neobytes/src/crypter.h
Kamil Domanski 3d796f8996 overhaul serialization code
The implementation of each class' serialization/deserialization is no longer
passed within a macro. The implementation now lies within a template of form:

template <typename T, typename Stream, typename Operation>
inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) {
    size_t nSerSize = 0;
    /* CODE */
    return nSerSize;
}

In cases when codepath should depend on whether or not we are just deserializing
(old fGetSize, fWrite, fRead flags) an additional clause can be used:
bool fRead = boost::is_same<Operation, CSerActionUnserialize>();

The IMPLEMENT_SERIALIZE macro will now be a freestanding clause added within
class' body (similiar to Qt's Q_OBJECT) to implement GetSerializeSize,
Serialize and Unserialize. These are now wrappers around
the "SerializationOp" template.
2014-08-31 02:14:20 +02:00

201 lines
6.4 KiB
C++

// Copyright (c) 2009-2013 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef __CRYPTER_H__
#define __CRYPTER_H__
#include "allocators.h"
#include "serialize.h"
#include "keystore.h"
class uint256;
const unsigned int WALLET_CRYPTO_KEY_SIZE = 32;
const unsigned int WALLET_CRYPTO_SALT_SIZE = 8;
/*
Private key encryption is done based on a CMasterKey,
which holds a salt and random encryption key.
CMasterKeys are encrypted using AES-256-CBC using a key
derived using derivation method nDerivationMethod
(0 == EVP_sha512()) and derivation iterations nDeriveIterations.
vchOtherDerivationParameters is provided for alternative algorithms
which may require more parameters (such as scrypt).
Wallet Private Keys are then encrypted using AES-256-CBC
with the double-sha256 of the public key as the IV, and the
master key's key as the encryption key (see keystore.[ch]).
*/
/** Master key for wallet encryption */
class CMasterKey
{
public:
std::vector<unsigned char> vchCryptedKey;
std::vector<unsigned char> vchSalt;
// 0 = EVP_sha512()
// 1 = scrypt()
unsigned int nDerivationMethod;
unsigned int nDeriveIterations;
// Use this for more parameters to key derivation,
// such as the various parameters to scrypt
std::vector<unsigned char> vchOtherDerivationParameters;
IMPLEMENT_SERIALIZE
template <typename T, typename Stream, typename Operation>
inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) {
size_t nSerSize = 0;
READWRITE(thisPtr->vchCryptedKey);
READWRITE(thisPtr->vchSalt);
READWRITE(thisPtr->nDerivationMethod);
READWRITE(thisPtr->nDeriveIterations);
READWRITE(thisPtr->vchOtherDerivationParameters);
return nSerSize;
}
CMasterKey()
{
// 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M
// ie slightly lower than the lowest hardware we need bother supporting
nDeriveIterations = 25000;
nDerivationMethod = 0;
vchOtherDerivationParameters = std::vector<unsigned char>(0);
}
};
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial;
/** Encryption/decryption context with key information */
class CCrypter
{
private:
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
unsigned char chIV[WALLET_CRYPTO_KEY_SIZE];
bool fKeySet;
public:
bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod);
bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext);
bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext);
bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV);
void CleanKey()
{
OPENSSL_cleanse(chKey, sizeof(chKey));
OPENSSL_cleanse(chIV, sizeof(chIV));
fKeySet = false;
}
CCrypter()
{
fKeySet = false;
// Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
LockedPageManager::Instance().LockRange(&chKey[0], sizeof chKey);
LockedPageManager::Instance().LockRange(&chIV[0], sizeof chIV);
}
~CCrypter()
{
CleanKey();
LockedPageManager::Instance().UnlockRange(&chKey[0], sizeof chKey);
LockedPageManager::Instance().UnlockRange(&chIV[0], sizeof chIV);
}
};
bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext);
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext);
/** Keystore which keeps the private keys encrypted.
* It derives from the basic key store, which is used if no encryption is active.
*/
class CCryptoKeyStore : public CBasicKeyStore
{
private:
CryptedKeyMap mapCryptedKeys;
CKeyingMaterial vMasterKey;
// if fUseCrypto is true, mapKeys must be empty
// if fUseCrypto is false, vMasterKey must be empty
bool fUseCrypto;
// keeps track of whether Unlock has run a thourough check before
bool fDecryptionThoroughlyChecked;
protected:
bool SetCrypted();
// will encrypt previously unencrypted keys
bool EncryptKeys(CKeyingMaterial& vMasterKeyIn);
bool Unlock(const CKeyingMaterial& vMasterKeyIn);
public:
CCryptoKeyStore() : fUseCrypto(false), fDecryptionThoroughlyChecked(false)
{
}
bool IsCrypted() const
{
return fUseCrypto;
}
bool IsLocked() const
{
if (!IsCrypted())
return false;
bool result;
{
LOCK(cs_KeyStore);
result = vMasterKey.empty();
}
return result;
}
bool Lock();
virtual bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
bool HaveKey(const CKeyID &address) const
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::HaveKey(address);
return mapCryptedKeys.count(address) > 0;
}
return false;
}
bool GetKey(const CKeyID &address, CKey& keyOut) const;
bool GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const;
void GetKeys(std::set<CKeyID> &setAddress) const
{
if (!IsCrypted())
{
CBasicKeyStore::GetKeys(setAddress);
return;
}
setAddress.clear();
CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
while (mi != mapCryptedKeys.end())
{
setAddress.insert((*mi).first);
mi++;
}
}
/* Wallet status (encrypted, locked) changed.
* Note: Called without locks held.
*/
boost::signals2::signal<void (CCryptoKeyStore* wallet)> NotifyStatusChanged;
};
#endif