
state->nBlocksToDownload--;
mapBlocksToDownload.erase(itToDownload);
}
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
if (itInFlight->second.first == nodeFrom)
state->nLastBlockReceive = GetTimeMicros();
mapBlocksInFlight.erase(itInFlight);
}
}
// Requires cs_main.
bool AddBlockToQueue(NodeId nodeid, const uint256 &hash) {
if (mapBlocksToDownload.count(hash) || mapBlocksInFlight.count(hash))
return false;
CNodeState *state = State(nodeid);
if (state == NULL)
return false;
list<uint256>::iterator it = state->vBlocksToDownload.insert(state->vBlocksToDownload.end(), hash);
state->nBlocksToDownload++;
if (state->nBlocksToDownload > 5000)
Misbehaving(nodeid, 10);
mapBlocksToDownload[hash] = std::make_pair(nodeid, it);
return true;
}
// Requires cs_main.
void MarkBlockAsInFlight(NodeId nodeid, const uint256 &hash) {
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
QueuedBlock newentry = {hash, GetTimeMicros(), state->nBlocksInFlight};
if (state->nBlocksInFlight == 0)
state->nLastBlockReceive = newentry.nTime; // Reset when a first request is sent.
list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), newentry);
state->nBlocksInFlight++;
mapBlocksInFlight[hash] = std::make_pair(nodeid, it);
}
}
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == NULL)
return false;
stats.nMisbehavior = state->nMisbehavior;
return true;
}
void RegisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.connect(&GetHeight);
nodeSignals.ProcessMessages.connect(&ProcessMessages);
nodeSignals.SendMessages.connect(&SendMessages);
nodeSignals.InitializeNode.connect(&InitializeNode);
nodeSignals.FinalizeNode.connect(&FinalizeNode);
}
void UnregisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.disconnect(&GetHeight);
nodeSignals.ProcessMessages.disconnect(&ProcessMessages);
nodeSignals.SendMessages.disconnect(&SendMessages);
nodeSignals.InitializeNode.disconnect(&InitializeNode);
nodeSignals.FinalizeNode.disconnect(&FinalizeNode);
}
//////////////////////////////////////////////////////////////////////////////
//
// CChain implementation
//
CBlockIndex *CChain::SetTip(CBlockIndex *pindex) {
if (pindex == NULL) {
vChain.clear();
return NULL;
}
vChain.resize(pindex->nHeight + 1);
while (pindex && vChain[pindex->nHeight] != pindex) {
vChain[pindex->nHeight] = pindex;
pindex = pindex->pprev;
}
return pindex;
}
CBlockLocator CChain::GetLocator(const CBlockIndex *pindex) const {
int nStep = 1;
std::vector<uint256> vHave;
vHave.reserve(32);
if (!pindex)
pindex = Tip();
while (pindex) {
vHave.push_back(pindex->GetBlockHash());
// Stop when we have added the genesis block.
if (pindex->nHeight == 0)
break;
// Exponentially larger steps back, plus the genesis block.
int nHeight = std::max(pindex->nHeight - nStep, 0);
// In case pindex is not in this chain, iterate pindex->pprev to find blocks.
while (pindex->nHeight > nHeight && !Contains(pindex))
pindex = pindex->pprev;
// If pindex is in this chain, use direct height-based access.
if (pindex->nHeight > nHeight)
pindex = (*this)[nHeight];
if (vHave.size() > 10)
nStep *= 2;
}
return CBlockLocator(vHave);
}
CBlockIndex *CChain::FindFork(const CBlockLocator &locator) const {
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, locator.vHave) {
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (Contains(pindex))
return pindex;
}
}
return Genesis();
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx, NodeId peer)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz > 5000)
{
LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString());
return false;
}
mapOrphanTransactions[hash].tx = tx;
mapOrphanTransactions[hash].fromPeer = peer;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
LogPrint("mempool", "stored orphan tx %s (mapsz %u prevsz %u)\n", hash.ToString(),
mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.find(hash);
if (it == mapOrphanTransactions.end())
return;
BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin)
{
map<uint256, set<uint256> >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(hash);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
mapOrphanTransactions.erase(it);
}
void EraseOrphansFor(NodeId peer)
{
int nErased = 0;
map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
map<uint256, COrphanTx>::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid
if (maybeErase->second.fromPeer == peer)
{
EraseOrphanTx(maybeErase->second.tx.GetHash());
++nErased;
}
}
if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
bool IsStandardTx(const CTransaction& tx, string& reason)
{
AssertLockHeld(cs_main);
if (tx.nVersion > CTransaction::CURRENT_VERSION || tx.nVersion < 1) {
reason = "version";
return false;
}
// Treat non-final transactions as non-standard to prevent a specific type
// of double-spend attack, as well as DoS attacks. (if the transaction
// can't be mined, the attacker isn't expending resources broadcasting it)
// Basically we don't want to propagate transactions that can't included in
// the next block.
//
// However, IsFinalTx() is confusing... Without arguments, it uses
// chainActive.Height() to evaluate nLockTime; when a block is accepted, chainActive.Height()
// is set to the value of nHeight in the block. However, when IsFinalTx()
// is called within CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a transaction can
// be part of the *next* block, we need to call IsFinalTx() with one more
// than chainActive.Height().
//
// Timestamps on the other hand don't get any special treatment, because we
// can't know what timestamp the next block will have, and there aren't
// timestamp applications where it matters.
if (!IsFinalTx(tx, chainActive.Height() + 1)) {
reason = "non-final";
return false;
}
// Extremely large transactions with lots of inputs can cost the network
// almost as much to process as they cost the sender in fees, because
// computing signature hashes is O(ninputs*txsize). Limiting transactions
// to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz >= MAX_STANDARD_TX_SIZE) {
reason = "tx-size";
return false;
}
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed
// keys. (remember the 520 byte limit on redeemScript size) That works
// out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)=1624
// bytes of scriptSig, which we round off to 1650 bytes for some minor
// future-proofing. That's also enough to spend a 20-of-20
// CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not
// considered standard)
if (txin.scriptSig.size() > 1650) {
reason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly()) {
reason = "scriptsig-not-pushonly";
return false;
}
if (!txin.scriptSig.HasCanonicalPushes()) {
reason = "scriptsig-non-canonical-push";
return false;
}
}
unsigned int nDataOut = 0;
txnouttype whichType;
BOOST_FOREACH(const CTxOut& txout, tx.vout) {
if (!::IsStandard(txout.scriptPubKey, whichType)) {
reason = "scriptpubkey";
return false;
}
if (whichType == TX_NULL_DATA)
nDataOut++;
else if (txout.IsDust(CTransaction::nMinRelayTxFee)) {
reason = "dust";
return false;
}
}
// only one OP_RETURN txout is permitted
if (nDataOut > 1) {
reason = "multi-op-return";
return false;
}
return true;
}
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
AssertLockHeld(cs_main);
// Time based nLockTime implemented in 0.1.6
if (tx.nLockTime == 0)
return true;
if (nBlockHeight == 0)
nBlockHeight = chainActive.Height();
if (nBlockTime == 0)
nBlockTime = GetAdjustedTime();
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (!txin.IsFinal())
return false;
return true;
}
//
// Check transaction inputs, and make sure any
// pay-to-script-hash transactions are evaluating IsStandard scripts
//
// Why bother? To avoid denial-of-service attacks; an attacker
// can submit a standard HASH... OP_EQUAL transaction,
// which will get accepted into blocks. The redemption
// script can be anything; an attacker could use a very
// expensive-to-check-upon-redemption script like:
// DUP CHECKSIG DROP ... repeated 100 times... OP_1
//
bool AreInputsStandard(const CTransaction& tx, CCoinsViewCache& mapInputs)
{
if (tx.IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut& prev = mapInputs.GetOutputFor(tx.vin[i]);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig the
// IsStandard() call returns false
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, tx.vin[i].scriptSig, tx, i, false, 0))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (!Solver(subscript, whichType2, vSolutions2))
return false;
if (whichType2 == TX_SCRIPTHASH)
return false;
int tmpExpected;
tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, CCoinsViewCache& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
int CMerkleTx::SetMerkleBranch(const CBlock* pblock)
{
AssertLockHeld(cs_main);
CBlock blockTmp;
if (pblock == NULL) {
CCoins coins;
if (pcoinsTip->GetCoins(GetHash(), coins)) {
CBlockIndex *pindex = chainActive[coins.nHeight];
if (pindex) {
if (!ReadBlockFromDisk(blockTmp, pindex))
return 0;
pblock = &blockTmp;
}
}
}
if (pblock) {
// Update the tx's hashBlock
hashBlock = pblock->GetHash();
// Locate the transaction
for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++)
if (pblock->vtx[nIndex] == *(CTransaction*)this)
break;
if (nIndex == (int)pblock->vtx.size())
{
vMerkleBranch.clear();
nIndex = -1;
LogPrintf("ERROR: SetMerkleBranch() : couldn't find tx in block\n");
return 0;
}
// Fill in merkle branch
vMerkleBranch = pblock->GetMerkleBranch(nIndex);
}
// Is the tx in a block that's in the main chain
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !chainActive.Contains(pindex))
return 0;
return chainActive.Height() - pindex->nHeight + 1;
}
bool CheckTransaction(const CTransaction& tx, CValidationState &state)
{
// Basic checks that don't depend on any context
if (tx.vin.empty())
return state.DoS(10, error("CheckTransaction() : vin empty"),
REJECT_INVALID, "bad-txns-vin-empty");
if (tx.vout.empty())
return state.DoS(10, error("CheckTransaction() : vout empty"),
REJECT_INVALID, "bad-txns-vout-empty");
// Size limits
if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CheckTransaction() : size limits failed"),
REJECT_INVALID, "bad-txns-oversize");
// Check for negative or overflow output values
int64_t nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
if (txout.nValue < 0)
return state.DoS(100, error("CheckTransaction() : txout.nValue negative"),
REJECT_INVALID, "bad-txns-vout-negative");
if (txout.nValue > MAX_MONEY)
return state.DoS(100, error("CheckTransaction() : txout.nValue too high"),
REJECT_INVALID, "bad-txns-vout-toolarge");
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, error("CheckTransaction() : txout total out of range"),
REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
if (vInOutPoints.count(txin.prevout))
return state.DoS(100, error("CheckTransaction() : duplicate inputs"),
REJECT_INVALID, "bad-txns-inputs-duplicate");
vInOutPoints.insert(txin.prevout);
}
if (tx.IsCoinBase())
{
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.DoS(100, error("CheckTransaction() : coinbase script size"),
REJECT_INVALID, "bad-cb-length");
}
else
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (txin.prevout.IsNull())
return state.DoS(10, error("CheckTransaction() : prevout is null"),
REJECT_INVALID, "bad-txns-prevout-null");
}
return true;
}
int64_t GetMinFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree, enum GetMinFee_mode mode)
{
// Base fee is either nMinTxFee or nMinRelayTxFee
int64_t nBaseFee = (mode == GMF_RELAY) ? tx.nMinRelayTxFee : tx.nMinTxFee;
int64_t nMinFee = (1 + (int64_t)nBytes / 1000) * nBaseFee;
if (fAllowFree)
{
// There is a free transaction area in blocks created by most miners,
// * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000
// to be considered to fall into this category. We don't want to encourage sending
// multiple transactions instead of one big transaction to avoid fees.
// * If we are creating a transaction we allow transactions up to 1,000 bytes
// to be considered safe and assume they can likely make it into this section.
if (nBytes < (mode == GMF_SEND ? 1000 : (DEFAULT_BLOCK_PRIORITY_SIZE - 1000)))
nMinFee = 0;
}
// This code can be removed after enough miners have upgraded to version 0.9.
// Until then, be safe when sending and require a fee if any output
// is less than CENT:
if (nMinFee < nBaseFee && mode == GMF_SEND)
{
BOOST_FOREACH(const CTxOut& txout, tx.vout)
if (txout.nValue < CENT)
nMinFee = nBaseFee;
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs, bool fRejectInsaneFee)
{
AssertLockHeld(cs_main);
if (pfMissingInputs)
*pfMissingInputs = false;
if (!CheckTransaction(tx, state))
return error("AcceptToMemoryPool: : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, error("AcceptToMemoryPool: : coinbase as individual tx"),
REJECT_INVALID, "coinbase");
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
string reason;
if (Params().NetworkID() == CChainParams::MAIN && !IsStandardTx(tx, reason))
return state.DoS(0,
error("AcceptToMemoryPool : nonstandard transaction: %s", reason),
REJECT_NONSTANDARD, reason);
// is it already in the memory pool?
uint256 hash = tx.GetHash();
if (pool.exists(hash))
return false;
// Check for conflicts with in-memory transactions
{
LOCK(pool.cs); // protect pool.mapNextTx
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (pool.mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
}
}
}
{
CCoinsView dummy;
CCoinsViewCache view(dummy);
{
LOCK(pool.cs);
CCoinsViewMemPool viewMemPool(*pcoinsTip, pool);
view.SetBackend(viewMemPool);
// do we already have it?
if (view.HaveCoins(hash))
return false;
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
// only helps filling in pfMissingInputs (to determine missing vs spent).
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
}
// are the actual inputs available?
if (!view.HaveInputs(tx))
return state.Invalid(error("AcceptToMemoryPool : inputs already spent"),
REJECT_DUPLICATE, "bad-txns-inputs-spent");
// Bring the best block into scope
view.GetBestBlock();
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
}
// Check for non-standard pay-to-script-hash in inputs
if (Params().NetworkID() == CChainParams::MAIN && !AreInputsStandard(tx, view))
return error("AcceptToMemoryPool: : nonstandard transaction input");
// Note: if you modify this code to accept non-standard transactions, then
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
int64_t nValueIn = view.GetValueIn(tx);
int64_t nValueOut = tx.GetValueOut();
int64_t nFees = nValueIn-nValueOut;
double dPriority = view.GetPriority(tx, chainActive.Height());
CTxMemPoolEntry entry(tx, nFees, GetTime(), dPriority, chainActive.Height());
unsigned int nSize = entry.GetTxSize();
// Don't accept it if it can't get into a block
int64_t txMinFee = GetMinFee(tx, nSize, true, GMF_RELAY);
if (fLimitFree && nFees < txMinFee)
return state.DoS(0, error("AcceptToMemoryPool : not enough fees %s, %d < %d",
hash.ToString(), nFees, txMinFee),
REJECT_INSUFFICIENTFEE, "insufficient fee");
// Continuously rate-limit free transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (fLimitFree && nFees < CTransaction::nMinRelayTxFee)
{
static CCriticalSection csFreeLimiter;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
LOCK(csFreeLimiter);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000)
return state.DoS(0, error("AcceptToMemoryPool : free transaction rejected by rate limiter"),
REJECT_INSUFFICIENTFEE, "insufficient priority");
LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
if (fRejectInsaneFee && nFees > CTransaction::nMinRelayTxFee * 10000)
return error("AcceptToMemoryPool: : insane fees %s, %d > %d",
hash.ToString(),
nFees, CTransaction::nMinRelayTxFee * 10000);
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!CheckInputs(tx, state, view, true, SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC))
{
return error("AcceptToMemoryPool: : ConnectInputs failed %s", hash.ToString());
}
// Store transaction in memory
pool.addUnchecked(hash, entry);
}
g_signals.SyncTransaction(hash, tx, NULL);
return true;
}
int CMerkleTx::GetDepthInMainChainINTERNAL(CBlockIndex* &pindexRet) const
{
if (hashBlock == 0 || nIndex == -1)
return 0;
AssertLockHeld(cs_main);
// Find the block it claims to be in
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !chainActive.Contains(pindex))
return 0;
// Make sure the merkle branch connects to this block
if (!fMerkleVerified)
{
if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot)
return 0;
fMerkleVerified = true;
}
pindexRet = pindex;
return chainActive.Height() - pindex->nHeight + 1;
}
int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const
{
AssertLockHeld(cs_main);
int nResult = GetDepthInMainChainINTERNAL(pindexRet);
if (nResult == 0 && !mempool.exists(GetHash()))
return -1; // Not in chain, not in mempool
return nResult;
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!IsCoinBase())
return 0;
return max(0, (COINBASE_MATURITY+1) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(bool fLimitFree)
{
CValidationState state;
return ::AcceptToMemoryPool(mempool, state, *this, fLimitFree, NULL);
}
// Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock
bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow)
{
CBlockIndex *pindexSlow = NULL;
{
LOCK(cs_main);
{
if (mempool.lookup(hash, txOut))
{
return true;
}
}
if (fTxIndex) {
CDiskTxPos postx;
if (pblocktree->ReadTxIndex(hash, postx)) {
CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION);
CBlockHeader header;
try {
file >> header;
fseek(file, postx.nTxOffset, SEEK_CUR);
file >> txOut;
} catch (std::exception &e) {
return error("%s : Deserialize or I/O error - %s", __func__, e.what());
}
hashBlock = header.GetHash();
if (txOut.GetHash() != hash)
return error("%s : txid mismatch", __func__);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
int nHeight = -1;
{
CCoinsViewCache &view = *pcoinsTip;
CCoins coins;
if (view.GetCoins(hash, coins))
nHeight = coins.nHeight;
}
if (nHeight > 0)
pindexSlow = chainActive[nHeight];
}
}
if (pindexSlow) {
CBlock block;
if (ReadBlockFromDisk(block, pindexSlow)) {
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
if (tx.GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos)
{
// Open history file to append
CAutoFile fileout = CAutoFile(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (!fileout)
return error("WriteBlockToDisk : OpenBlockFile failed");
// Write index header
unsigned int nSize = fileout.GetSerializeSize(block);
fileout << FLATDATA(Params().MessageStart()) << nSize;
// Write block
long fileOutPos = ftell(fileout);
if (fileOutPos < 0)
return error("WriteBlockToDisk : ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
// Flush stdio buffers and commit to disk before returning
fflush(fileout);
if (!IsInitialBlockDownload())
FileCommit(fileout);
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos)
{
block.SetNull();
// Open history file to read
CAutoFile filein = CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (!filein)
return error("ReadBlockFromDisk : OpenBlockFile failed");
// Read block
try {
filein >> block;
}
catch (std::exception &e) {
return error("%s : Deserialize or I/O error - %s", __func__, e.what());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits))
return error("ReadBlockFromDisk : Errors in block header");
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex)
{
if (!ReadBlockFromDisk(block, pindex->GetBlockPos()))
return false;
if (block.GetHash() != pindex->GetBlockHash())
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*) : GetHash() doesn't match index");
return true;
}
uint256 static GetOrphanRoot(const uint256& hash)
{
map<uint256, COrphanBlock*>::iterator it = mapOrphanBlocks.find(hash);
if (it == mapOrphanBlocks.end())
return hash;
// Work back to the first block in the orphan chain
do {
map<uint256, COrphanBlock*>::iterator it2 = mapOrphanBlocks.find(it->second->hashPrev);
if (it2 == mapOrphanBlocks.end())
return it->first;
it = it2;
} while(true);
}
// Remove a random orphan block (which does not have any dependent orphans).
void static PruneOrphanBlocks()
{
if (mapOrphanBlocksByPrev.size() <= (size_t)std::max((int64_t)0, GetArg("-maxorphanblocks", DEFAULT_MAX_ORPHAN_BLOCKS)))
return;
// Pick a random orphan block.
int pos = insecure_rand() % mapOrphanBlocksByPrev.size();
std::multimap<uint256, COrphanBlock*>::iterator it = mapOrphanBlocksByPrev.begin();
while (pos--) it++;
// As long as this block has other orphans depending on it, move to one of those successors.
do {
std::multimap<uint256, COrphanBlock*>::iterator it2 = mapOrphanBlocksByPrev.find(it->second->hashBlock);
if (it2 == mapOrphanBlocksByPrev.end())
break;
it = it2;
} while(1);
uint256 hash = it->second->hashBlock;
delete it->second;
mapOrphanBlocksByPrev.erase(it);
mapOrphanBlocks.erase(hash);
}
double ConvertBitsToDouble(unsigned int nBits)
{
int nShift = (nBits >> 24) & 0xff;
double dDiff =
(double)0x0000ffff / (double)(nBits & 0x00ffffff);
while (nShift < 29)
{
dDiff *= 256.0;
nShift++;
}
while (nShift > 29)
{
dDiff /= 256.0;
nShift--;
}
return dDiff;
}
int64_t GetBlockValue(int nBits, int nHeight, int64_t nFees)
{
double dDiff = (double)0x0000ffff / (double)(nBits & 0x00ffffff);
/* fixed bug caused diff to not be correctly calculated */
if(nHeight > 4500 || TestNet()) dDiff = ConvertBitsToDouble(nBits);
int64_t nSubsidy = 0;
if(nHeight >= 5465) {
if((nHeight >= 17000 && dDiff > 75) || nHeight >= 24000) { // GPU/ASIC difficulty calc
// 2222222/(((x+2600)/9)^2)
nSubsidy = (2222222.0 / (pow((dDiff+2600.0)/9.0,2.0)));
if (nSubsidy > 25) nSubsidy = 25;
if (nSubsidy < 5) nSubsidy = 5;
} else { // CPU mining calc
nSubsidy = (11111.0 / (pow((dDiff+51.0)/6.0,2.0)));
if (nSubsidy > 500) nSubsidy = 500;
if (nSubsidy < 25) nSubsidy = 25;
}
} else {
nSubsidy = (1111.0 / (pow((dDiff+1.0),2.0)));
if (nSubsidy > 500) nSubsidy = 500;
if (nSubsidy < 1) nSubsidy = 1;
}
// LogPrintf("height %u diff %4.2f reward %i \n", nHeight, dDiff, nSubsidy);
nSubsidy *= COIN;
if(TestNet()){
for(int i = 46200; i <= nHeight; i += 210240) nSubsidy -= nSubsidy/14;
} else {
// yearly decline of production by 7.1% per year, projected 21.3M coins max by year 2050.
for(int i = 210240; i <= nHeight; i += 210240) nSubsidy -= nSubsidy/14;
}
return nSubsidy + nFees;
}
int64_t GetMasternodePayment(int nHeight, int64_t blockValue)
{
int64_t ret = blockValue/5; // start at 20%
if(TestNet()) {
if(nHeight > 46000) ret += blockValue / 20; //25% - 2014-10-07
if(nHeight > 46000+((576*1)*1)) ret += blockValue / 20; //30% - 2014-10-08
if(nHeight > 46000+((576*1)*2)) ret += blockValue / 20; //35% - 2014-10-09
if(nHeight > 46000+((576*1)*3)) ret += blockValue / 20; //40% - 2014-10-10
if(nHeight > 46000+((576*1)*4)) ret += blockValue / 20; //45% - 2014-10-11
if(nHeight > 46000+((576*1)*5)) ret += blockValue / 20; //50% - 2014-10-12
if(nHeight > 46000+((576*1)*6)) ret += blockValue / 20; //55% - 2014-10-13
if(nHeight > 46000+((576*1)*7)) ret += blockValue / 20; //60% - 2014-10-14
}
if(nHeight > 158000) ret += blockValue / 20; //25.0% - 2014-10-23
if(nHeight > 158000+((576*30)*1)) ret += blockValue / 20; //30.0% - 2014-11-23
if(nHeight > 158000+((576*30)*2)) ret += blockValue / 20; //35.0% - 2014-12-23
if(nHeight > 158000+((576*30)*3)) ret += blockValue / 40; //37.5% - 2015-01-23
if(nHeight > 158000+((576*30)*4)) ret += blockValue / 40; //40.0% - 2015-02-23
if(nHeight > 158000+((576*30)*5)) ret += blockValue / 40; //42.5% - 2015-03-23
if(nHeight > 158000+((576*30)*6)) ret += blockValue / 40; //45.0% - 2015-04-23
if(nHeight > 158000+((576*30)*7)) ret += blockValue / 40; //47.5% - 2015-05-23
if(nHeight > 158000+((576*30)*9)) ret += blockValue / 40; //50.0% - 2015-07-23
if(nHeight > 158000+((576*30)*11)) ret += blockValue / 40; //52.5% - 2015-09-23
if(nHeight > 158000+((576*30)*13)) ret += blockValue / 40; //55.0% - 2015-11-23
if(nHeight > 158000+((576*30)*15)) ret += blockValue / 40; //57.5% - 2016-01-23
if(nHeight > 158000+((576*30)*17)) ret += blockValue / 40; //60.0% - 2016-03-23
return ret;
}
static const int64_t nTargetTimespan = 24 * 60 * 60; // Darkcoin: 1 day
static const int64_t nTargetSpacing = 2.5 * 60; // Darkcoin: 2.5 minutes
static const int64_t nInterval = nTargetTimespan / nTargetSpacing; // 576 blocks
//
// minimum amount of work that could possibly be required nTime after
// minimum work required was nBase
//
unsigned int ComputeMinWork(unsigned int nBase, int64_t nTime)
{
const CBigNum &bnLimit = Params().ProofOfWorkLimit();
// Testnet has min-difficulty blocks
// after nTargetSpacing*2 time between blocks:
if (TestNet() && nTime > nTargetSpacing*2)
return bnLimit.GetCompact();
CBigNum bnResult;
bnResult.SetCompact(nBase);
while (nTime > 0 && bnResult < bnLimit)
{
// Maximum 400% adjustment...
bnResult *= 4;
// ... in best-case exactly 4-times-normal target time
nTime -= nTargetTimespan*4;
}
if (bnResult > bnLimit)
bnResult = bnLimit;
return bnResult.GetCompact();
}
unsigned int static KimotoGravityWell(const CBlockIndex* pindexLast, const CBlockHeader *pblock, uint64_t TargetBlocksSpacingSeconds, uint64_t PastBlocksMin, uint64_t PastBlocksMax) {
const CBlockIndex *BlockLastSolved = pindexLast;
const CBlockIndex *BlockReading = pindexLast;
const CBlockHeader *BlockCreating = pblock;
BlockCreating = BlockCreating;
uint64_t PastBlocksMass = 0;
int64_t PastRateActualSeconds = 0;
int64_t PastRateTargetSeconds = 0;
double PastRateAdjustmentRatio = double(1);
CBigNum PastDifficultyAverage;
CBigNum PastDifficultyAveragePrev;
double EventHorizonDeviation;
double EventHorizonDeviationFast;
double EventHorizonDeviationSlow;
if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || (uint64_t)BlockLastSolved->nHeight < PastBlocksMin) { return Params().ProofOfWorkLimit().GetCompact(); }
for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) {
if (PastBlocksMax > 0 && i > PastBlocksMax) { break; }
PastBlocksMass++;
if (i == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); }
else { PastDifficultyAverage = ((CBigNum().SetCompact(BlockReading->nBits) - PastDifficultyAveragePrev) / i) + PastDifficultyAveragePrev; }
PastDifficultyAveragePrev = PastDifficultyAverage;
PastRateActualSeconds = BlockLastSolved->GetBlockTime() - BlockReading->GetBlockTime();
PastRateTargetSeconds = TargetBlocksSpacingSeconds * PastBlocksMass;
PastRateAdjustmentRatio = double(1);
if (PastRateActualSeconds < 0) { PastRateActualSeconds = 0; }
if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) {
PastRateAdjustmentRatio = double(PastRateTargetSeconds) / double(PastRateActualSeconds);
}
EventHorizonDeviation = 1 + (0.7084 * pow((double(PastBlocksMass)/double(28.2)), -1.228));
EventHorizonDeviationFast = EventHorizonDeviation;
EventHorizonDeviationSlow = 1 / EventHorizonDeviation;
if (PastBlocksMass >= PastBlocksMin) {
if ((PastRateAdjustmentRatio <= EventHorizonDeviationSlow) || (PastRateAdjustmentRatio >= EventHorizonDeviationFast)) { assert(BlockReading); break; }
}
if (BlockReading->pprev == NULL) { assert(BlockReading); break; }
BlockReading = BlockReading->pprev;
}
CBigNum bnNew(PastDifficultyAverage);
if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) {
bnNew *= PastRateActualSeconds;
bnNew /= PastRateTargetSeconds;
}
if (bnNew > Params().ProofOfWorkLimit()) {
bnNew = Params().ProofOfWorkLimit();
}
return bnNew.GetCompact();
}
unsigned int static DarkGravityWave(const CBlockIndex* pindexLast, const CBlockHeader *pblock) {
/* current difficulty formula, darkcoin - DarkGravity v3, written by Evan Duffield - evan@darkcoin.io */
const CBlockIndex *BlockLastSolved = pindexLast;
const CBlockIndex *BlockReading = pindexLast;
const CBlockHeader *BlockCreating = pblock;
BlockCreating = BlockCreating;
int64_t nActualTimespan = 0;
int64_t LastBlockTime = 0;
int64_t PastBlocksMin = 24;
int64_t PastBlocksMax = 24;
int64_t CountBlocks = 0;
CBigNum PastDifficultyAverage;
CBigNum PastDifficultyAveragePrev;
if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || BlockLastSolved->nHeight < PastBlocksMin) {
return Params().ProofOfWorkLimit().GetCompact();
}
for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) {
if (PastBlocksMax > 0 && i > PastBlocksMax) { break; }
CountBlocks++;
if(CountBlocks <= PastBlocksMin) {
if (CountBlocks == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); }
else { PastDifficultyAverage = ((PastDifficultyAveragePrev * CountBlocks)+(CBigNum().SetCompact(BlockReading->nBits))) / (CountBlocks+1); }
PastDifficultyAveragePrev = PastDifficultyAverage;
}
if(LastBlockTime > 0){
int64_t Diff = (LastBlockTime - BlockReading->GetBlockTime());
nActualTimespan += Diff;
}
LastBlockTime = BlockReading->GetBlockTime();
if (BlockReading->pprev == NULL) { assert(BlockReading); break; }
BlockReading = BlockReading->pprev;
}
CBigNum bnNew(PastDifficultyAverage);
int64_t _nTargetTimespan = CountBlocks*nTargetSpacing;
if (nActualTimespan < _nTargetTimespan/3)
nActualTimespan = _nTargetTimespan/3;
if (nActualTimespan > _nTargetTimespan*3)
nActualTimespan = _nTargetTimespan*3;
// Retarget
bnNew *= nActualTimespan;
bnNew /= _nTargetTimespan;
if (bnNew > Params().ProofOfWorkLimit()){
bnNew = Params().ProofOfWorkLimit();
}
return bnNew.GetCompact();
}
unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock)
{
uint retarget = DIFF_BTC;
if (TestNet()) {
if (pindexLast->nHeight + 1 >= 256) retarget = DIFF_DGW;
}
else {
if (pindexLast->nHeight + 1 >= 34140) retarget = DIFF_DGW;
else if (pindexLast->nHeight + 1 >= 15200) retarget = DIFF_KGW;
}
// Default Bitcoin style retargeting
if (retarget == DIFF_BTC)
{
unsigned int nProofOfWorkLimit = Params().ProofOfWorkLimit().GetCompact();
// Genesis block
if (pindexLast == NULL)
return nProofOfWorkLimit;
// Only change once per interval
if ((pindexLast->nHeight+1) % nInterval != 0)
{
// Special difficulty rule for testnet:
if (TestNet())
{
// If the new block's timestamp is more than 2* 10 minutes
// then allow mining of a min-difficulty block.
if (pblock->nTime > pindexLast->nTime + nTargetSpacing*2)
return nProofOfWorkLimit;
else
{
// Return the last non-special-min-difficulty-rules-block
const CBlockIndex* pindex = pindexLast;
while (pindex->pprev && pindex->nHeight % nInterval != 0 && pindex->nBits == nProofOfWorkLimit)
pindex = pindex->pprev;
return pindex->nBits;
}
}
return pindexLast->nBits;
}
// Darkcoin: This fixes an issue where a 51% attack can change difficulty at will.
// Go back the full period unless it's the first retarget after genesis.
// Code courtesy of Art Forz.
int blockstogoback = nInterval-1;
if ((pindexLast->nHeight+1) != nInterval)
blockstogoback = nInterval;
// Go back by what we want to be 14 days worth of blocks
const CBlockIndex* pindexFirst = pindexLast;
for (int i = 0; pindexFirst && i < blockstogoback; i++)
//for (int i = 0; pindexFirst && i < nInterval-1; i++)
pindexFirst = pindexFirst->pprev;
assert(pindexFirst);
// Limit adjustment step
//int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime();
int64_t nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime();
//LogPrintf(" nActualTimespan = %"PRI64d" before bounds\n", nActualTimespan);
LogPrintf(" nActualTimespan = %d before bounds\n", nActualTimespan);
if (nActualTimespan < nTargetTimespan/4)
nActualTimespan = nTargetTimespan/4;
if (nActualTimespan > nTargetTimespan*4)
nActualTimespan = nTargetTimespan*4;
// Retarget
CBigNum bnNew;
bnNew.SetCompact(pindexLast->nBits);
bnNew *= nActualTimespan;
bnNew /= nTargetTimespan;
if (bnNew > Params().ProofOfWorkLimit())
bnNew = Params().ProofOfWorkLimit();
/// debug print
LogPrintf("GetNextWorkRequired RETARGET\n");
//LogPrintf("nTargetTimespan = %"PRI64d" nActualTimespan = %"PRI64d"\n", nTargetTimespan, nActualTimespan);
LogPrintf("nTargetTimespan = %d nActualTimespan = %d\n", nTargetTimespan, nActualTimespan);
//LogPrintf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str());
LogPrintf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString());
//LogPrintf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str());
LogPrintf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString());
return bnNew.GetCompact();
}
// Retarget using Kimoto Gravity Wave
else if (retarget == DIFF_KGW)
{
static const uint64_t blocksTargetSpacing = 2.5 * 60; // 2.5 minutes
static const unsigned int timeDaySeconds = 60 * 60 * 24;
uint64_t pastSecondsMin = timeDaySeconds * 0.025;
uint64_t pastSecondsMax = timeDaySeconds * 7;
uint64_t pastBlocksMin = pastSecondsMin / blocksTargetSpacing;
uint64_t pastBlocksMax = pastSecondsMax / blocksTargetSpacing;
return KimotoGravityWell(pindexLast, pblock, blocksTargetSpacing, pastBlocksMin, pastBlocksMax);
}
// Retarget using Dark Gravity Wave 3
else if (retarget == DIFF_DGW)
{
return DarkGravityWave(pindexLast, pblock);
}
return DarkGravityWave(pindexLast, pblock);
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits)
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
// Check range
if (bnTarget <= 0 || bnTarget > Params().ProofOfWorkLimit())
return error("CheckProofOfWork() : nBits below minimum work");
// Check proof of work matches claimed amount
if (hash > bnTarget.getuint256())
return error("CheckProofOfWork() : hash doesn't match nBits");
return true;
}
bool IsInitialBlockDownload()
{
LOCK(cs_main);
if (fImporting || fReindex || chainActive.Height() < Checkpoints::GetTotalBlocksEstimate())
return true;
static int64_t nLastUpdate;
static CBlockIndex* pindexLastBest;
if (chainActive.Tip() != pindexLastBest)
{
pindexLastBest = chainActive.Tip();
nLastUpdate = GetTime();
}
return (GetTime() - nLastUpdate < 10 &&
chainActive.Tip()->GetBlockTime() < GetTime() - 24 * 60 * 60);
}
bool fLargeWorkForkFound = false;
bool fLargeWorkInvalidChainFound = false;
CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL;
void CheckForkWarningConditions()
{
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before the last checkpoint)
if (IsInitialBlockDownload())
return;
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it)
// of our head, drop it
if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72)
pindexBestForkTip = NULL;
if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (chainActive.Tip()->GetBlockWork() * 6).getuint256()))
{
if (!fLargeWorkForkFound)
{
std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") +
pindexBestForkBase->phashBlock->ToString() + std::string("'");
CAlert::Notify(warning, true);
}
if (pindexBestForkTip)
{
LogPrintf("CheckForkWarningConditions: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n",
pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(),
pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString());
fLargeWorkForkFound = true;
}
else
{
LogPrintf("CheckForkWarningConditions: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n");
fLargeWorkInvalidChainFound = true;
}
}
else
{
fLargeWorkForkFound = false;
fLargeWorkInvalidChainFound = false;
}
}
void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip)
{
AssertLockHeld(cs_main);
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex* pfork = pindexNewForkTip;
CBlockIndex* plonger = chainActive.Tip();
while (pfork && pfork != plonger)
{
while (plonger && plonger->nHeight > pfork->nHeight)
plonger = plonger->pprev;
if (pfork == plonger)
break;
pfork = pfork->pprev;
}
// We define a condition which we should warn the user about as a fork of at least 7 blocks
// who's tip is within 72 blocks (+/- 12 hours if no one mines it) of ours
// We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this should be detected by both)
// We define it this way because it allows us to only store the highest fork tip (+ base) which meets
// the 7-block condition and from this always have the most-likely-to-cause-warning fork
if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) &&
pindexNewForkTip->nChainWork - pfork->nChainWork > (pfork->GetBlockWork() * 7).getuint256() &&
chainActive.Height() - pindexNewForkTip->nHeight < 72)
{
pindexBestForkTip = pindexNewForkTip;
pindexBestForkBase = pfork;
}
CheckForkWarningConditions();
}
// Requires cs_main.
void Misbehaving(NodeId pnode, int howmuch)
{
if (howmuch == 0)
return;
CNodeState *state = State(pnode);
if (state == NULL)
return;
state->nMisbehavior += howmuch;
if (state->nMisbehavior >= GetArg("-banscore", 100))
{
LogPrintf("Misbehaving: %s (%d -> %d) BAN THRESHOLD EXCEEDED\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior);
state->fShouldBan = true;
} else
LogPrintf("Misbehaving: %s (%d -> %d)\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
{
pindexBestInvalid = pindexNew;
// The current code doesn't actually read the BestInvalidWork entry in
// the block database anymore, as it is derived from the flags in block
// index entry. We only write it for backward compatibility.
pblocktree->WriteBestInvalidWork(CBigNum(pindexBestInvalid->nChainWork));
uiInterface.NotifyBlocksChanged();
}
LogPrintf("InvalidChainFound: invalid block=%s height=%d log2_work=%.8g date=%s\n",
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
pindexNew->GetBlockTime()));
LogPrintf("InvalidChainFound: current best=%s height=%d log2_work=%.8g date=%s\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()));
CheckForkWarningConditions();
}
void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) {
int nDoS = 0;
if (state.IsInvalid(nDoS)) {
std::map<uint256, NodeId>::iterator it = mapBlockSource.find(pindex->GetBlockHash());
if (it != mapBlockSource.end() && State(it->second)) {
CBlockReject reject = {state.GetRejectCode(), state.GetRejectReason(), pindex->GetBlockHash()};
State(it->second)->rejects.push_back(reject);
if (nDoS > 0)
Misbehaving(it->second, nDoS);
}
}
if (!state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex));
setBlockIndexValid.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateTime(CBlockHeader& block, const CBlockIndex* pindexPrev)
{
block.nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
// Updating time can change work required on testnet:
if (TestNet())
block.nBits = GetNextWorkRequired(pindexPrev, &block);
}
void UpdateCoins(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight, const uint256 &txhash)
{
bool ret;
// mark inputs spent
if (!tx.IsCoinBase()) {
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
CCoins &coins = inputs.GetCoins(txin.prevout.hash);
CTxInUndo undo;
ret = coins.Spend(txin.prevout, undo);
assert(ret);
txundo.vprevout.push_back(undo);
}
}
// add outputs
ret = inputs.SetCoins(txhash, CCoins(tx, nHeight));
assert(ret);
}
bool CScriptCheck::operator()() const {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
if (!VerifyScript(scriptSig, scriptPubKey, *ptxTo, nIn, nFlags, nHashType))
return error("CScriptCheck() : %s VerifySignature failed", ptxTo->GetHash().ToString());
return true;
}
bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType)
{
return CScriptCheck(txFrom, txTo, nIn, flags, nHashType)();
}
bool CheckInputs(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, std::vector<CScriptCheck> *pvChecks)
{
if (!tx.IsCoinBase())
{
if (pvChecks)
pvChecks->reserve(tx.vin.size());
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!inputs.HaveInputs(tx))
return state.Invalid(error("CheckInputs() : %s inputs unavailable", tx.GetHash().ToString()));
// While checking, GetBestBlock() refers to the parent block.
// This is also true for mempool checks.
CBlockIndex *pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second;
int nSpendHeight = pindexPrev->nHeight + 1;
int64_t nValueIn = 0;
int64_t nFees = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
// If prev is coinbase, check that it's matured
if (coins.IsCoinBase()) {
if (nSpendHeight - coins.nHeight < COINBASE_MATURITY)
return state.Invalid(
error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins.nHeight),
REJECT_INVALID, "bad-txns-premature-spend-of-coinbase");
}
// Check for negative or overflow input values
nValueIn += coins.vout[prevout.n].nValue;
if (!MoneyRange(coins.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return state.DoS(100, error("CheckInputs() : txin values out of range"),
REJECT_INVALID, "bad-txns-inputvalues-outofrange");
}
if (nValueIn < tx.GetValueOut())
return state.DoS(100, error("CheckInputs() : %s value in < value out", tx.GetHash().ToString()),
REJECT_INVALID, "bad-txns-in-belowout");
// Tally transaction fees
int64_t nTxFee = nValueIn - tx.GetValueOut();
if (nTxFee < 0)
return state.DoS(100, error("CheckInputs() : %s nTxFee < 0", tx.GetHash().ToString()),
REJECT_INVALID, "bad-txns-fee-negative");
nFees += nTxFee;
if (!MoneyRange(nFees))
return state.DoS(100, error("CheckInputs() : nFees out of range"),
REJECT_INVALID, "bad-txns-fee-outofrange");
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip ECDSA signature verification when connecting blocks
// before the last block chain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (fScriptChecks) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
// Verify signature
CScriptCheck check(coins, tx, i, flags, 0);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & SCRIPT_VERIFY_STRICTENC) {
// For now, check whether the failure was caused by non-canonical
// encodings or not; if so, don't trigger DoS protection.
CScriptCheck check(coins, tx, i, flags & (~SCRIPT_VERIFY_STRICTENC), 0);
if (check())
return state.Invalid(false, REJECT_NONSTANDARD, "non-canonical");
}
return state.DoS(100,false, REJECT_NONSTANDARD, "non-canonical");
}
}
}
}
return true;
}
bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean)
{
assert(pindex->GetBlockHash() == view.GetBestBlock());
if (pfClean)
*pfClean = false;
bool fClean = true;
CBlockUndo blockUndo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull())
return error("DisconnectBlock() : no undo data available");
if (!blockUndo.ReadFromDisk(pos, pindex->pprev->GetBlockHash()))
return error("DisconnectBlock() : failure reading undo data");
if (blockUndo.vtxundo.size() + 1 != block.vtx.size())
return error("DisconnectBlock() : block and undo data inconsistent");
// undo transactions in reverse order
for (int i = block.vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = block.vtx[i];
uint256 hash = tx.GetHash();
// Check that all outputs are available and match the outputs in the block itself
// exactly. Note that transactions with only provably unspendable outputs won't
// have outputs available even in the block itself, so we handle that case
// specially with outsEmpty.
CCoins outsEmpty;
CCoins &outs = view.HaveCoins(hash) ? view.GetCoins(hash) : outsEmpty;
outs.ClearUnspendable();
CCoins outsBlock = CCoins(tx, pindex->nHeight);
// The CCoins serialization does not serialize negative numbers.
// No network rules currently depend on the version here, so an inconsistency is harmless
// but it must be corrected before txout nversion ever influences a network rule.
if (outsBlock.nVersion < 0)
outs.nVersion = outsBlock.nVersion;
if (outs != outsBlock)
fClean = fClean && error("DisconnectBlock() : added transaction mismatch? database corrupted");
// remove outputs
outs = CCoins();
// restore inputs
if (i > 0) { // not coinbases
const CTxUndo &txundo = blockUndo.vtxundo[i-1];
if (txundo.vprevout.size() != tx.vin.size())
return error("DisconnectBlock() : transaction and undo data inconsistent");
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
CCoins coins;
view.GetCoins(out.hash, coins); // this can fail if the prevout was already entirely spent
if (undo.nHeight != 0) {
// undo data contains height: this is the last output of the prevout tx being spent
if (!coins.IsPruned())
fClean = fClean && error("DisconnectBlock() : undo data overwriting existing transaction");
coins = CCoins();
coins.fCoinBase = undo.fCoinBase;
coins.nHeight = undo.nHeight;
coins.nVersion = undo.nVersion;
} else {
if (coins.IsPruned())
fClean = fClean && error("DisconnectBlock() : undo data adding output to missing transaction");
}
if (coins.IsAvailable(out.n))
fClean = fClean && error("DisconnectBlock() : undo data overwriting existing output");
if (coins.vout.size() < out.n+1)
coins.vout.resize(out.n+1);
coins.vout[out.n] = undo.txout;
if (!view.SetCoins(out.hash, coins))
return error("DisconnectBlock() : cannot restore coin inputs");
}
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev->GetBlockHash());
if (pfClean) {
*pfClean = fClean;
return true;
} else {
return fClean;
}
}
void static FlushBlockFile(bool fFinalize = false)
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, infoLastBlockFile.nSize);
FileCommit(fileOld);
fclose(fileOld);
}
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, infoLastBlockFile.nUndoSize);
FileCommit(fileOld);
fclose(fileOld);
}
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
bool ConnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool fJustCheck)
{
AssertLockHeld(cs_main);
// Check it again in case a previous version let a bad block in
if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))
return false;
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock = pindex->pprev == NULL ? uint256(0) : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (block.GetHash() == Params().HashGenesisBlock()) {
view.SetBestBlock(pindex->GetBlockHash());
return true;
}
bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate();
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes in their
// initial block download.
bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash.
!((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
if (fEnforceBIP30) {
for (unsigned int i = 0; i < block.vtx.size(); i++) {
uint256 hash = block.GetTxHash(i);
if (view.HaveCoins(hash) && !view.GetCoins(hash).IsPruned())
return state.DoS(100, error("ConnectBlock() : tried to overwrite transaction"),
REJECT_INVALID, "bad-txns-BIP30");
}
}
// BIP16 didn't become active until Apr 1 2012
int64_t nBIP16SwitchTime = 1333238400;
bool fStrictPayToScriptHash = (pindex->nTime >= nBIP16SwitchTime);
unsigned int flags = SCRIPT_VERIFY_NOCACHE |
(fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE);
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
int64_t nStart = GetTimeMicros();
int64_t nFees = 0;
int nInputs = 0;
unsigned int nSigOps = 0;
CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos> > vPos;
vPos.reserve(block.vtx.size());
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const CTransaction &tx = block.vtx[i];
nInputs += tx.vin.size();
nSigOps += GetLegacySigOpCount(tx);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock() : too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
if (!tx.IsCoinBase())
{
if (!view.HaveInputs(tx))
return state.DoS(100, error("ConnectBlock() : inputs missing/spent"),
REJECT_INVALID, "bad-txns-inputs-missingorspent");
if (fStrictPayToScriptHash)
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += GetP2SHSigOpCount(tx, view);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock() : too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
}
nFees += view.GetValueIn(tx)-tx.GetValueOut();
std::vector<CScriptCheck> vChecks;
if (!CheckInputs(tx, state, view, fScriptChecks, flags, nScriptCheckThreads ? &vChecks : NULL))
return false;
control.Add(vChecks);
}
CTxUndo txundo;
UpdateCoins(tx, state, view, txundo, pindex->nHeight, block.GetTxHash(i));
if (!tx.IsCoinBase())
blockundo.vtxundo.push_back(txundo);
vPos.push_back(std::make_pair(block.GetTxHash(i), pos));
pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
}
int64_t nTime = GetTimeMicros() - nStart;
if (fBenchmark)
LogPrintf("- Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin)\n", (unsigned)block.vtx.size(), 0.001 * nTime, 0.001 * nTime / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * nTime / (nInputs-1));
if (block.vtx[0].GetValueOut() > GetBlockValue(pindex->nBits, pindex->nHeight, nFees))
return state.DoS(100,
error("ConnectBlock() : coinbase pays too much (actual=%d vs limit=%d)",
block.vtx[0].GetValueOut(), GetBlockValue(pindex->nBits, pindex->nHeight, nFees)),
REJECT_INVALID, "bad-cb-amount");
if (!control.Wait())
return state.DoS(100, false);
int64_t nTime2 = GetTimeMicros() - nStart;
if (fBenchmark)
LogPrintf("- Verify %u txins: %.2fms (%.3fms/txin)\n", nInputs - 1, 0.001 * nTime2, nInputs <= 1 ? 0 : 0.001 * nTime2 / (nInputs-1));
if (fJustCheck)
return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() || (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS)
{
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos pos;
if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40))
return error("ConnectBlock() : FindUndoPos failed");
if (!blockundo.WriteToDisk(pos, pindex->pprev->GetBlockHash()))
return state.Abort(_("Failed to write undo data"));
// update nUndoPos in block index
pindex->nUndoPos = pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->nStatus = (pindex->nStatus & ~BLOCK_VALID_MASK) | BLOCK_VALID_SCRIPTS;
CDiskBlockIndex blockindex(pindex);
if (!pblocktree->WriteBlockIndex(blockindex))
return state.Abort(_("Failed to write block index"));
}
if (fTxIndex)
if (!pblocktree->WriteTxIndex(vPos))
return state.Abort(_("Failed to write transaction index"));
// add this block to the view's block chain
bool ret;
ret = view.SetBestBlock(pindex->GetBlockHash());
assert(ret);
// Watch for transactions paying to me
for (unsigned int i = 0; i < block.vtx.size(); i++)
g_signals.SyncTransaction(block.GetTxHash(i), block.vtx[i], &block);
return true;
}
// Update the on-disk chain state.
bool static WriteChainState(CValidationState &state) {
static int64_t nLastWrite = 0;
if (!IsInitialBlockDownload() || pcoinsTip->GetCacheSize() > nCoinCacheSize || GetTimeMicros() > nLastWrite + 600*1000000) {
// Typical CCoins structures on disk are around 100 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(100 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error("out of disk space");
FlushBlockFile();
pblocktree->Sync();
if (!pcoinsTip->Flush())
return state.Abort(_("Failed to write to coin database"));
nLastWrite = GetTimeMicros();
}
return true;
}
// Update chainActive and related internal data structures.
void static UpdateTip(CBlockIndex *pindexNew) {
chainActive.SetTip(pindexNew);
// Update best block in wallet (so we can detect restored wallets)
bool fIsInitialDownload = IsInitialBlockDownload();
if ((chainActive.Height() % 20160) == 0 || (!fIsInitialDownload && (chainActive.Height() % 144) == 0))
g_signals.SetBestChain(chainActive.GetLocator());
// New best block
nTimeBestReceived = GetTime();
mempool.AddTransactionsUpdated(1);
LogPrintf("UpdateTip: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainActive.Tip()));
// Check the version of the last 100 blocks to see if we need to upgrade:
if (!fIsInitialDownload)
{
int nUpgraded = 0;
const CBlockIndex* pindex = chainActive.Tip();
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
LogPrintf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, (int)CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
}
}
// Disconnect chainActive's tip.
bool static DisconnectTip(CValidationState &state) {
CBlockIndex *pindexDelete = chainActive.Tip();
assert(pindexDelete);
mempool.check(pcoinsTip);
// Read block from disk.
CBlock block;
if (!ReadBlockFromDisk(block, pindexDelete))
return state.Abort(_("Failed to read block"));
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(*pcoinsTip, true);
if (!DisconnectBlock(block, state, pindexDelete, view))
return error("DisconnectTip() : DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString());
assert(view.Flush());
}
if (fBenchmark)
LogPrintf("- Disconnect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Write the chain state to disk, if necessary.
if (!WriteChainState(state))
return false;
// Resurrect mempool transactions from the disconnected block.
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
// ignore validation errors in resurrected transactions
list<CTransaction> removed;
CValidationState stateDummy;
if (!tx.IsCoinBase())
if (!AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL))
mempool.remove(tx, removed, true);
}
mempool.check(pcoinsTip);
// Update chainActive and related variables.
UpdateTip(pindexDelete->pprev);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
SyncWithWallets(tx.GetHash(), tx, NULL);
}
return true;
}
// Connect a new block to chainActive.
bool static ConnectTip(CValidationState &state, CBlockIndex *pindexNew) {
assert(pindexNew->pprev == chainActive.Tip());
mempool.check(pcoinsTip);
// Read block from disk.
CBlock block;
if (!ReadBlockFromDisk(block, pindexNew))
return state.Abort(_("Failed to read block"));
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(*pcoinsTip, true);
CInv inv(MSG_BLOCK, pindexNew->GetBlockHash());
if (!ConnectBlock(block, state, pindexNew, view)) {
if (state.IsInvalid())
InvalidBlockFound(pindexNew, state);
return error("ConnectTip() : ConnectBlock %s failed", pindexNew->GetBlockHash().ToString());
}
mapBlockSource.erase(inv.hash);
assert(view.Flush());
}
if (fBenchmark)
LogPrintf("- Connect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Write the chain state to disk, if necessary.
if (!WriteChainState(state))
return false;
// Remove conflicting transactions from the mempool.
list<CTransaction> txConflicted;
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
list<CTransaction> unused;
mempool.remove(tx, unused);
mempool.removeConflicts(tx, txConflicted);
}
mempool.check(pcoinsTip);
// Update chainActive & related variables.
UpdateTip(pindexNew);
// Tell wallet about transactions that went from mempool
// to conflicted:
BOOST_FOREACH(const CTransaction &tx, txConflicted) {
SyncWithWallets(tx.GetHash(), tx, NULL);
}
// ... and about transactions that got confirmed:
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
SyncWithWallets(tx.GetHash(), tx, &block);
}
return true;
}
// Make chainMostWork correspond to the chain with the most work in it, that isn't
// known to be invalid (it's however far from certain to be valid).
void static FindMostWorkChain() {
CBlockIndex *pindexNew = NULL;
// In case the current best is invalid, do not consider it.
while (chainMostWork.Tip() && (chainMostWork.Tip()->nStatus & BLOCK_FAILED_MASK)) {
setBlockIndexValid.erase(chainMostWork.Tip());
chainMostWork.SetTip(chainMostWork.Tip()->pprev);
}
do {
// Find the best candidate header.
{
std::set<CBlockIndex*, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexValid.rbegin();
if (it == setBlockIndexValid.rend())
return;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !chainActive.Contains(pindexTest)) {
if (pindexTest->nStatus & BLOCK_FAILED_MASK) {
// Candidate has an invalid ancestor, remove entire chain from the set.
if (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew; CBlockIndex *pindexFailed = pindexNew;
while (pindexTest != pindexFailed) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
setBlockIndexValid.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
fInvalidAncestor = true;
break;
}
pindexTest = pindexTest->pprev;
}
if (fInvalidAncestor)
continue;
break;
} while(true);
// Check whether it's actually an improvement.
if (chainMostWork.Tip() && !CBlockIndexWorkComparator()(chainMostWork.Tip(), pindexNew))
return;
// We have a new best.
chainMostWork.SetTip(pindexNew);
}
// Try to activate to the most-work chain (thereby connecting it).
bool ActivateBestChain(CValidationState &state) {
LOCK(cs_main);
CBlockIndex *pindexOldTip = chainActive.Tip();
bool fComplete = false;
while (!fComplete) {
FindMostWorkChain();
fComplete = true;
// Check whether we have something to do.
if (chainMostWork.Tip() == NULL) break;
// Disconnect active blocks which are no longer in the best chain.
while (chainActive.Tip() && !chainMostWork.Contains(chainActive.Tip())) {
if (!DisconnectTip(state))
return false;
}
// Connect new blocks.
while (!chainActive.Contains(chainMostWork.Tip())) {
CBlockIndex *pindexConnect = chainMostWork[chainActive.Height() + 1];
if (!ConnectTip(state, pindexConnect)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (!state.CorruptionPossible())
InvalidChainFound(chainMostWork.Tip());
fComplete = false;
state = CValidationState();
break;
} else {
// A system error occurred (disk space, database error, ...).
return false;
}
}
}
}
if (chainActive.Tip() != pindexOldTip) {
std::string strCmd = GetArg("-blocknotify", "");
if (!IsInitialBlockDownload() && !strCmd.empty())
{
boost::replace_all(strCmd, "%s", chainActive.Tip()->GetBlockHash().GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
}
return true;
}
bool AddToBlockIndex(CBlock& block, CValidationState& state, const CDiskBlockPos& pos)
{
// Check for duplicate
uint256 hash = block.GetHash();
if (mapBlockIndex.count(hash))
return state.Invalid(error("AddToBlockIndex() : %s already exists", hash.ToString()), 0, "duplicate");
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
assert(pindexNew);
{
LOCK(cs_nBlockSequenceId);
pindexNew->nSequenceId = nBlockSequenceId++;
}
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
map<uint256, CBlockIndex*>::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
}
pindexNew->nTx = block.vtx.size();
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + pindexNew->GetBlockWork().getuint256();
pindexNew->nChainTx = (pindexNew->pprev ? pindexNew->pprev->nChainTx : 0) + pindexNew->nTx;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus = BLOCK_VALID_TRANSACTIONS | BLOCK_HAVE_DATA;
setBlockIndexValid.insert(pindexNew);
if (!pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew)))
return state.Abort(_("Failed to write block index"));
// New best?
if (!ActivateBestChain(state))
return false;
LOCK(cs_main);
if (pindexNew == chainActive.Tip())
{
// Clear fork warning if its no longer applicable
CheckForkWarningConditions();
// Notify UI to display prev block's coinbase if it was ours
static uint256 hashPrevBestCoinBase;
g_signals.UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = block.GetTxHash(0);
} else
CheckForkWarningConditionsOnNewFork(pindexNew);
if (!pblocktree->Flush())
return state.Abort(_("Failed to sync block index"));
uiInterface.NotifyBlocksChanged();
return true;
}
bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false)
{
bool fUpdatedLast = false;
LOCK(cs_LastBlockFile);
if (fKnown) {
if (nLastBlockFile != pos.nFile) {
nLastBlockFile = pos.nFile;
infoLastBlockFile.SetNull();
pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile);
fUpdatedLast = true;
}
} else {
while (infoLastBlockFile.nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, infoLastBlockFile.ToString());
FlushBlockFile(true);
nLastBlockFile++;
infoLastBlockFile.SetNull();
pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); // check whether data for the new file somehow already exist; can fail just fine
fUpdatedLast = true;
}
pos.nFile = nLastBlockFile;
pos.nPos = infoLastBlockFile.nSize;
}
infoLastBlockFile.nSize += nAddSize;
infoLastBlockFile.AddBlock(nHeight, nTime);
if (!fKnown) {
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (infoLastBlockFile.nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenBlockFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
}
if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile))
return state.Abort(_("Failed to write file info"));
if (fUpdatedLast)
pblocktree->WriteLastBlockFile(nLastBlockFile);
return true;
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
if (nFile == nLastBlockFile) {
pos.nPos = infoLastBlockFile.nUndoSize;
nNewSize = (infoLastBlockFile.nUndoSize += nAddSize);
if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile))
return state.Abort(_("Failed to write block info"));
} else {
CBlockFileInfo info;
if (!pblocktree->ReadBlockFileInfo(nFile, info))
return state.Abort(_("Failed to read block info"));
pos.nPos = info.nUndoSize;
nNewSize = (info.nUndoSize += nAddSize);
if (!pblocktree->WriteBlockFileInfo(nFile, info))
return state.Abort(_("Failed to write block info"));
}
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenUndoFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
return true;
}
bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW, bool fCheckMerkleRoot)
{
// These are checks that are independent of context
// that can be verified before saving an orphan block.
// Size limits
if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CheckBlock() : size limits failed"),
REJECT_INVALID, "bad-blk-length");
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits))
return state.DoS(50, error("CheckBlock() : proof of work failed"),
REJECT_INVALID, "high-hash");
// Check timestamp
if (block.GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60)
return state.Invalid(error("CheckBlock() : block timestamp too far in the future"),
REJECT_INVALID, "time-too-new");
// First transaction must be coinbase, the rest must not be
if (block.vtx.empty() || !block.vtx[0].IsCoinBase())
return state.DoS(100, error("CheckBlock() : first tx is not coinbase"),
REJECT_INVALID, "bad-cb-missing");
for (unsigned int i = 1; i < block.vtx.size(); i++)
if (block.vtx[i].IsCoinBase())
return state.DoS(100, error("CheckBlock() : more than one coinbase"),
REJECT_INVALID, "bad-cb-multiple");
// Check transactions
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!CheckTransaction(tx, state))
return error("CheckBlock() : CheckTransaction failed");
// Build the merkle tree already. We need it anyway later, and it makes the
// block cache the transaction hashes, which means they don't need to be
// recalculated many times during this block's validation.
block.BuildMerkleTree();
// Check for duplicate txids. This is caught by ConnectInputs(),
// but catching it earlier avoids a potential DoS attack:
set<uint256> uniqueTx;
for (unsigned int i = 0; i < block.vtx.size(); i++) {
uniqueTx.insert(block.GetTxHash(i));
}
if (uniqueTx.size() != block.vtx.size())
return state.DoS(100, error("CheckBlock() : duplicate transaction"),
REJECT_INVALID, "bad-txns-duplicate", true);
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, block.vtx)
{
nSigOps += GetLegacySigOpCount(tx);
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"),
REJECT_INVALID, "bad-blk-sigops", true);
// Check merkle root
if (fCheckMerkleRoot && block.hashMerkleRoot != block.vMerkleTree.back())
return state.DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"),
REJECT_INVALID, "bad-txnmrklroot", true);
return true;
}
bool AcceptBlock(CBlock& block, CValidationState& state, CDiskBlockPos* dbp)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
if (mapBlockIndex.count(hash))
return state.Invalid(error("AcceptBlock() : block already in mapBlockIndex"), 0, "duplicate");
// Get prev block index
CBlockIndex* pindexPrev = NULL;
int nHeight = 0;
if (hash != Params().HashGenesisBlock()) {
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(block.hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("AcceptBlock() : prev block not found"), 0, "bad-prevblk");
pindexPrev = (*mi).second;
nHeight = pindexPrev->nHeight+1;
// Check proof of work
if (block.nBits != GetNextWorkRequired(pindexPrev, &block))
return state.DoS(100, error("AcceptBlock() : incorrect proof of work"),
REJECT_INVALID, "bad-diffbits");
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(error("AcceptBlock() : block's timestamp is too early"),
REJECT_INVALID, "time-too-old");
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!IsFinalTx(tx, nHeight, block.GetBlockTime()))
return state.DoS(10, error("AcceptBlock() : contains a non-final transaction"),
REJECT_INVALID, "bad-txns-nonfinal");
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckBlock(nHeight, hash))
return state.DoS(100, error("AcceptBlock() : rejected by checkpoint lock-in at %d", nHeight),
REJECT_CHECKPOINT, "checkpoint mismatch");
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(100, error("AcceptBlock() : forked chain older than last checkpoint (height %d)", nHeight));
// Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded:
if (block.nVersion < 2)
{
if ((!TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 950, 1000)) ||
(TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 75, 100)))
{
return state.Invalid(error("AcceptBlock() : rejected nVersion=1 block"),
REJECT_OBSOLETE, "bad-version");
}
}
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
if (block.nVersion >= 2)
{
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
if ((!TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 750, 1000)) ||
(TestNet() && CBlockIndex::IsSuperMajority(2, pindexPrev, 51, 100)))
{
CScript expect = CScript() << nHeight;
if (block.vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin()))
return state.DoS(100, error("AcceptBlock() : block height mismatch in coinbase"),
REJECT_INVALID, "bad-cb-height");
}
}
}
// Write block to history file
try {
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (dbp != NULL)
blockPos = *dbp;
if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.nTime, dbp != NULL))
return error("AcceptBlock() : FindBlockPos failed");
if (dbp == NULL)
if (!WriteBlockToDisk(block, blockPos))
return state.Abort(_("Failed to write block"));
if (!AddToBlockIndex(block, state, blockPos))
return error("AcceptBlock() : AddToBlockIndex failed");
} catch(std::runtime_error &e) {
return state.Abort(_("System error: ") + e.what());
}
// Relay inventory, but don't relay old inventory during initial block download
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
if (chainActive.Tip()->GetBlockHash() == hash)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (chainActive.Height() > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hash));
}
return true;
}
bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck)
{
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
int64_t CBlockIndex::GetMedianTime() const
{
AssertLockHeld(cs_main);
const CBlockIndex* pindex = this;
for (int i = 0; i < nMedianTimeSpan/2; i++)
{
if (!chainActive.Next(pindex))
return GetBlockTime();
pindex = chainActive.Next(pindex);
}
return pindex->GetMedianTimePast();
}
void PushGetBlocks(CNode* pnode, CBlockIndex* pindexBegin, uint256 hashEnd)
{
AssertLockHeld(cs_main);
// Filter out duplicate requests
if (pindexBegin == pnode->pindexLastGetBlocksBegin && hashEnd == pnode->hashLastGetBlocksEnd)
return;
pnode->pindexLastGetBlocksBegin = pindexBegin;
pnode->hashLastGetBlocksEnd = hashEnd;
pnode->PushMessage("getblocks", chainActive.GetLocator(pindexBegin), hashEnd);
}
bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = pblock->GetHash();
if (mapBlockIndex.count(hash))
return state.Invalid(error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString()), 0, "duplicate");
if (mapOrphanBlocks.count(hash))
return state.Invalid(error("ProcessBlock() : already have block (orphan) %s", hash.ToString()), 0, "duplicate");
// Preliminary checks
if (!CheckBlock(*pblock, state))
return error("ProcessBlock() : CheckBlock FAILED");
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && pblock->hashPrevBlock != (chainActive.Tip() ? chainActive.Tip()->GetBlockHash() : uint256(0)))
{
// Extra checks to prevent "fill up memory by spamming with bogus blocks"
int64_t deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime;
if (deltaTime < 0)
{
return state.DoS(100, error("ProcessBlock() : block with timestamp before last checkpoint"),
REJECT_CHECKPOINT, "time-too-old");
}
CBigNum bnNewBlock;
bnNewBlock.SetCompact(pblock->nBits);
CBigNum bnRequired;
bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime));
if (bnNewBlock > bnRequired)
{
return state.DoS(100, error("ProcessBlock() : block with too little proof-of-work"),
REJECT_INVALID, "bad-diffbits");
}
}
// If we don't already have its previous block, shunt it off to holding area until we get it
if (pblock->hashPrevBlock != 0 && !mapBlockIndex.count(pblock->hashPrevBlock))
{
LogPrintf("ProcessBlock: ORPHAN BLOCK %lu, prev=%s\n", (unsigned long)mapOrphanBlocks.size(), pblock->hashPrevBlock.ToString());
// Accept orphans as long as there is a node to request its parents from
if (pfrom) {
PruneOrphanBlocks();
COrphanBlock* pblock2 = new COrphanBlock();
{
CDataStream ss(SER_DISK, CLIENT_VERSION);
ss << *pblock;
pblock2->vchBlock = std::vector<unsigned char>(ss.begin(), ss.end());
}
pblock2->hashBlock = hash;
pblock2->hashPrev = pblock->hashPrevBlock;
mapOrphanBlocks.insert(make_pair(hash, pblock2));
mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrev, pblock2));
// Ask this guy to fill in what we're missing
PushGetBlocks(pfrom, chainActive.Tip(), GetOrphanRoot(hash));
}
return true;
}
// Store to disk
if (!AcceptBlock(*pblock, state, dbp))
return error("ProcessBlock() : AcceptBlock FAILED");
// Recursively process any orphan blocks that depended on this one
vector<uint256> vWorkQueue;
vWorkQueue.push_back(hash);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (multimap<uint256, COrphanBlock*>::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev);
mi != mapOrphanBlocksByPrev.upper_bound(hashPrev);
++mi)
{
CBlock block;
{
CDataStream ss(mi->second->vchBlock, SER_DISK, CLIENT_VERSION);
ss >> block;
}
block.BuildMerkleTree();
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan resolution (that is, feeding people an invalid block based on LegitBlockX in order to get anyone relaying LegitBlockX banned)
CValidationState stateDummy;
if (AcceptBlock(block, stateDummy))
vWorkQueue.push_back(mi->second->hashBlock);
mapOrphanBlocks.erase(mi->second->hashBlock);
delete mi->second;
}
mapOrphanBlocksByPrev.erase(hashPrev);
}
LogPrintf("ProcessBlock: ACCEPTED\n");
return true;
}
CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter& filter)
{
header = block.GetBlockHeader();
vector<bool> vMatch;
vector<uint256> vHashes;
vMatch.reserve(block.vtx.size());
vHashes.reserve(block.vtx.size());
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
uint256 hash = block.vtx[i].GetHash();
if (filter.IsRelevantAndUpdate(block.vtx[i], hash))
{
vMatch.push_back(true);
vMatchedTxn.push_back(make_pair(i, hash));
}
else
vMatch.push_back(false);
vHashes.push_back(hash);
}
txn = CPartialMerkleTree(vHashes, vMatch);
}
uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
if (height == 0) {
// hash at height 0 is the txids themself
return vTxid[pos];
} else {
// calculate left hash
uint256 left = CalcHash(height-1, pos*2, vTxid), right;
// calculate right hash if not beyong the end of the array - copy left hash otherwise1
if (pos*2+1 < CalcTreeWidth(height-1))
right = CalcHash(height-1, pos*2+1, vTxid);
else
right = left;
// combine subhashes
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
}
void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
// determine whether this node is the parent of at least one matched txid
bool fParentOfMatch = false;
for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
fParentOfMatch |= vMatch[p];
// store as flag bit
vBits.push_back(fParentOfMatch);
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, store hash and stop
vHash.push_back(CalcHash(height, pos, vTxid));
} else {
// otherwise, don't store any hash, but descend into the subtrees
TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
if (pos*2+1 < CalcTreeWidth(height-1))
TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
}
}
uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch) {
if (nBitsUsed >= vBits.size()) {
// overflowed the bits array - failure
fBad = true;
return 0;
}
bool fParentOfMatch = vBits[nBitsUsed++];
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, use stored hash and do not descend
if (nHashUsed >= vHash.size()) {
// overflowed the hash array - failure
fBad = true;
return 0;
}
const uint256 &hash = vHash[nHashUsed++];
if (height==0 && fParentOfMatch) // in case of height 0, we have a matched txid
vMatch.push_back(hash);
return hash;
} else {
// otherwise, descend into the subtrees to extract matched txids and hashes
uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch), right;
if (pos*2+1 < CalcTreeWidth(height-1))
right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch);
else
right = left;
// and combine them before returning
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
}
CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
// reset state
vBits.clear();
vHash.clear();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
TraverseAndBuild(nHeight, 0, vTxid, vMatch);
}
CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch) {
vMatch.clear();
// An empty set will not work
if (nTransactions == 0)
return 0;
// check for excessively high numbers of transactions
if (nTransactions > MAX_BLOCK_SIZE / 60) // 60 is the lower bound for the size of a serialized CTransaction
return 0;
// there can never be more hashes provided than one for every txid
if (vHash.size() > nTransactions)
return 0;
// there must be at least one bit per node in the partial tree, and at least one node per hash
if (vBits.size() < vHash.size())
return 0;
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
unsigned int nBitsUsed = 0, nHashUsed = 0;
uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch);
// verify that no problems occured during the tree traversal
if (fBad)
return 0;
// verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
return 0;
// verify that all hashes were consumed
if (nHashUsed != vHash.size())
return 0;
return hashMerkleRoot;
}
bool AbortNode(const std::string &strMessage) {
strMiscWarning = strMessage;
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(strMessage, "", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
bool CheckDiskSpace(uint64_t nAdditionalBytes)
{
uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode(_("Error: Disk space is low!"));
return true;
}
FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
if (pos.IsNull())
return NULL;
boost::filesystem::path path = GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
boost::filesystem::create_directories(path.parent_path());
FILE* file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly)
file = fopen(path.string().c_str(), "wb+");
if (!file) {
LogPrintf("Unable to open file %s\n", path.string());
return NULL;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string());
fclose(file);
return NULL;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
CBlockIndex * InsertBlockIndex(uint256 hash)
{
if (hash == 0)
return NULL;
// Return existing
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error("LoadBlockIndex() : new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB()
{
if (!pblocktree->LoadBlockIndexGuts())
return false;
boost::this_thread::interruption_point();
// Calculate nChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + pindex->GetBlockWork().getuint256();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS && !(pindex->nStatus & BLOCK_FAILED_MASK))
setBlockIndexValid.insert(pindex);
if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
LogPrintf("LoadBlockIndexDB(): last block file = %i\n", nLastBlockFile);
if (pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile))
LogPrintf("LoadBlockIndexDB(): last block file info: %s\n", infoLastBlockFile.ToString());
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
fReindex |= fReindexing;
// Check whether we have a transaction index
pblocktree->ReadFlag("txindex", fTxIndex);
LogPrintf("LoadBlockIndexDB(): transaction index %s\n", fTxIndex ? "enabled" : "disabled");
// Load pointer to end of best chain
std::map<uint256, CBlockIndex*>::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock());
if (it == mapBlockIndex.end())
return true;
chainActive.SetTip(it->second);
LogPrintf("LoadBlockIndexDB(): hashBestChain=%s height=%d date=%s progress=%f\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainActive.Tip()));
return true;
}
bool VerifyDB(int nCheckLevel, int nCheckDepth)
{
LOCK(cs_main);
if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > chainActive.Height())
nCheckDepth = chainActive.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(*pcoinsTip, true);
CBlockIndex* pindexState = chainActive.Tip();
CBlockIndex* pindexFailure = NULL;
int nGoodTransactions = 0;
CValidationState state;
for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev)
{
boost::this_thread::interruption_point();
if (pindex->nHeight < chainActive.Height()-nCheckDepth)
break;
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex))
return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !CheckBlock(block, state))
return error("VerifyDB() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (!pos.IsNull()) {
if (!undo.ReadFromDisk(pos, pindex->pprev->GetBlockHash()))
return error("VerifyDB() : *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
if (nCheckLevel >= 3 && pindex == pindexState && (coins.GetCacheSize() + pcoinsTip->GetCacheSize()) <= 2*nCoinCacheSize + 32000) {
bool fClean = true;
if (!DisconnectBlock(block, state, pindex, coins, &fClean))
return error("VerifyDB() : *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
pindexState = pindex->pprev;
if (!fClean) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else
nGoodTransactions += block.vtx.size();
}
}
if (pindexFailure)
return error("VerifyDB() : *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions);
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
CBlockIndex *pindex = pindexState;
while (pindex != chainActive.Tip()) {
boost::this_thread::interruption_point();
pindex = chainActive.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex))
return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
if (!ConnectBlock(block, state, pindex, coins))
return error("VerifyDB() : *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions);
return true;
}
void UnloadBlockIndex()
{
mapBlockIndex.clear();
setBlockIndexValid.clear();
chainActive.SetTip(NULL);
pindexBestInvalid = NULL;
}
bool LoadBlockIndex()
{
// Load block index from databases
if (!fReindex && !LoadBlockIndexDB())
return false;
return true;
}
bool InitBlockIndex() {
LOCK(cs_main);
// Check whether we're already initialized
if (chainActive.Genesis() != NULL)
return true;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg("-txindex", false);
pblocktree->WriteFlag("txindex", fTxIndex);
LogPrintf("Initializing databases...\n");
// Only add the genesis block if not reindexing (in which case we reuse the one already on disk)
if (!fReindex) {
try {
CBlock &block = const_cast<CBlock&>(Params().GenesisBlock());
// Start new block file
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
CValidationState state;
if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.nTime))
return error("LoadBlockIndex() : FindBlockPos failed");
if (!WriteBlockToDisk(block, blockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
if (!AddToBlockIndex(block, state, blockPos))
return error("LoadBlockIndex() : genesis block not accepted");
} catch(std::runtime_error &e) {
return error("LoadBlockIndex() : failed to initialize block database: %s", e.what());
}
}
return true;
}
void PrintBlockTree()
{
AssertLockHeld(cs_main);
// pre-compute tree structure
map<CBlockIndex*, vector<CBlockIndex*> > mapNext;
for (map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi)
{
CBlockIndex* pindex = (*mi).second;
mapNext[pindex->pprev].push_back(pindex);
// test
//while (rand() % 3 == 0)
// mapNext[pindex->pprev].push_back(pindex);
}
vector<pair<int, CBlockIndex*> > vStack;
vStack.push_back(make_pair(0, chainActive.Genesis()));
int nPrevCol = 0;
while (!vStack.empty())
{
int nCol = vStack.back().first;
CBlockIndex* pindex = vStack.back().second;
vStack.pop_back();
// print split or gap
if (nCol > nPrevCol)
{
for (int i = 0; i < nCol-1; i++)
LogPrintf("| ");
LogPrintf("|\\\n");
}
else if (nCol < nPrevCol)
{
for (int i = 0; i < nCol; i++)
LogPrintf("| ");
LogPrintf("|\n");
}
nPrevCol = nCol;
// print columns
for (int i = 0; i < nCol; i++)
LogPrintf("| ");
// print item
CBlock block;
ReadBlockFromDisk(block, pindex);
LogPrintf("%d (blk%05u.dat:0x%x) %s tx %u\n",
pindex->nHeight,
pindex->GetBlockPos().nFile, pindex->GetBlockPos().nPos,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", block.GetBlockTime()),
block.vtx.size());
// put the main time-chain first
vector<CBlockIndex*>& vNext = mapNext[pindex];
for (unsigned int i = 0; i < vNext.size(); i++)
{
if (chainActive.Next(vNext[i]))
{
swap(vNext[0], vNext[i]);
break;
}
}
// iterate children
for (unsigned int i = 0; i < vNext.size(); i++)
vStack.push_back(make_pair(nCol+i, vNext[i]));
}
}
bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp)
{
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
try {
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64_t nStartByte = 0;
if (dbp) {
// (try to) skip already indexed part
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(dbp->nFile, info)) {
nStartByte = info.nSize;
blkdat.Seek(info.nSize);
}
}
uint64_t nRewind = blkdat.GetPos();
while (blkdat.good() && !blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[MESSAGE_START_SIZE];
blkdat.FindByte(Params().MessageStart()[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> FLATDATA(buf);
if (memcmp(buf, Params().MessageStart(), MESSAGE_START_SIZE))
continue;
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SIZE)
continue;
} catch (std::exception &e) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
blkdat.SetLimit(nBlockPos + nSize);
CBlock block;
blkdat >> block;
nRewind = blkdat.GetPos();
// process block
if (nBlockPos >= nStartByte) {
LOCK(cs_main);
if (dbp)
dbp->nPos = nBlockPos;
CValidationState state;
if (ProcessBlock(state, NULL, &block, dbp))
nLoaded++;
if (state.IsError())
break;
}
} catch (std::exception &e) {
LogPrintf("%s : Deserialize or I/O error - %s", __func__, e.what());
}
}
fclose(fileIn);
} catch(std::runtime_error &e) {
AbortNode(_("Error: system error: ") + e.what());
}
if (nLoaded > 0)
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (GetBoolArg("-testsafemode", false))
strRPC = "test";
if (!CLIENT_VERSION_IS_RELEASE)
strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
if (fLargeWorkForkFound)
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues.");
}
else if (fLargeWorkInvalidChainFound)
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade.");
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
txInMap = mempool.exists(inv.hash);
return txInMap || mapOrphanTransactions.count(inv.hash) ||
pcoinsTip->HaveCoins(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash) ||
mapOrphanBlocks.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
void static ProcessGetData(CNode* pfrom)
{
std::deque<CInv>::iterator it = pfrom->vRecvGetData.begin();
vector<CInv> vNotFound;
LOCK(cs_main);
while (it != pfrom->vRecvGetData.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
const CInv &inv = *it;
{
boost::this_thread::interruption_point();
it++;
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
{
bool send = false;
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
// If the requested block is at a height below our last
// checkpoint, only serve it if it's in the checkpointed chain
int nHeight = mi->second->nHeight;
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && nHeight < pcheckpoint->nHeight) {
if (!chainActive.Contains(mi->second))
{
LogPrintf("ProcessGetData(): ignoring request for old block that isn't in the main chain\n");
} else {
send = true;
}
} else {
send = true;
}
}
if (send)
{
// Send block from disk
CBlock block;
ReadBlockFromDisk(block, (*mi).second);
if (inv.type == MSG_BLOCK)
pfrom->PushMessage("block", block);
else // MSG_FILTERED_BLOCK)
{
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
{
CMerkleBlock merkleBlock(block, *pfrom->pfilter);
pfrom->PushMessage("merkleblock", merkleBlock);
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
// This avoids hurting performance by pointlessly requiring a round-trip
// Note that there is currently no way for a node to request any single transactions we didnt send here -
// they must either disconnect and retry or request the full block.
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
// however we MUST always provide at least what the remote peer needs
typedef std::pair<unsigned int, uint256> PairType;
BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn)
if (!pfrom->setInventoryKnown.count(CInv(MSG_TX, pair.second)))
pfrom->PushMessage("tx", block.vtx[pair.first]);
}
// else
// no response
}
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash()));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
CTransaction tx;
if (mempool.lookup(inv.hash, tx)) {
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
pushed = true;
}
}
if (!pushed) {
vNotFound.push_back(inv);
}
}
// Track requests for our stuff.
g_signals.Inventory(inv.hash);
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
break;
}
}
pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
pfrom->PushMessage("notfound", vNotFound);
}
}
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
{
RandAddSeedPerfmon();
LogPrint("net", "received: %s (%u bytes)\n", strCommand, vRecv.size());
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
{
LOCK(cs_main);
State(pfrom->GetId())->nLastBlockProcess = GetTimeMicros();
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->PushMessage("reject", strCommand, REJECT_DUPLICATE, string("Duplicate version message"));
Misbehaving(pfrom->GetId(), 1);
return false;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PEER_PROTO_VERSION)
{
// disconnect from peers older than this proto version
LogPrintf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString(), pfrom->nVersion);
pfrom->PushMessage("reject", strCommand, REJECT_OBSOLETE,
strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION));
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty()) {
vRecv >> LIMITED_STRING(pfrom->strSubVer, 256);
pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer);
}
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
if (!vRecv.empty())
vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message
else
pfrom->fRelayTxes = true;
if (pfrom->fInbound && addrMe.IsRoutable())
{
pfrom->addrLocal = addrMe;
SeenLocal(addrMe);
}
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString());
pfrom->fDisconnect = true;
return true;
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
// Change version
pfrom->PushMessage("verack");
pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (!fNoListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
pfrom->PushAddress(addr);
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->cleanSubVer, pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString(), addrFrom.ToString(), pfrom->addr.ToString());
AddTimeData(pfrom->addr, nTime);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
Misbehaving(pfrom->GetId(), 1);
return false;
}
else if (strCommand == "verack")
{
pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
Misbehaving(pfrom->GetId(), 20);
return error("message addr size() = %u", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
boost::this_thread::interruption_point();
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64_t hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60));
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
Misbehaving(pfrom->GetId(), 20);
return error("message inv size() = %u", vInv.size());
}
LOCK(cs_main);
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
boost::this_thread::interruption_point();
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(inv);
LogPrint("net", " got inventory: %s %s\n", inv.ToString(), fAlreadyHave ? "have" : "new");
if (!fAlreadyHave) {
if (!fImporting && !fReindex) {
if (inv.type == MSG_BLOCK)
AddBlockToQueue(pfrom->GetId(), inv.hash);
else
pfrom->AskFor(inv);
}
} else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) {
PushGetBlocks(pfrom, chainActive.Tip(), GetOrphanRoot(inv.hash));
}
// Track requests for our stuff
g_signals.Inventory(inv.hash);
if (pfrom->nSendSize > (SendBufferSize() * 2)) {
Misbehaving(pfrom->GetId(), 50);
return error("send buffer size() = %u", pfrom->nSendSize);
}
}
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
Misbehaving(pfrom->GetId(), 20);
return error("message getdata size() = %u", vInv.size());
}
if (fDebug || (vInv.size() != 1))
LogPrint("net", "received getdata (%u invsz)\n", vInv.size());
if ((fDebug && vInv.size() > 0) || (vInv.size() == 1))
LogPrint("net", "received getdata for: %s\n", vInv[0].ToString());
pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end());
ProcessGetData(pfrom);
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
// Find the last block the caller has in the main chain
CBlockIndex* pindex = chainActive.FindFork(locator);
// Send the rest of the chain
if (pindex)
pindex = chainActive.Next(pindex);
int nLimit = 500;
LogPrint("net", "getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString(), nLimit);
for (; pindex; pindex = chainActive.Next(pindex))
{
if (pindex->GetBlockHash() == hashStop)
{
LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = chainActive.FindFork(locator);
if (pindex)
pindex = chainActive.Next(pindex);
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
vector<CBlock> vHeaders;
int nLimit = 2000;
LogPrint("net", "getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString());
for (; pindex; pindex = chainActive.Next(pindex))
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
bool fMissingInputs = false;
CValidationState state;
if (AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs))
{
mempool.check(pcoinsTip);
RelayTransaction(tx, inv.hash);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
LogPrint("mempool", "AcceptToMemoryPool: %s %s : accepted %s (poolsz %u)\n",
pfrom->addr.ToString(), pfrom->cleanSubVer,
tx.GetHash().ToString(),
mempool.mapTx.size());
// Recursively process any orphan transactions that depended on this one
set<NodeId> setMisbehaving;
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
map<uint256, set<uint256> >::iterator itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue[i]);
if (itByPrev == mapOrphanTransactionsByPrev.end())
continue;
for (set<uint256>::iterator mi = itByPrev->second.begin();
mi != itByPrev->second.end();
++mi)
{
const uint256& orphanHash = *mi;
const CTransaction& orphanTx = mapOrphanTransactions[orphanHash].tx;
NodeId fromPeer = mapOrphanTransactions[orphanHash].fromPeer;
bool fMissingInputs2 = false;
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan
// resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get
// anyone relaying LegitTxX banned)
CValidationState stateDummy;
vEraseQueue.push_back(orphanHash);
if (setMisbehaving.count(fromPeer))
continue;
if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2))
{
LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString());
RelayTransaction(orphanTx, orphanHash);
mapAlreadyAskedFor.erase(CInv(MSG_TX, orphanHash));
vWorkQueue.push_back(orphanHash);
}
else if (!fMissingInputs2)
{
int nDos = 0;
if (stateDummy.IsInvalid(nDos) && nDos > 0)
{
// Punish peer that gave us an invalid orphan tx
Misbehaving(fromPeer, nDos);
setMisbehaving.insert(fromPeer);
LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString());
}
// too-little-fee orphan
LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString());
}
mempool.check(pcoinsTip);
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(tx, pfrom->GetId());
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS));
unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx);
if (nEvicted > 0)
LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted);
}
int nDoS = 0;
if (state.IsInvalid(nDoS))
{
LogPrint("mempool", "%s from %s %s was not accepted into the memory pool: %s\n", tx.GetHash().ToString(),
pfrom->addr.ToString(), pfrom->cleanSubVer,
state.GetRejectReason());
pfrom->PushMessage("reject", strCommand, state.GetRejectCode(),
state.GetRejectReason(), inv.hash);
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
}
}
else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlock block;
vRecv >> block;
LogPrint("net", "received block %s\n", block.GetHash().ToString());
// block.print();
CInv inv(MSG_BLOCK, block.GetHash());
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
// Remember who we got this block from.
mapBlockSource[inv.hash] = pfrom->GetId();
MarkBlockAsReceived(inv.hash, pfrom->GetId());
CValidationState state;
ProcessBlock(state, pfrom, &block);
}
else if (strCommand == "getaddr")
{
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
LOCK2(cs_main, pfrom->cs_filter);
std::vector<uint256> vtxid;
mempool.queryHashes(vtxid);
vector<CInv> vInv;
BOOST_FOREACH(uint256& hash, vtxid) {
CInv inv(MSG_TX, hash);
CTransaction tx;
bool fInMemPool = mempool.lookup(hash, tx);
if (!fInMemPool) continue; // another thread removed since queryHashes, maybe...
if ((pfrom->pfilter && pfrom->pfilter->IsRelevantAndUpdate(tx, hash)) ||
(!pfrom->pfilter))
vInv.push_back(inv);
if (vInv.size() == MAX_INV_SZ) {
pfrom->PushMessage("inv", vInv);
vInv.clear();
}
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "pong")
{
int64_t pingUsecEnd = GetTimeMicros();
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
if (pfrom->nPingNonceSent != 0) {
if (nonce == pfrom->nPingNonceSent) {
// Matching pong received, this ping is no longer outstanding
bPingFinished = true;
int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart;
if (pingUsecTime > 0) {
// Successful ping time measurement, replace previous
pfrom->nPingUsecTime = pingUsecTime;
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
// This is most likely a bug in another implementation somewhere, cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
// This is most likely a bug in another implementation somewhere, cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint("net", "pong %s %s: %s, %x expected, %x received, %u bytes\n",
pfrom->addr.ToString(),
pfrom->cleanSubVer,
sProblem,
pfrom->nPingNonceSent,
nonce,
nAvail);
}
if (bPingFinished) {
pfrom->nPingNonceSent = 0;
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
Misbehaving(pfrom->GetId(), 10);
}
}
}
else if (strCommand == "filterload")
{
CBloomFilter filter;
vRecv >> filter;
if (!filter.IsWithinSizeConstraints())
// There is no excuse for sending a too-large filter
Misbehaving(pfrom->GetId(), 100);
else
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter(filter);
pfrom->pfilter->UpdateEmptyFull();
}
pfrom->fRelayTxes = true;
}
else if (strCommand == "filteradd")
{
vector<unsigned char> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
// and thus, the maximum size any matched object can have) in a filteradd message
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
Misbehaving(pfrom->GetId(), 100);
} else {
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
pfrom->pfilter->insert(vData);
else
Misbehaving(pfrom->GetId(), 100);
}
}
else if (strCommand == "filterclear")
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter();
pfrom->fRelayTxes = true;
}
else if (strCommand == "reject")
{
if (fDebug)
{
string strMsg; unsigned char ccode; string strReason;
vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, 111);
ostringstream ss;
ss << strMsg << " code " << itostr(ccode) << ": " << strReason;
if (strMsg == "block" || strMsg == "tx")
{
uint256 hash;
vRecv >> hash;
ss << ": hash " << hash.ToString();
}
LogPrint("net", "Reject %s\n", SanitizeString(ss.str()));
}
}
else
{
// Ignore unknown commands for extensibility
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
// requires LOCK(cs_vRecvMsg)
bool ProcessMessages(CNode* pfrom)
{
//if (fDebug)
// LogPrintf("ProcessMessages(%u messages)\n", pfrom->vRecvMsg.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fOk = true;
if (!pfrom->vRecvGetData.empty())
ProcessGetData(pfrom);
// this maintains the order of responses
if (!pfrom->vRecvGetData.empty()) return fOk;
std::deque<CNetMessage>::iterator it = pfrom->vRecvMsg.begin();
while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
// get next message
CNetMessage& msg = *it;
//if (fDebug)
// LogPrintf("ProcessMessages(message %u msgsz, %u bytes, complete:%s)\n",
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
// end, if an incomplete message is found
if (!msg.complete())
break;
// at this point, any failure means we can delete the current message
it++;
// Scan for message start
if (memcmp(msg.hdr.pchMessageStart, Params().MessageStart(), MESSAGE_START_SIZE) != 0) {
LogPrintf("\n\nPROCESSMESSAGE: INVALID MESSAGESTART\n\n");
fOk = false;
break;
}
// Read header
CMessageHeader& hdr = msg.hdr;
if (!hdr.IsValid())
{
LogPrintf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand());
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
// Checksum
CDataStream& vRecv = msg.vRecv;
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
LogPrintf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand, nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Process message
bool fRet = false;
try
{
fRet = ProcessMessage(pfrom, strCommand, vRecv);
boost::this_thread::interruption_point();
}
catch (std::ios_base::failure& e)
{
pfrom->PushMessage("reject", strCommand, REJECT_MALFORMED, string("error parsing message"));
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand, nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand, nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (boost::thread_interrupted) {
throw;
}
catch (std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
LogPrintf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand, nMessageSize);
break;
}
// In case the connection got shut down, its receive buffer was wiped
if (!pfrom->fDisconnect)
pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it);
return fOk;
}
bool SendMessages(CNode* pto, bool fSendTrickle)
{
{
// Don't send anything until we get their version message
if (pto->nVersion == 0)
return true;
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSendMsg.empty()) {
// Ping automatically sent as a keepalive
pingSend = true;
}
if (pingSend) {
uint64_t nonce = 0;
while (nonce == 0) {
RAND_bytes((unsigned char*)&nonce, sizeof(nonce));
}
pto->nPingNonceSent = nonce;
pto->fPingQueued = false;
if (pto->nVersion > BIP0031_VERSION) {
// Take timestamp as close as possible before transmitting ping
pto->nPingUsecStart = GetTimeMicros();
pto->PushMessage("ping", nonce);
} else {
// Peer is too old to support ping command with nonce, pong will never arrive, disable timing
pto->nPingUsecStart = 0;
pto->PushMessage("ping");
}
}
TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState()
if (!lockMain)
return true;
// Address refresh broadcast
static int64_t nLastRebroadcast;
if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60))
{
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
// Periodically clear setAddrKnown to allow refresh broadcasts
if (nLastRebroadcast)
pnode->setAddrKnown.clear();
// Rebroadcast our address
if (!fNoListen)
{
CAddress addr = GetLocalAddress(&pnode->addr);
if (addr.IsRoutable())
pnode->PushAddress(addr);
}
}
}
nLastRebroadcast = GetTime();
}
//
// Message: addr
//
if (fSendTrickle)
{
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
// returns true if wasn't already contained in the set
if (pto->setAddrKnown.insert(addr).second)
{
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage("addr", vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage("addr", vAddr);
}
CNodeState &state = *State(pto->GetId());
if (state.fShouldBan) {
if (pto->addr.IsLocal())
LogPrintf("Warning: not banning local node %s!\n", pto->addr.ToString());
else {
pto->fDisconnect = true;
CNode::Ban(pto->addr);
}
state.fShouldBan = false;
}
BOOST_FOREACH(const CBlockReject& reject, state.rejects)
pto->PushMessage("reject", (string)"block", reject.chRejectCode, reject.strRejectReason, reject.hashBlock);
state.rejects.clear();
// Start block sync
if (pto->fStartSync && !fImporting && !fReindex) {
pto->fStartSync = false;
PushGetBlocks(pto, chainActive.Tip(), uint256(0));
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if (!fReindex && !fImporting && !IsInitialBlockDownload())
{
g_signals.Broadcast();
}
//
// Message: inventory
//
vector<CInv> vInv;
vector<CInv> vInvWait;
{
LOCK(pto->cs_inventory);
vInv.reserve(pto->vInventoryToSend.size());
vInvWait.reserve(pto->vInventoryToSend.size());
BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend)
{
if (pto->setInventoryKnown.count(inv))
continue;
// trickle out tx inv to protect privacy
if (inv.type == MSG_TX && !fSendTrickle)
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint256 hashRand = inv.hash ^ hashSalt;
hashRand = Hash(BEGIN(hashRand), END(hashRand));
bool fTrickleWait = ((hashRand & 3) != 0);
if (fTrickleWait)
{
vInvWait.push_back(inv);
continue;
}
}
// returns true if wasn't already contained in the set
if (pto->setInventoryKnown.insert(inv).second)
{
vInv.push_back(inv);
if (vInv.size() >= 1000)
{
pto->PushMessage("inv", vInv);
vInv.clear();
}
}
}
pto->vInventoryToSend = vInvWait;
}
if (!vInv.empty())
pto->PushMessage("inv", vInv);
// Detect stalled peers. Require that blocks are in flight, we haven't
// received a (requested) block in one minute, and that all blocks are
// in flight for over two minutes, since we first had a chance to
// process an incoming block.
int64_t nNow = GetTimeMicros();
if (!pto->fDisconnect && state.nBlocksInFlight &&
state.nLastBlockReceive < state.nLastBlockProcess - BLOCK_DOWNLOAD_TIMEOUT*1000000 &&
state.vBlocksInFlight.front().nTime < state.nLastBlockProcess - 2*BLOCK_DOWNLOAD_TIMEOUT*1000000) {
LogPrintf("Peer %s is stalling block download, disconnecting\n", state.name.c_str());
pto->fDisconnect = true;
}
//
// Message: getdata (blocks)
//
vector<CInv> vGetData;
while (!pto->fDisconnect && state.nBlocksToDownload && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
uint256 hash = state.vBlocksToDownload.front();
vGetData.push_back(CInv(MSG_BLOCK, hash));
MarkBlockAsInFlight(pto->GetId(), hash);
LogPrint("net", "Requesting block %s from %s\n", hash.ToString().c_str(), state.name.c_str());
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
}
//
// Message: getdata (non-blocks)
//
while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(inv))
{
if (fDebug)
LogPrint("net", "sending getdata: %s\n", inv.ToString());
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage("getdata", vGetData);
}
return true;
}
class CMainCleanup
{
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
std::map<uint256, CBlockIndex*>::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
// orphan blocks
std::map<uint256, COrphanBlock*>::iterator it2 = mapOrphanBlocks.begin();
for (; it2 != mapOrphanBlocks.end(); it2++)
delete (*it2).second;
mapOrphanBlocks.clear();
// orphan transactions
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
}
} instance_of_cmaincleanup;