neobytes/src/wallet/crypter.h
Pieter Wuille 91752ab7ed Merge #7689: Replace OpenSSL AES with ctaes-based version
723779c build: Enumerate ctaes rather than globbing (Cory Fields)
34ed64a crypter: add tests for crypter (Cory Fields)
0a36b9a crypter: shuffle Makefile so that crypto can be used by the wallet (Cory Fields)
976f9ec crypter: add a BytesToKey clone to replace the use of openssl (Cory Fields)
9049cde crypter: hook up the new aes cbc classes (Cory Fields)
fb96831 crypter: constify encrypt/decrypt (Cory Fields)
1c391a5 crypter: fix the stored initialization vector size (Cory Fields)
daa3841 crypto: add aes cbc tests (Cory Fields)
27a212d crypto: add AES 128/256 CBC classes (Cory Fields)
6bec172 Add ctaes-based constant time AES implementation (Pieter Wuille)
a545127 Squashed 'src/crypto/ctaes/' content from commit cd3c3ac (Pieter Wuille)
2017-12-22 16:33:04 +01:00

238 lines
7.9 KiB
C++

// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_WALLET_CRYPTER_H
#define BITCOIN_WALLET_CRYPTER_H
#include "keystore.h"
#include "serialize.h"
#include "support/allocators/secure.h"
class uint256;
const unsigned int WALLET_CRYPTO_KEY_SIZE = 32;
const unsigned int WALLET_CRYPTO_SALT_SIZE = 8;
const unsigned int WALLET_CRYPTO_IV_SIZE = 16;
/**
* Private key encryption is done based on a CMasterKey,
* which holds a salt and random encryption key.
*
* CMasterKeys are encrypted using AES-256-CBC using a key
* derived using derivation method nDerivationMethod
* (0 == EVP_sha512()) and derivation iterations nDeriveIterations.
* vchOtherDerivationParameters is provided for alternative algorithms
* which may require more parameters (such as scrypt).
*
* Wallet Private Keys are then encrypted using AES-256-CBC
* with the double-sha256 of the public key as the IV, and the
* master key's key as the encryption key (see keystore.[ch]).
*/
/** Master key for wallet encryption */
class CMasterKey
{
public:
std::vector<unsigned char> vchCryptedKey;
std::vector<unsigned char> vchSalt;
//! 0 = EVP_sha512()
//! 1 = scrypt()
unsigned int nDerivationMethod;
unsigned int nDeriveIterations;
//! Use this for more parameters to key derivation,
//! such as the various parameters to scrypt
std::vector<unsigned char> vchOtherDerivationParameters;
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(vchCryptedKey);
READWRITE(vchSalt);
READWRITE(nDerivationMethod);
READWRITE(nDeriveIterations);
READWRITE(vchOtherDerivationParameters);
}
CMasterKey()
{
// 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M
// ie slightly lower than the lowest hardware we need bother supporting
nDeriveIterations = 25000;
nDerivationMethod = 0;
vchOtherDerivationParameters = std::vector<unsigned char>(0);
}
};
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial;
namespace wallet_crypto
{
class TestCrypter;
}
/** Encryption/decryption context with key information */
class CCrypter
{
friend class wallet_crypto::TestCrypter; // for test access to chKey/chIV
private:
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
unsigned char chIV[WALLET_CRYPTO_IV_SIZE];
bool fKeySet;
int BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const;
public:
bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod);
bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) const;
bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) const;
bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV);
void CleanKey()
{
memory_cleanse(chKey, sizeof(chKey));
memory_cleanse(chIV, sizeof(chIV));
fKeySet = false;
}
CCrypter()
{
fKeySet = false;
// Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
LockedPageManager::Instance().LockRange(&chKey[0], sizeof chKey);
LockedPageManager::Instance().LockRange(&chIV[0], sizeof chIV);
}
~CCrypter()
{
CleanKey();
LockedPageManager::Instance().UnlockRange(&chKey[0], sizeof chKey);
LockedPageManager::Instance().UnlockRange(&chIV[0], sizeof chIV);
}
};
bool EncryptAES256(const SecureString& sKey, const SecureString& sPlaintext, const std::string& sIV, std::string& sCiphertext);
bool DecryptAES256(const SecureString& sKey, const std::string& sCiphertext, const std::string& sIV, SecureString& sPlaintext);
/** Keystore which keeps the private keys encrypted.
* It derives from the basic key store, which is used if no encryption is active.
*/
class CCryptoKeyStore : public CBasicKeyStore
{
private:
CryptedKeyMap mapCryptedKeys;
CHDChain cryptedHDChain;
CKeyingMaterial vMasterKey;
//! if fUseCrypto is true, mapKeys must be empty
//! if fUseCrypto is false, vMasterKey must be empty
bool fUseCrypto;
//! keeps track of whether Unlock has run a thorough check before
bool fDecryptionThoroughlyChecked;
//! if fOnlyMixingAllowed is true, only mixing should be allowed in unlocked wallet
bool fOnlyMixingAllowed;
protected:
bool SetCrypted();
//! will encrypt previously unencrypted keys
bool EncryptKeys(CKeyingMaterial& vMasterKeyIn);
bool EncryptHDChain(const CKeyingMaterial& vMasterKeyIn);
bool DecryptHDChain(CHDChain& hdChainRet) const;
bool SetHDChain(const CHDChain& chain);
bool SetCryptedHDChain(const CHDChain& chain);
bool Unlock(const CKeyingMaterial& vMasterKeyIn, bool fForMixingOnly = false);
public:
CCryptoKeyStore() : fUseCrypto(false), fDecryptionThoroughlyChecked(false), fOnlyMixingAllowed(false)
{
}
bool IsCrypted() const
{
return fUseCrypto;
}
// This function should be used in a different combinations to determine
// if CCryptoKeyStore is fully locked so that no operations requiring access
// to private keys are possible:
// IsLocked(true)
// or if CCryptoKeyStore's private keys are available for mixing only:
// !IsLocked(true) && IsLocked()
// or if they are available for everything:
// !IsLocked()
bool IsLocked(bool fForMixing = false) const
{
if (!IsCrypted())
return false;
bool result;
{
LOCK(cs_KeyStore);
result = vMasterKey.empty();
}
// fForMixing fOnlyMixingAllowed return
// ---------------------------------------
// true true result
// true false result
// false true true
// false false result
if(!fForMixing && fOnlyMixingAllowed) return true;
return result;
}
bool Lock(bool fAllowMixing = false);
virtual bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
bool HaveKey(const CKeyID &address) const
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::HaveKey(address);
return mapCryptedKeys.count(address) > 0;
}
return false;
}
bool GetKey(const CKeyID &address, CKey& keyOut) const;
bool GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const;
void GetKeys(std::set<CKeyID> &setAddress) const
{
if (!IsCrypted())
{
CBasicKeyStore::GetKeys(setAddress);
return;
}
setAddress.clear();
CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
while (mi != mapCryptedKeys.end())
{
setAddress.insert((*mi).first);
mi++;
}
}
bool GetHDChain(CHDChain& hdChainRet) const;
/**
* Wallet status (encrypted, locked) changed.
* Note: Called without locks held.
*/
boost::signals2::signal<void (CCryptoKeyStore* wallet)> NotifyStatusChanged;
};
#endif // BITCOIN_WALLET_CRYPTER_H