3d796f8996
The implementation of each class' serialization/deserialization is no longer passed within a macro. The implementation now lies within a template of form: template <typename T, typename Stream, typename Operation> inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) { size_t nSerSize = 0; /* CODE */ return nSerSize; } In cases when codepath should depend on whether or not we are just deserializing (old fGetSize, fWrite, fRead flags) an additional clause can be used: bool fRead = boost::is_same<Operation, CSerActionUnserialize>(); The IMPLEMENT_SERIALIZE macro will now be a freestanding clause added within class' body (similiar to Qt's Q_OBJECT) to implement GetSerializeSize, Serialize and Unserialize. These are now wrappers around the "SerializationOp" template.
201 lines
6.4 KiB
C++
201 lines
6.4 KiB
C++
// Copyright (c) 2009-2013 The Bitcoin developers
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef __CRYPTER_H__
|
|
#define __CRYPTER_H__
|
|
|
|
#include "allocators.h"
|
|
#include "serialize.h"
|
|
#include "keystore.h"
|
|
|
|
class uint256;
|
|
|
|
const unsigned int WALLET_CRYPTO_KEY_SIZE = 32;
|
|
const unsigned int WALLET_CRYPTO_SALT_SIZE = 8;
|
|
|
|
/*
|
|
Private key encryption is done based on a CMasterKey,
|
|
which holds a salt and random encryption key.
|
|
|
|
CMasterKeys are encrypted using AES-256-CBC using a key
|
|
derived using derivation method nDerivationMethod
|
|
(0 == EVP_sha512()) and derivation iterations nDeriveIterations.
|
|
vchOtherDerivationParameters is provided for alternative algorithms
|
|
which may require more parameters (such as scrypt).
|
|
|
|
Wallet Private Keys are then encrypted using AES-256-CBC
|
|
with the double-sha256 of the public key as the IV, and the
|
|
master key's key as the encryption key (see keystore.[ch]).
|
|
*/
|
|
|
|
/** Master key for wallet encryption */
|
|
class CMasterKey
|
|
{
|
|
public:
|
|
std::vector<unsigned char> vchCryptedKey;
|
|
std::vector<unsigned char> vchSalt;
|
|
// 0 = EVP_sha512()
|
|
// 1 = scrypt()
|
|
unsigned int nDerivationMethod;
|
|
unsigned int nDeriveIterations;
|
|
// Use this for more parameters to key derivation,
|
|
// such as the various parameters to scrypt
|
|
std::vector<unsigned char> vchOtherDerivationParameters;
|
|
|
|
IMPLEMENT_SERIALIZE
|
|
|
|
template <typename T, typename Stream, typename Operation>
|
|
inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) {
|
|
size_t nSerSize = 0;
|
|
READWRITE(thisPtr->vchCryptedKey);
|
|
READWRITE(thisPtr->vchSalt);
|
|
READWRITE(thisPtr->nDerivationMethod);
|
|
READWRITE(thisPtr->nDeriveIterations);
|
|
READWRITE(thisPtr->vchOtherDerivationParameters);
|
|
return nSerSize;
|
|
}
|
|
|
|
CMasterKey()
|
|
{
|
|
// 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M
|
|
// ie slightly lower than the lowest hardware we need bother supporting
|
|
nDeriveIterations = 25000;
|
|
nDerivationMethod = 0;
|
|
vchOtherDerivationParameters = std::vector<unsigned char>(0);
|
|
}
|
|
};
|
|
|
|
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial;
|
|
|
|
/** Encryption/decryption context with key information */
|
|
class CCrypter
|
|
{
|
|
private:
|
|
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
|
|
unsigned char chIV[WALLET_CRYPTO_KEY_SIZE];
|
|
bool fKeySet;
|
|
|
|
public:
|
|
bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod);
|
|
bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext);
|
|
bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext);
|
|
bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV);
|
|
|
|
void CleanKey()
|
|
{
|
|
OPENSSL_cleanse(chKey, sizeof(chKey));
|
|
OPENSSL_cleanse(chIV, sizeof(chIV));
|
|
fKeySet = false;
|
|
}
|
|
|
|
CCrypter()
|
|
{
|
|
fKeySet = false;
|
|
|
|
// Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
|
|
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
|
|
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
|
|
LockedPageManager::Instance().LockRange(&chKey[0], sizeof chKey);
|
|
LockedPageManager::Instance().LockRange(&chIV[0], sizeof chIV);
|
|
}
|
|
|
|
~CCrypter()
|
|
{
|
|
CleanKey();
|
|
|
|
LockedPageManager::Instance().UnlockRange(&chKey[0], sizeof chKey);
|
|
LockedPageManager::Instance().UnlockRange(&chIV[0], sizeof chIV);
|
|
}
|
|
};
|
|
|
|
bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext);
|
|
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext);
|
|
|
|
/** Keystore which keeps the private keys encrypted.
|
|
* It derives from the basic key store, which is used if no encryption is active.
|
|
*/
|
|
class CCryptoKeyStore : public CBasicKeyStore
|
|
{
|
|
private:
|
|
CryptedKeyMap mapCryptedKeys;
|
|
|
|
CKeyingMaterial vMasterKey;
|
|
|
|
// if fUseCrypto is true, mapKeys must be empty
|
|
// if fUseCrypto is false, vMasterKey must be empty
|
|
bool fUseCrypto;
|
|
|
|
// keeps track of whether Unlock has run a thourough check before
|
|
bool fDecryptionThoroughlyChecked;
|
|
|
|
protected:
|
|
bool SetCrypted();
|
|
|
|
// will encrypt previously unencrypted keys
|
|
bool EncryptKeys(CKeyingMaterial& vMasterKeyIn);
|
|
|
|
bool Unlock(const CKeyingMaterial& vMasterKeyIn);
|
|
|
|
public:
|
|
CCryptoKeyStore() : fUseCrypto(false), fDecryptionThoroughlyChecked(false)
|
|
{
|
|
}
|
|
|
|
bool IsCrypted() const
|
|
{
|
|
return fUseCrypto;
|
|
}
|
|
|
|
bool IsLocked() const
|
|
{
|
|
if (!IsCrypted())
|
|
return false;
|
|
bool result;
|
|
{
|
|
LOCK(cs_KeyStore);
|
|
result = vMasterKey.empty();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Lock();
|
|
|
|
virtual bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
|
|
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
|
|
bool HaveKey(const CKeyID &address) const
|
|
{
|
|
{
|
|
LOCK(cs_KeyStore);
|
|
if (!IsCrypted())
|
|
return CBasicKeyStore::HaveKey(address);
|
|
return mapCryptedKeys.count(address) > 0;
|
|
}
|
|
return false;
|
|
}
|
|
bool GetKey(const CKeyID &address, CKey& keyOut) const;
|
|
bool GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const;
|
|
void GetKeys(std::set<CKeyID> &setAddress) const
|
|
{
|
|
if (!IsCrypted())
|
|
{
|
|
CBasicKeyStore::GetKeys(setAddress);
|
|
return;
|
|
}
|
|
setAddress.clear();
|
|
CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
|
|
while (mi != mapCryptedKeys.end())
|
|
{
|
|
setAddress.insert((*mi).first);
|
|
mi++;
|
|
}
|
|
}
|
|
|
|
/* Wallet status (encrypted, locked) changed.
|
|
* Note: Called without locks held.
|
|
*/
|
|
boost::signals2::signal<void (CCryptoKeyStore* wallet)> NotifyStatusChanged;
|
|
};
|
|
|
|
#endif
|