neobytes/src/main.cpp
Philip Kaufmann 84857e87e4
add missing CAutoFile::IsNull() check in main
Rebased-From: ccd056a30db0ba5e04b858a682907b378e464d34
Github-Pull: #5437
2014-12-19 18:47:00 +01:00

4548 lines
173 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "main.h"
#include "addrman.h"
#include "alert.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "checkqueue.h"
#include "init.h"
#include "merkleblock.h"
#include "net.h"
#include "pow.h"
#include "txdb.h"
#include "txmempool.h"
#include "ui_interface.h"
#include "util.h"
#include "utilmoneystr.h"
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/thread.hpp>
using namespace boost;
using namespace std;
#if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
#endif
/**
* Global state
*/
CCriticalSection cs_main;
BlockMap mapBlockIndex;
CChain chainActive;
CBlockIndex *pindexBestHeader = NULL;
int64_t nTimeBestReceived = 0;
CWaitableCriticalSection csBestBlock;
CConditionVariable cvBlockChange;
int nScriptCheckThreads = 0;
bool fImporting = false;
bool fReindex = false;
bool fTxIndex = false;
bool fIsBareMultisigStd = true;
unsigned int nCoinCacheSize = 5000;
/** Fees smaller than this (in satoshi) are considered zero fee (for relaying and mining) */
CFeeRate minRelayTxFee = CFeeRate(1000);
CTxMemPool mempool(::minRelayTxFee);
struct COrphanTx {
CTransaction tx;
NodeId fromPeer;
};
map<uint256, COrphanTx> mapOrphanTransactions;
map<uint256, set<uint256> > mapOrphanTransactionsByPrev;
void EraseOrphansFor(NodeId peer);
/**
* Returns true if there are nRequired or more blocks of minVersion or above
* in the last Params().ToCheckBlockUpgradeMajority() blocks, starting at pstart
* and going backwards.
*/
static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired);
/** Constant stuff for coinbase transactions we create: */
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
// Internal stuff
namespace {
struct CBlockIndexWorkComparator
{
bool operator()(CBlockIndex *pa, CBlockIndex *pb) {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
CBlockIndex *pindexBestInvalid;
/**
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS or better that are at least
* as good as our current tip. Entries may be failed, though.
*/
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexCandidates;
/** Number of nodes with fSyncStarted. */
int nSyncStarted = 0;
/** All pairs A->B, where A (or one if its ancestors) misses transactions, but B has transactions. */
multimap<CBlockIndex*, CBlockIndex*> mapBlocksUnlinked;
CCriticalSection cs_LastBlockFile;
std::vector<CBlockFileInfo> vinfoBlockFile;
int nLastBlockFile = 0;
/**
* Every received block is assigned a unique and increasing identifier, so we
* know which one to give priority in case of a fork.
*/
CCriticalSection cs_nBlockSequenceId;
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
uint32_t nBlockSequenceId = 1;
/**
* Sources of received blocks, to be able to send them reject messages or ban
* them, if processing happens afterwards. Protected by cs_main.
*/
map<uint256, NodeId> mapBlockSource;
/** Blocks that are in flight, and that are in the queue to be downloaded. Protected by cs_main. */
struct QueuedBlock {
uint256 hash;
CBlockIndex *pindex; //! Optional.
int64_t nTime; //! Time of "getdata" request in microseconds.
};
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> > mapBlocksInFlight;
/** Number of preferable block download peers. */
int nPreferredDownload = 0;
/** Dirty block index entries. */
set<CBlockIndex*> setDirtyBlockIndex;
/** Dirty block file entries. */
set<int> setDirtyFileInfo;
} // anon namespace
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
namespace {
struct CMainSignals {
/** Notifies listeners of updated transaction data (transaction, and optionally the block it is found in. */
boost::signals2::signal<void (const CTransaction &, const CBlock *)> SyncTransaction;
/** Notifies listeners of an erased transaction (currently disabled, requires transaction replacement). */
boost::signals2::signal<void (const uint256 &)> EraseTransaction;
/** Notifies listeners of an updated transaction without new data (for now: a coinbase potentially becoming visible). */
boost::signals2::signal<void (const uint256 &)> UpdatedTransaction;
/** Notifies listeners of a new active block chain. */
boost::signals2::signal<void (const CBlockLocator &)> SetBestChain;
/** Notifies listeners about an inventory item being seen on the network. */
boost::signals2::signal<void (const uint256 &)> Inventory;
/** Tells listeners to broadcast their data. */
boost::signals2::signal<void ()> Broadcast;
/** Notifies listeners of a block validation result */
boost::signals2::signal<void (const CBlock&, const CValidationState&)> BlockChecked;
} g_signals;
} // anon namespace
void RegisterValidationInterface(CValidationInterface* pwalletIn) {
g_signals.SyncTransaction.connect(boost::bind(&CValidationInterface::SyncTransaction, pwalletIn, _1, _2));
g_signals.EraseTransaction.connect(boost::bind(&CValidationInterface::EraseFromWallet, pwalletIn, _1));
g_signals.UpdatedTransaction.connect(boost::bind(&CValidationInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.SetBestChain.connect(boost::bind(&CValidationInterface::SetBestChain, pwalletIn, _1));
g_signals.Inventory.connect(boost::bind(&CValidationInterface::Inventory, pwalletIn, _1));
g_signals.Broadcast.connect(boost::bind(&CValidationInterface::ResendWalletTransactions, pwalletIn));
g_signals.BlockChecked.connect(boost::bind(&CValidationInterface::BlockChecked, pwalletIn, _1, _2));
}
void UnregisterValidationInterface(CValidationInterface* pwalletIn) {
g_signals.BlockChecked.disconnect(boost::bind(&CValidationInterface::BlockChecked, pwalletIn, _1, _2));
g_signals.Broadcast.disconnect(boost::bind(&CValidationInterface::ResendWalletTransactions, pwalletIn));
g_signals.Inventory.disconnect(boost::bind(&CValidationInterface::Inventory, pwalletIn, _1));
g_signals.SetBestChain.disconnect(boost::bind(&CValidationInterface::SetBestChain, pwalletIn, _1));
g_signals.UpdatedTransaction.disconnect(boost::bind(&CValidationInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.EraseTransaction.disconnect(boost::bind(&CValidationInterface::EraseFromWallet, pwalletIn, _1));
g_signals.SyncTransaction.disconnect(boost::bind(&CValidationInterface::SyncTransaction, pwalletIn, _1, _2));
}
void UnregisterAllValidationInterfaces() {
g_signals.BlockChecked.disconnect_all_slots();
g_signals.Broadcast.disconnect_all_slots();
g_signals.Inventory.disconnect_all_slots();
g_signals.SetBestChain.disconnect_all_slots();
g_signals.UpdatedTransaction.disconnect_all_slots();
g_signals.EraseTransaction.disconnect_all_slots();
g_signals.SyncTransaction.disconnect_all_slots();
}
void SyncWithWallets(const CTransaction &tx, const CBlock *pblock) {
g_signals.SyncTransaction(tx, pblock);
}
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
namespace {
struct CBlockReject {
unsigned char chRejectCode;
string strRejectReason;
uint256 hashBlock;
};
/**
* Maintain validation-specific state about nodes, protected by cs_main, instead
* by CNode's own locks. This simplifies asynchronous operation, where
* processing of incoming data is done after the ProcessMessage call returns,
* and we're no longer holding the node's locks.
*/
struct CNodeState {
//! Accumulated misbehaviour score for this peer.
int nMisbehavior;
//! Whether this peer should be disconnected and banned (unless whitelisted).
bool fShouldBan;
//! String name of this peer (debugging/logging purposes).
std::string name;
//! List of asynchronously-determined block rejections to notify this peer about.
std::vector<CBlockReject> rejects;
//! The best known block we know this peer has announced.
CBlockIndex *pindexBestKnownBlock;
//! The hash of the last unknown block this peer has announced.
uint256 hashLastUnknownBlock;
//! The last full block we both have.
CBlockIndex *pindexLastCommonBlock;
//! Whether we've started headers synchronization with this peer.
bool fSyncStarted;
//! Since when we're stalling block download progress (in microseconds), or 0.
int64_t nStallingSince;
list<QueuedBlock> vBlocksInFlight;
int nBlocksInFlight;
//! Whether we consider this a preferred download peer.
bool fPreferredDownload;
CNodeState() {
nMisbehavior = 0;
fShouldBan = false;
pindexBestKnownBlock = NULL;
hashLastUnknownBlock = uint256(0);
pindexLastCommonBlock = NULL;
fSyncStarted = false;
nStallingSince = 0;
nBlocksInFlight = 0;
fPreferredDownload = false;
}
};
/** Map maintaining per-node state. Requires cs_main. */
map<NodeId, CNodeState> mapNodeState;
// Requires cs_main.
CNodeState *State(NodeId pnode) {
map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end())
return NULL;
return &it->second;
}
int GetHeight()
{
LOCK(cs_main);
return chainActive.Height();
}
void UpdatePreferredDownload(CNode* node, CNodeState* state)
{
nPreferredDownload -= state->fPreferredDownload;
// Whether this node should be marked as a preferred download node.
state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient;
nPreferredDownload += state->fPreferredDownload;
}
void InitializeNode(NodeId nodeid, const CNode *pnode) {
LOCK(cs_main);
CNodeState &state = mapNodeState.insert(std::make_pair(nodeid, CNodeState())).first->second;
state.name = pnode->addrName;
}
void FinalizeNode(NodeId nodeid) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state->fSyncStarted)
nSyncStarted--;
BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight)
mapBlocksInFlight.erase(entry.hash);
EraseOrphansFor(nodeid);
nPreferredDownload -= state->fPreferredDownload;
mapNodeState.erase(nodeid);
}
// Requires cs_main.
void MarkBlockAsReceived(const uint256& hash) {
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
state->nStallingSince = 0;
mapBlocksInFlight.erase(itInFlight);
}
}
// Requires cs_main.
void MarkBlockAsInFlight(NodeId nodeid, const uint256& hash, CBlockIndex *pindex = NULL) {
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
QueuedBlock newentry = {hash, pindex, GetTimeMicros()};
list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), newentry);
state->nBlocksInFlight++;
mapBlocksInFlight[hash] = std::make_pair(nodeid, it);
}
/** Check whether the last unknown block a peer advertized is not yet known. */
void ProcessBlockAvailability(NodeId nodeid) {
CNodeState *state = State(nodeid);
assert(state != NULL);
if (state->hashLastUnknownBlock != 0) {
BlockMap::iterator itOld = mapBlockIndex.find(state->hashLastUnknownBlock);
if (itOld != mapBlockIndex.end() && itOld->second->nChainWork > 0) {
if (state->pindexBestKnownBlock == NULL || itOld->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = itOld->second;
state->hashLastUnknownBlock = uint256(0);
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
void UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
CNodeState *state = State(nodeid);
assert(state != NULL);
ProcessBlockAvailability(nodeid);
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end() && it->second->nChainWork > 0) {
// An actually better block was announced.
if (state->pindexBestKnownBlock == NULL || it->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = it->second;
} else {
// An unknown block was announced; just assume that the latest one is the best one.
state->hashLastUnknownBlock = hash;
}
}
/** Find the last common ancestor two blocks have.
* Both pa and pb must be non-NULL. */
CBlockIndex* LastCommonAncestor(CBlockIndex* pa, CBlockIndex* pb) {
if (pa->nHeight > pb->nHeight) {
pa = pa->GetAncestor(pb->nHeight);
} else if (pb->nHeight > pa->nHeight) {
pb = pb->GetAncestor(pa->nHeight);
}
while (pa != pb && pa && pb) {
pa = pa->pprev;
pb = pb->pprev;
}
// Eventually all chain branches meet at the genesis block.
assert(pa == pb);
return pa;
}
/** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
* at most count entries. */
void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector<CBlockIndex*>& vBlocks, NodeId& nodeStaller) {
if (count == 0)
return;
vBlocks.reserve(vBlocks.size() + count);
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability(nodeid);
if (state->pindexBestKnownBlock == NULL || state->pindexBestKnownBlock->nChainWork < chainActive.Tip()->nChainWork) {
// This peer has nothing interesting.
return;
}
if (state->pindexLastCommonBlock == NULL) {
// Bootstrap quickly by guessing a parent of our best tip is the forking point.
// Guessing wrong in either direction is not a problem.
state->pindexLastCommonBlock = chainActive[std::min(state->pindexBestKnownBlock->nHeight, chainActive.Height())];
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
// of their current tip anymore. Go back enough to fix that.
state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
return;
std::vector<CBlockIndex*> vToFetch;
CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
// Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
// linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
// download that next block if the window were 1 larger.
int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
NodeId waitingfor = -1;
while (pindexWalk->nHeight < nMaxHeight) {
// Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
// pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
// as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
vToFetch.resize(nToFetch);
pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
vToFetch[nToFetch - 1] = pindexWalk;
for (unsigned int i = nToFetch - 1; i > 0; i--) {
vToFetch[i - 1] = vToFetch[i]->pprev;
}
// Iterate over those blocks in vToFetch (in forward direction), adding the ones that
// are not yet downloaded and not in flight to vBlocks. In the mean time, update
// pindexLastCommonBlock as long as all ancestors are already downloaded.
BOOST_FOREACH(CBlockIndex* pindex, vToFetch) {
if (pindex->nStatus & BLOCK_HAVE_DATA) {
if (pindex->nChainTx)
state->pindexLastCommonBlock = pindex;
} else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) {
// The block is not already downloaded, and not yet in flight.
if (pindex->nHeight > nWindowEnd) {
// We reached the end of the window.
if (vBlocks.size() == 0 && waitingfor != nodeid) {
// We aren't able to fetch anything, but we would be if the download window was one larger.
nodeStaller = waitingfor;
}
return;
}
vBlocks.push_back(pindex);
if (vBlocks.size() == count) {
return;
}
} else if (waitingfor == -1) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
}
}
}
}
} // anon namespace
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == NULL)
return false;
stats.nMisbehavior = state->nMisbehavior;
stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
BOOST_FOREACH(const QueuedBlock& queue, state->vBlocksInFlight) {
if (queue.pindex)
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
}
return true;
}
void RegisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.connect(&GetHeight);
nodeSignals.ProcessMessages.connect(&ProcessMessages);
nodeSignals.SendMessages.connect(&SendMessages);
nodeSignals.InitializeNode.connect(&InitializeNode);
nodeSignals.FinalizeNode.connect(&FinalizeNode);
}
void UnregisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.disconnect(&GetHeight);
nodeSignals.ProcessMessages.disconnect(&ProcessMessages);
nodeSignals.SendMessages.disconnect(&SendMessages);
nodeSignals.InitializeNode.disconnect(&InitializeNode);
nodeSignals.FinalizeNode.disconnect(&FinalizeNode);
}
CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator)
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, locator.vHave) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (chain.Contains(pindex))
return pindex;
}
}
return chain.Genesis();
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx, NodeId peer)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz > 5000)
{
LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString());
return false;
}
mapOrphanTransactions[hash].tx = tx;
mapOrphanTransactions[hash].fromPeer = peer;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
LogPrint("mempool", "stored orphan tx %s (mapsz %u prevsz %u)\n", hash.ToString(),
mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.find(hash);
if (it == mapOrphanTransactions.end())
return;
BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin)
{
map<uint256, set<uint256> >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(hash);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
mapOrphanTransactions.erase(it);
}
void EraseOrphansFor(NodeId peer)
{
int nErased = 0;
map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
map<uint256, COrphanTx>::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid
if (maybeErase->second.fromPeer == peer)
{
EraseOrphanTx(maybeErase->second.tx.GetHash());
++nErased;
}
}
if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
bool IsStandardTx(const CTransaction& tx, string& reason)
{
AssertLockHeld(cs_main);
if (tx.nVersion > CTransaction::CURRENT_VERSION || tx.nVersion < 1) {
reason = "version";
return false;
}
// Treat non-final transactions as non-standard to prevent a specific type
// of double-spend attack, as well as DoS attacks. (if the transaction
// can't be mined, the attacker isn't expending resources broadcasting it)
// Basically we don't want to propagate transactions that can't be included in
// the next block.
//
// However, IsFinalTx() is confusing... Without arguments, it uses
// chainActive.Height() to evaluate nLockTime; when a block is accepted, chainActive.Height()
// is set to the value of nHeight in the block. However, when IsFinalTx()
// is called within CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a transaction can
// be part of the *next* block, we need to call IsFinalTx() with one more
// than chainActive.Height().
//
// Timestamps on the other hand don't get any special treatment, because we
// can't know what timestamp the next block will have, and there aren't
// timestamp applications where it matters.
if (!IsFinalTx(tx, chainActive.Height() + 1)) {
reason = "non-final";
return false;
}
// Extremely large transactions with lots of inputs can cost the network
// almost as much to process as they cost the sender in fees, because
// computing signature hashes is O(ninputs*txsize). Limiting transactions
// to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz >= MAX_STANDARD_TX_SIZE) {
reason = "tx-size";
return false;
}
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed
// keys. (remember the 520 byte limit on redeemScript size) That works
// out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)+3=1627
// bytes of scriptSig, which we round off to 1650 bytes for some minor
// future-proofing. That's also enough to spend a 20-of-20
// CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not
// considered standard)
if (txin.scriptSig.size() > 1650) {
reason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly()) {
reason = "scriptsig-not-pushonly";
return false;
}
}
unsigned int nDataOut = 0;
txnouttype whichType;
BOOST_FOREACH(const CTxOut& txout, tx.vout) {
if (!::IsStandard(txout.scriptPubKey, whichType)) {
reason = "scriptpubkey";
return false;
}
if (whichType == TX_NULL_DATA)
nDataOut++;
else if ((whichType == TX_MULTISIG) && (!fIsBareMultisigStd)) {
reason = "bare-multisig";
return false;
} else if (txout.IsDust(::minRelayTxFee)) {
reason = "dust";
return false;
}
}
// only one OP_RETURN txout is permitted
if (nDataOut > 1) {
reason = "multi-op-return";
return false;
}
return true;
}
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
AssertLockHeld(cs_main);
// Time based nLockTime implemented in 0.1.6
if (tx.nLockTime == 0)
return true;
if (nBlockHeight == 0)
nBlockHeight = chainActive.Height();
if (nBlockTime == 0)
nBlockTime = GetAdjustedTime();
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (!txin.IsFinal())
return false;
return true;
}
/**
* Check transaction inputs to mitigate two
* potential denial-of-service attacks:
*
* 1. scriptSigs with extra data stuffed into them,
* not consumed by scriptPubKey (or P2SH script)
* 2. P2SH scripts with a crazy number of expensive
* CHECKSIG/CHECKMULTISIG operations
*/
bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs)
{
if (tx.IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut& prev = mapInputs.GetOutputFor(tx.vin[i]);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig
// IsStandard() will have already returned false
// and this method isn't called.
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, tx.vin[i].scriptSig, false, BaseSignatureChecker()))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (Solver(subscript, whichType2, vSolutions2))
{
int tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
else
{
// Any other Script with less than 15 sigops OK:
unsigned int sigops = subscript.GetSigOpCount(true);
// ... extra data left on the stack after execution is OK, too:
return (sigops <= MAX_P2SH_SIGOPS);
}
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
bool CheckTransaction(const CTransaction& tx, CValidationState &state)
{
// Basic checks that don't depend on any context
if (tx.vin.empty())
return state.DoS(10, error("CheckTransaction() : vin empty"),
REJECT_INVALID, "bad-txns-vin-empty");
if (tx.vout.empty())
return state.DoS(10, error("CheckTransaction() : vout empty"),
REJECT_INVALID, "bad-txns-vout-empty");
// Size limits
if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CheckTransaction() : size limits failed"),
REJECT_INVALID, "bad-txns-oversize");
// Check for negative or overflow output values
CAmount nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
if (txout.nValue < 0)
return state.DoS(100, error("CheckTransaction() : txout.nValue negative"),
REJECT_INVALID, "bad-txns-vout-negative");
if (txout.nValue > MAX_MONEY)
return state.DoS(100, error("CheckTransaction() : txout.nValue too high"),
REJECT_INVALID, "bad-txns-vout-toolarge");
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, error("CheckTransaction() : txout total out of range"),
REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
if (vInOutPoints.count(txin.prevout))
return state.DoS(100, error("CheckTransaction() : duplicate inputs"),
REJECT_INVALID, "bad-txns-inputs-duplicate");
vInOutPoints.insert(txin.prevout);
}
if (tx.IsCoinBase())
{
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.DoS(100, error("CheckTransaction() : coinbase script size"),
REJECT_INVALID, "bad-cb-length");
}
else
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (txin.prevout.IsNull())
return state.DoS(10, error("CheckTransaction() : prevout is null"),
REJECT_INVALID, "bad-txns-prevout-null");
}
return true;
}
CAmount GetMinRelayFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree)
{
{
LOCK(mempool.cs);
uint256 hash = tx.GetHash();
double dPriorityDelta = 0;
CAmount nFeeDelta = 0;
mempool.ApplyDeltas(hash, dPriorityDelta, nFeeDelta);
if (dPriorityDelta > 0 || nFeeDelta > 0)
return 0;
}
CAmount nMinFee = ::minRelayTxFee.GetFee(nBytes);
if (fAllowFree)
{
// There is a free transaction area in blocks created by most miners,
// * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000
// to be considered to fall into this category. We don't want to encourage sending
// multiple transactions instead of one big transaction to avoid fees.
if (nBytes < (DEFAULT_BLOCK_PRIORITY_SIZE - 1000))
nMinFee = 0;
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs, bool fRejectInsaneFee)
{
AssertLockHeld(cs_main);
if (pfMissingInputs)
*pfMissingInputs = false;
if (!CheckTransaction(tx, state))
return error("AcceptToMemoryPool: : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, error("AcceptToMemoryPool: : coinbase as individual tx"),
REJECT_INVALID, "coinbase");
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
string reason;
if (Params().RequireStandard() && !IsStandardTx(tx, reason))
return state.DoS(0,
error("AcceptToMemoryPool : nonstandard transaction: %s", reason),
REJECT_NONSTANDARD, reason);
// is it already in the memory pool?
uint256 hash = tx.GetHash();
if (pool.exists(hash))
return false;
// Check for conflicts with in-memory transactions
{
LOCK(pool.cs); // protect pool.mapNextTx
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (pool.mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
}
}
}
{
CCoinsView dummy;
CCoinsViewCache view(&dummy);
CAmount nValueIn = 0;
{
LOCK(pool.cs);
CCoinsViewMemPool viewMemPool(pcoinsTip, pool);
view.SetBackend(viewMemPool);
// do we already have it?
if (view.HaveCoins(hash))
return false;
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
// only helps filling in pfMissingInputs (to determine missing vs spent).
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
}
// are the actual inputs available?
if (!view.HaveInputs(tx))
return state.Invalid(error("AcceptToMemoryPool : inputs already spent"),
REJECT_DUPLICATE, "bad-txns-inputs-spent");
// Bring the best block into scope
view.GetBestBlock();
nValueIn = view.GetValueIn(tx);
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
}
// Check for non-standard pay-to-script-hash in inputs
if (Params().RequireStandard() && !AreInputsStandard(tx, view))
return error("AcceptToMemoryPool: : nonstandard transaction input");
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
// itself can contain sigops MAX_TX_SIGOPS is less than
// MAX_BLOCK_SIGOPS; we still consider this an invalid rather than
// merely non-standard transaction.
unsigned int nSigOps = GetLegacySigOpCount(tx);
nSigOps += GetP2SHSigOpCount(tx, view);
if (nSigOps > MAX_TX_SIGOPS)
return state.DoS(0,
error("AcceptToMemoryPool : too many sigops %s, %d > %d",
hash.ToString(), nSigOps, MAX_TX_SIGOPS),
REJECT_NONSTANDARD, "bad-txns-too-many-sigops");
CAmount nValueOut = tx.GetValueOut();
CAmount nFees = nValueIn-nValueOut;
double dPriority = view.GetPriority(tx, chainActive.Height());
CTxMemPoolEntry entry(tx, nFees, GetTime(), dPriority, chainActive.Height());
unsigned int nSize = entry.GetTxSize();
// Don't accept it if it can't get into a block
CAmount txMinFee = GetMinRelayFee(tx, nSize, true);
if (fLimitFree && nFees < txMinFee)
return state.DoS(0, error("AcceptToMemoryPool : not enough fees %s, %d < %d",
hash.ToString(), nFees, txMinFee),
REJECT_INSUFFICIENTFEE, "insufficient fee");
// Continuously rate-limit free (really, very-low-fee) transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (fLimitFree && nFees < ::minRelayTxFee.GetFee(nSize))
{
static CCriticalSection csFreeLimiter;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
LOCK(csFreeLimiter);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000)
return state.DoS(0, error("AcceptToMemoryPool : free transaction rejected by rate limiter"),
REJECT_INSUFFICIENTFEE, "insufficient priority");
LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
if (fRejectInsaneFee && nFees > ::minRelayTxFee.GetFee(nSize) * 10000)
return error("AcceptToMemoryPool: insane fees %s, %d > %d",
hash.ToString(),
nFees, ::minRelayTxFee.GetFee(nSize) * 10000);
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!CheckInputs(tx, state, view, true, STANDARD_SCRIPT_VERIFY_FLAGS, true))
{
return error("AcceptToMemoryPool: ConnectInputs failed %s", hash.ToString());
}
// Store transaction in memory
pool.addUnchecked(hash, entry);
}
SyncWithWallets(tx, NULL);
return true;
}
/** Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock */
bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow)
{
CBlockIndex *pindexSlow = NULL;
{
LOCK(cs_main);
{
if (mempool.lookup(hash, txOut))
{
return true;
}
}
if (fTxIndex) {
CDiskTxPos postx;
if (pblocktree->ReadTxIndex(hash, postx)) {
CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION);
if (file.IsNull())
return error("%s: OpenBlockFile failed", __func__);
CBlockHeader header;
try {
file >> header;
fseek(file.Get(), postx.nTxOffset, SEEK_CUR);
file >> txOut;
} catch (const std::exception& e) {
return error("%s : Deserialize or I/O error - %s", __func__, e.what());
}
hashBlock = header.GetHash();
if (txOut.GetHash() != hash)
return error("%s : txid mismatch", __func__);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
int nHeight = -1;
{
CCoinsViewCache &view = *pcoinsTip;
const CCoins* coins = view.AccessCoins(hash);
if (coins)
nHeight = coins->nHeight;
}
if (nHeight > 0)
pindexSlow = chainActive[nHeight];
}
}
if (pindexSlow) {
CBlock block;
if (ReadBlockFromDisk(block, pindexSlow)) {
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
if (tx.GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos)
{
// Open history file to append
CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("WriteBlockToDisk : OpenBlockFile failed");
// Write index header
unsigned int nSize = fileout.GetSerializeSize(block);
fileout << FLATDATA(Params().MessageStart()) << nSize;
// Write block
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("WriteBlockToDisk : ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos)
{
block.SetNull();
// Open history file to read
CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("ReadBlockFromDisk : OpenBlockFile failed");
// Read block
try {
filein >> block;
}
catch (const std::exception& e) {
return error("%s : Deserialize or I/O error - %s", __func__, e.what());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits))
return error("ReadBlockFromDisk : Errors in block header");
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex)
{
if (!ReadBlockFromDisk(block, pindex->GetBlockPos()))
return false;
if (block.GetHash() != pindex->GetBlockHash())
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*) : GetHash() doesn't match index");
return true;
}
CAmount GetBlockValue(int nHeight, const CAmount& nFees)
{
CAmount nSubsidy = 50 * COIN;
int halvings = nHeight / Params().SubsidyHalvingInterval();
// Force block reward to zero when right shift is undefined.
if (halvings >= 64)
return nFees;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy + nFees;
}
bool IsInitialBlockDownload()
{
LOCK(cs_main);
if (fImporting || fReindex || chainActive.Height() < Checkpoints::GetTotalBlocksEstimate())
return true;
static bool lockIBDState = false;
if (lockIBDState)
return false;
bool state = (chainActive.Height() < pindexBestHeader->nHeight - 24 * 6 ||
pindexBestHeader->GetBlockTime() < GetTime() - 24 * 60 * 60);
if (!state)
lockIBDState = true;
return state;
}
bool fLargeWorkForkFound = false;
bool fLargeWorkInvalidChainFound = false;
CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL;
void CheckForkWarningConditions()
{
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before the last checkpoint)
if (IsInitialBlockDownload())
return;
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it)
// of our head, drop it
if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72)
pindexBestForkTip = NULL;
if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6)))
{
if (!fLargeWorkForkFound && pindexBestForkBase)
{
std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") +
pindexBestForkBase->phashBlock->ToString() + std::string("'");
CAlert::Notify(warning, true);
}
if (pindexBestForkTip && pindexBestForkBase)
{
LogPrintf("CheckForkWarningConditions: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n",
pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(),
pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString());
fLargeWorkForkFound = true;
}
else
{
LogPrintf("CheckForkWarningConditions: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n");
fLargeWorkInvalidChainFound = true;
}
}
else
{
fLargeWorkForkFound = false;
fLargeWorkInvalidChainFound = false;
}
}
void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip)
{
AssertLockHeld(cs_main);
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex* pfork = pindexNewForkTip;
CBlockIndex* plonger = chainActive.Tip();
while (pfork && pfork != plonger)
{
while (plonger && plonger->nHeight > pfork->nHeight)
plonger = plonger->pprev;
if (pfork == plonger)
break;
pfork = pfork->pprev;
}
// We define a condition which we should warn the user about as a fork of at least 7 blocks
// who's tip is within 72 blocks (+/- 12 hours if no one mines it) of ours
// We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this should be detected by both)
// We define it this way because it allows us to only store the highest fork tip (+ base) which meets
// the 7-block condition and from this always have the most-likely-to-cause-warning fork
if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) &&
pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) &&
chainActive.Height() - pindexNewForkTip->nHeight < 72)
{
pindexBestForkTip = pindexNewForkTip;
pindexBestForkBase = pfork;
}
CheckForkWarningConditions();
}
// Requires cs_main.
void Misbehaving(NodeId pnode, int howmuch)
{
if (howmuch == 0)
return;
CNodeState *state = State(pnode);
if (state == NULL)
return;
state->nMisbehavior += howmuch;
int banscore = GetArg("-banscore", 100);
if (state->nMisbehavior >= banscore && state->nMisbehavior - howmuch < banscore)
{
LogPrintf("Misbehaving: %s (%d -> %d) BAN THRESHOLD EXCEEDED\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior);
state->fShouldBan = true;
} else
LogPrintf("Misbehaving: %s (%d -> %d)\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
LogPrintf("InvalidChainFound: invalid block=%s height=%d log2_work=%.8g date=%s\n",
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
pindexNew->GetBlockTime()));
LogPrintf("InvalidChainFound: current best=%s height=%d log2_work=%.8g date=%s\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()));
CheckForkWarningConditions();
}
void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) {
int nDoS = 0;
if (state.IsInvalid(nDoS)) {
std::map<uint256, NodeId>::iterator it = mapBlockSource.find(pindex->GetBlockHash());
if (it != mapBlockSource.end() && State(it->second)) {
CBlockReject reject = {state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), pindex->GetBlockHash()};
State(it->second)->rejects.push_back(reject);
if (nDoS > 0)
Misbehaving(it->second, nDoS);
}
}
if (!state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateCoins(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight)
{
// mark inputs spent
if (!tx.IsCoinBase()) {
txundo.vprevout.reserve(tx.vin.size());
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
txundo.vprevout.push_back(CTxInUndo());
bool ret = inputs.ModifyCoins(txin.prevout.hash)->Spend(txin.prevout, txundo.vprevout.back());
assert(ret);
}
}
// add outputs
inputs.ModifyCoins(tx.GetHash())->FromTx(tx, nHeight);
}
bool CScriptCheck::operator()() {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
if (!VerifyScript(scriptSig, scriptPubKey, nFlags, CachingSignatureChecker(*ptxTo, nIn, cacheStore), &error)) {
return ::error("CScriptCheck() : %s:%d VerifySignature failed: %s", ptxTo->GetHash().ToString(), nIn, ScriptErrorString(error));
}
return true;
}
bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheStore, std::vector<CScriptCheck> *pvChecks)
{
if (!tx.IsCoinBase())
{
if (pvChecks)
pvChecks->reserve(tx.vin.size());
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!inputs.HaveInputs(tx))
return state.Invalid(error("CheckInputs() : %s inputs unavailable", tx.GetHash().ToString()));
// While checking, GetBestBlock() refers to the parent block.
// This is also true for mempool checks.
CBlockIndex *pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second;
int nSpendHeight = pindexPrev->nHeight + 1;
CAmount nValueIn = 0;
CAmount nFees = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins *coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// If prev is coinbase, check that it's matured
if (coins->IsCoinBase()) {
if (nSpendHeight - coins->nHeight < COINBASE_MATURITY)
return state.Invalid(
error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins->nHeight),
REJECT_INVALID, "bad-txns-premature-spend-of-coinbase");
}
// Check for negative or overflow input values
nValueIn += coins->vout[prevout.n].nValue;
if (!MoneyRange(coins->vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return state.DoS(100, error("CheckInputs() : txin values out of range"),
REJECT_INVALID, "bad-txns-inputvalues-outofrange");
}
if (nValueIn < tx.GetValueOut())
return state.DoS(100, error("CheckInputs() : %s value in (%s) < value out (%s)",
tx.GetHash().ToString(), FormatMoney(nValueIn), FormatMoney(tx.GetValueOut())),
REJECT_INVALID, "bad-txns-in-belowout");
// Tally transaction fees
CAmount nTxFee = nValueIn - tx.GetValueOut();
if (nTxFee < 0)
return state.DoS(100, error("CheckInputs() : %s nTxFee < 0", tx.GetHash().ToString()),
REJECT_INVALID, "bad-txns-fee-negative");
nFees += nTxFee;
if (!MoneyRange(nFees))
return state.DoS(100, error("CheckInputs() : nFees out of range"),
REJECT_INVALID, "bad-txns-fee-outofrange");
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip ECDSA signature verification when connecting blocks
// before the last block chain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (fScriptChecks) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins* coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// Verify signature
CScriptCheck check(*coins, tx, i, flags, cacheStore);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-standard DER encodings or non-null dummy
// arguments; if so, don't trigger DoS protection to
// avoid splitting the network between upgraded and
// non-upgraded nodes.
CScriptCheck check(*coins, tx, i,
flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheStore);
if (check())
return state.Invalid(false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError())));
}
// Failures of other flags indicate a transaction that is
// invalid in new blocks, e.g. a invalid P2SH. We DoS ban
// such nodes as they are not following the protocol. That
// said during an upgrade careful thought should be taken
// as to the correct behavior - we may want to continue
// peering with non-upgraded nodes even after a soft-fork
// super-majority vote has passed.
return state.DoS(100,false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError())));
}
}
}
}
return true;
}
bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean)
{
assert(pindex->GetBlockHash() == view.GetBestBlock());
if (pfClean)
*pfClean = false;
bool fClean = true;
CBlockUndo blockUndo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull())
return error("DisconnectBlock() : no undo data available");
if (!blockUndo.ReadFromDisk(pos, pindex->pprev->GetBlockHash()))
return error("DisconnectBlock() : failure reading undo data");
if (blockUndo.vtxundo.size() + 1 != block.vtx.size())
return error("DisconnectBlock() : block and undo data inconsistent");
// undo transactions in reverse order
for (int i = block.vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = block.vtx[i];
uint256 hash = tx.GetHash();
// Check that all outputs are available and match the outputs in the block itself
// exactly. Note that transactions with only provably unspendable outputs won't
// have outputs available even in the block itself, so we handle that case
// specially with outsEmpty.
{
CCoins outsEmpty;
CCoinsModifier outs = view.ModifyCoins(hash);
outs->ClearUnspendable();
CCoins outsBlock(tx, pindex->nHeight);
// The CCoins serialization does not serialize negative numbers.
// No network rules currently depend on the version here, so an inconsistency is harmless
// but it must be corrected before txout nversion ever influences a network rule.
if (outsBlock.nVersion < 0)
outs->nVersion = outsBlock.nVersion;
if (*outs != outsBlock)
fClean = fClean && error("DisconnectBlock() : added transaction mismatch? database corrupted");
// remove outputs
outs->Clear();
}
// restore inputs
if (i > 0) { // not coinbases
const CTxUndo &txundo = blockUndo.vtxundo[i-1];
if (txundo.vprevout.size() != tx.vin.size())
return error("DisconnectBlock() : transaction and undo data inconsistent");
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
CCoinsModifier coins = view.ModifyCoins(out.hash);
if (undo.nHeight != 0) {
// undo data contains height: this is the last output of the prevout tx being spent
if (!coins->IsPruned())
fClean = fClean && error("DisconnectBlock() : undo data overwriting existing transaction");
coins->Clear();
coins->fCoinBase = undo.fCoinBase;
coins->nHeight = undo.nHeight;
coins->nVersion = undo.nVersion;
} else {
if (coins->IsPruned())
fClean = fClean && error("DisconnectBlock() : undo data adding output to missing transaction");
}
if (coins->IsAvailable(out.n))
fClean = fClean && error("DisconnectBlock() : undo data overwriting existing output");
if (coins->vout.size() < out.n+1)
coins->vout.resize(out.n+1);
coins->vout[out.n] = undo.txout;
}
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev->GetBlockHash());
if (pfClean) {
*pfClean = fClean;
return true;
} else {
return fClean;
}
}
void static FlushBlockFile(bool fFinalize = false)
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize);
FileCommit(fileOld);
fclose(fileOld);
}
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize);
FileCommit(fileOld);
fclose(fileOld);
}
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeCallbacks = 0;
static int64_t nTimeTotal = 0;
bool ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool fJustCheck)
{
AssertLockHeld(cs_main);
// Check it again in case a previous version let a bad block in
if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))
return false;
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock = pindex->pprev == NULL ? uint256(0) : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (block.GetHash() == Params().HashGenesisBlock()) {
view.SetBestBlock(pindex->GetBlockHash());
return true;
}
bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate();
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes in their
// initial block download.
bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash.
!((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
if (fEnforceBIP30) {
BOOST_FOREACH(const CTransaction& tx, block.vtx) {
const CCoins* coins = view.AccessCoins(tx.GetHash());
if (coins && !coins->IsPruned())
return state.DoS(100, error("ConnectBlock() : tried to overwrite transaction"),
REJECT_INVALID, "bad-txns-BIP30");
}
}
// BIP16 didn't become active until Apr 1 2012
int64_t nBIP16SwitchTime = 1333238400;
bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime);
unsigned int flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE;
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
int64_t nTimeStart = GetTimeMicros();
CAmount nFees = 0;
int nInputs = 0;
unsigned int nSigOps = 0;
CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos> > vPos;
vPos.reserve(block.vtx.size());
blockundo.vtxundo.reserve(block.vtx.size() - 1);
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const CTransaction &tx = block.vtx[i];
nInputs += tx.vin.size();
nSigOps += GetLegacySigOpCount(tx);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock() : too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
if (!tx.IsCoinBase())
{
if (!view.HaveInputs(tx))
return state.DoS(100, error("ConnectBlock() : inputs missing/spent"),
REJECT_INVALID, "bad-txns-inputs-missingorspent");
if (fStrictPayToScriptHash)
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += GetP2SHSigOpCount(tx, view);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock() : too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
}
nFees += view.GetValueIn(tx)-tx.GetValueOut();
std::vector<CScriptCheck> vChecks;
if (!CheckInputs(tx, state, view, fScriptChecks, flags, false, nScriptCheckThreads ? &vChecks : NULL))
return false;
control.Add(vChecks);
}
CTxUndo undoDummy;
if (i > 0) {
blockundo.vtxundo.push_back(CTxUndo());
}
UpdateCoins(tx, state, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight);
vPos.push_back(std::make_pair(tx.GetHash(), pos));
pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
}
int64_t nTime1 = GetTimeMicros(); nTimeConnect += nTime1 - nTimeStart;
LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs]\n", (unsigned)block.vtx.size(), 0.001 * (nTime1 - nTimeStart), 0.001 * (nTime1 - nTimeStart) / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * (nTime1 - nTimeStart) / (nInputs-1), nTimeConnect * 0.000001);
if (block.vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees))
return state.DoS(100,
error("ConnectBlock() : coinbase pays too much (actual=%d vs limit=%d)",
block.vtx[0].GetValueOut(), GetBlockValue(pindex->nHeight, nFees)),
REJECT_INVALID, "bad-cb-amount");
if (!control.Wait())
return state.DoS(100, false);
int64_t nTime2 = GetTimeMicros(); nTimeVerify += nTime2 - nTimeStart;
LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n", nInputs - 1, 0.001 * (nTime2 - nTimeStart), nInputs <= 1 ? 0 : 0.001 * (nTime2 - nTimeStart) / (nInputs-1), nTimeVerify * 0.000001);
if (fJustCheck)
return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() || !pindex->IsValid(BLOCK_VALID_SCRIPTS))
{
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos pos;
if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40))
return error("ConnectBlock() : FindUndoPos failed");
if (!blockundo.WriteToDisk(pos, pindex->pprev->GetBlockHash()))
return state.Abort("Failed to write undo data");
// update nUndoPos in block index
pindex->nUndoPos = pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->RaiseValidity(BLOCK_VALID_SCRIPTS);
setDirtyBlockIndex.insert(pindex);
}
if (fTxIndex)
if (!pblocktree->WriteTxIndex(vPos))
return state.Abort("Failed to write transaction index");
// add this block to the view's block chain
view.SetBestBlock(pindex->GetBlockHash());
int64_t nTime3 = GetTimeMicros(); nTimeIndex += nTime3 - nTime2;
LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n", 0.001 * (nTime3 - nTime2), nTimeIndex * 0.000001);
// Watch for changes to the previous coinbase transaction.
static uint256 hashPrevBestCoinBase;
g_signals.UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = block.vtx[0].GetHash();
int64_t nTime4 = GetTimeMicros(); nTimeCallbacks += nTime4 - nTime3;
LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n", 0.001 * (nTime4 - nTime3), nTimeCallbacks * 0.000001);
return true;
}
enum FlushStateMode {
FLUSH_STATE_IF_NEEDED,
FLUSH_STATE_PERIODIC,
FLUSH_STATE_ALWAYS
};
/**
* Update the on-disk chain state.
* The caches and indexes are flushed if either they're too large, forceWrite is set, or
* fast is not set and it's been a while since the last write.
*/
bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode) {
LOCK(cs_main);
static int64_t nLastWrite = 0;
if ((mode == FLUSH_STATE_ALWAYS) ||
((mode == FLUSH_STATE_PERIODIC || mode == FLUSH_STATE_IF_NEEDED) && pcoinsTip->GetCacheSize() > nCoinCacheSize) ||
(mode == FLUSH_STATE_PERIODIC && GetTimeMicros() > nLastWrite + DATABASE_WRITE_INTERVAL * 1000000)) {
// Typical CCoins structures on disk are around 100 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(100 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error("out of disk space");
// First make sure all block and undo data is flushed to disk.
FlushBlockFile();
// Then update all block file information (which may refer to block and undo files).
{
std::vector<std::pair<int, const CBlockFileInfo*> > vFiles;
vFiles.reserve(setDirtyFileInfo.size());
for (set<int>::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end(); ) {
vFiles.push_back(make_pair(*it, &vinfoBlockFile[*it]));
setDirtyFileInfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(setDirtyBlockIndex.size());
for (set<CBlockIndex*>::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end(); ) {
vBlocks.push_back(*it);
setDirtyBlockIndex.erase(it++);
}
if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) {
return state.Abort("Files to write to block index database");
}
}
// Finally flush the chainstate (which may refer to block index entries).
if (!pcoinsTip->Flush())
return state.Abort("Failed to write to coin database");
// Update best block in wallet (so we can detect restored wallets).
if (mode != FLUSH_STATE_IF_NEEDED) {
g_signals.SetBestChain(chainActive.GetLocator());
}
nLastWrite = GetTimeMicros();
}
return true;
}
void FlushStateToDisk() {
CValidationState state;
FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
}
/** Update chainActive and related internal data structures. */
void static UpdateTip(CBlockIndex *pindexNew) {
chainActive.SetTip(pindexNew);
// New best block
nTimeBestReceived = GetTime();
mempool.AddTransactionsUpdated(1);
LogPrintf("UpdateTip: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f cache=%u\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainActive.Tip()), (unsigned int)pcoinsTip->GetCacheSize());
cvBlockChange.notify_all();
// Check the version of the last 100 blocks to see if we need to upgrade:
static bool fWarned = false;
if (!IsInitialBlockDownload() && !fWarned)
{
int nUpgraded = 0;
const CBlockIndex* pindex = chainActive.Tip();
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
LogPrintf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, (int)CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
{
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
CAlert::Notify(strMiscWarning, true);
fWarned = true;
}
}
}
/** Disconnect chainActive's tip. */
bool static DisconnectTip(CValidationState &state) {
CBlockIndex *pindexDelete = chainActive.Tip();
assert(pindexDelete);
mempool.check(pcoinsTip);
// Read block from disk.
CBlock block;
if (!ReadBlockFromDisk(block, pindexDelete))
return state.Abort("Failed to read block");
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(pcoinsTip);
if (!DisconnectBlock(block, state, pindexDelete, view))
return error("DisconnectTip() : DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString());
assert(view.Flush());
}
LogPrint("bench", "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED))
return false;
// Resurrect mempool transactions from the disconnected block.
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
// ignore validation errors in resurrected transactions
list<CTransaction> removed;
CValidationState stateDummy;
if (tx.IsCoinBase() || !AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL))
mempool.remove(tx, removed, true);
}
mempool.removeCoinbaseSpends(pcoinsTip, pindexDelete->nHeight);
mempool.check(pcoinsTip);
// Update chainActive and related variables.
UpdateTip(pindexDelete->pprev);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
SyncWithWallets(tx, NULL);
}
return true;
}
static int64_t nTimeReadFromDisk = 0;
static int64_t nTimeConnectTotal = 0;
static int64_t nTimeFlush = 0;
static int64_t nTimeChainState = 0;
static int64_t nTimePostConnect = 0;
/**
* Connect a new block to chainActive. pblock is either NULL or a pointer to a CBlock
* corresponding to pindexNew, to bypass loading it again from disk.
*/
bool static ConnectTip(CValidationState &state, CBlockIndex *pindexNew, CBlock *pblock) {
assert(pindexNew->pprev == chainActive.Tip());
mempool.check(pcoinsTip);
// Read block from disk.
int64_t nTime1 = GetTimeMicros();
CBlock block;
if (!pblock) {
if (!ReadBlockFromDisk(block, pindexNew))
return state.Abort("Failed to read block");
pblock = &block;
}
// Apply the block atomically to the chain state.
int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1;
int64_t nTime3;
LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001);
{
CCoinsViewCache view(pcoinsTip);
CInv inv(MSG_BLOCK, pindexNew->GetBlockHash());
bool rv = ConnectBlock(*pblock, state, pindexNew, view);
g_signals.BlockChecked(*pblock, state);
if (!rv) {
if (state.IsInvalid())
InvalidBlockFound(pindexNew, state);
return error("ConnectTip() : ConnectBlock %s failed", pindexNew->GetBlockHash().ToString());
}
mapBlockSource.erase(inv.hash);
nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2;
LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n", (nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001);
assert(view.Flush());
}
int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3;
LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001, nTimeFlush * 0.000001);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED))
return false;
int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4;
LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n", (nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001);
// Remove conflicting transactions from the mempool.
list<CTransaction> txConflicted;
mempool.removeForBlock(pblock->vtx, pindexNew->nHeight, txConflicted);
mempool.check(pcoinsTip);
// Update chainActive & related variables.
UpdateTip(pindexNew);
// Tell wallet about transactions that went from mempool
// to conflicted:
BOOST_FOREACH(const CTransaction &tx, txConflicted) {
SyncWithWallets(tx, NULL);
}
// ... and about transactions that got confirmed:
BOOST_FOREACH(const CTransaction &tx, pblock->vtx) {
SyncWithWallets(tx, pblock);
}
int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1;
LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n", (nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001);
LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n", (nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001);
return true;
}
/**
* Return the tip of the chain with the most work in it, that isn't
* known to be invalid (it's however far from certain to be valid).
*/
static CBlockIndex* FindMostWorkChain() {
do {
CBlockIndex *pindexNew = NULL;
// Find the best candidate header.
{
std::set<CBlockIndex*, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexCandidates.rbegin();
if (it == setBlockIndexCandidates.rend())
return NULL;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !chainActive.Contains(pindexTest)) {
assert(pindexTest->nStatus & BLOCK_HAVE_DATA);
assert(pindexTest->nChainTx || pindexTest->nHeight == 0);
if (pindexTest->nStatus & BLOCK_FAILED_MASK) {
// Candidate has an invalid ancestor, remove entire chain from the set.
if (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
CBlockIndex *pindexFailed = pindexNew;
while (pindexTest != pindexFailed) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
setBlockIndexCandidates.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
setBlockIndexCandidates.erase(pindexTest);
fInvalidAncestor = true;
break;
}
pindexTest = pindexTest->pprev;
}
if (!fInvalidAncestor)
return pindexNew;
} while(true);
}
/** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */
static void PruneBlockIndexCandidates() {
// Note that we can't delete the current block itself, as we may need to return to it later in case a
// reorganization to a better block fails.
std::set<CBlockIndex*, CBlockIndexWorkComparator>::iterator it = setBlockIndexCandidates.begin();
while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) {
setBlockIndexCandidates.erase(it++);
}
// Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates.
assert(!setBlockIndexCandidates.empty());
}
/**
* Try to make some progress towards making pindexMostWork the active block.
* pblock is either NULL or a pointer to a CBlock corresponding to pindexMostWork.
*/
static bool ActivateBestChainStep(CValidationState &state, CBlockIndex *pindexMostWork, CBlock *pblock) {
AssertLockHeld(cs_main);
bool fInvalidFound = false;
const CBlockIndex *pindexOldTip = chainActive.Tip();
const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork);
// Disconnect active blocks which are no longer in the best chain.
while (chainActive.Tip() && chainActive.Tip() != pindexFork) {
if (!DisconnectTip(state))
return false;
}
// Build list of new blocks to connect.
std::vector<CBlockIndex*> vpindexToConnect;
bool fContinue = true;
int nHeight = pindexFork ? pindexFork->nHeight : -1;
while (fContinue && nHeight != pindexMostWork->nHeight) {
// Don't iterate the entire list of potential improvements toward the best tip, as we likely only need
// a few blocks along the way.
int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight);
vpindexToConnect.clear();
vpindexToConnect.reserve(nTargetHeight - nHeight);
CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight);
while (pindexIter && pindexIter->nHeight != nHeight) {
vpindexToConnect.push_back(pindexIter);
pindexIter = pindexIter->pprev;
}
nHeight = nTargetHeight;
// Connect new blocks.
BOOST_REVERSE_FOREACH(CBlockIndex *pindexConnect, vpindexToConnect) {
if (!ConnectTip(state, pindexConnect, pindexConnect == pindexMostWork ? pblock : NULL)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (!state.CorruptionPossible())
InvalidChainFound(vpindexToConnect.back());
state = CValidationState();
fInvalidFound = true;
fContinue = false;
break;
} else {
// A system error occurred (disk space, database error, ...).
return false;
}
} else {
PruneBlockIndexCandidates();
if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) {
// We're in a better position than we were. Return temporarily to release the lock.
fContinue = false;
break;
}
}
}
}
// Callbacks/notifications for a new best chain.
if (fInvalidFound)
CheckForkWarningConditionsOnNewFork(vpindexToConnect.back());
else
CheckForkWarningConditions();
return true;
}
/**
* Make the best chain active, in multiple steps. The result is either failure
* or an activated best chain. pblock is either NULL or a pointer to a block
* that is already loaded (to avoid loading it again from disk).
*/
bool ActivateBestChain(CValidationState &state, CBlock *pblock) {
CBlockIndex *pindexNewTip = NULL;
CBlockIndex *pindexMostWork = NULL;
do {
boost::this_thread::interruption_point();
bool fInitialDownload;
{
LOCK(cs_main);
pindexMostWork = FindMostWorkChain();
// Whether we have anything to do at all.
if (pindexMostWork == NULL || pindexMostWork == chainActive.Tip())
return true;
if (!ActivateBestChainStep(state, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : NULL))
return false;
pindexNewTip = chainActive.Tip();
fInitialDownload = IsInitialBlockDownload();
}
// When we reach this point, we switched to a new tip (stored in pindexNewTip).
// Notifications/callbacks that can run without cs_main
if (!fInitialDownload) {
uint256 hashNewTip = pindexNewTip->GetBlockHash();
// Relay inventory, but don't relay old inventory during initial block download.
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (chainActive.Height() > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hashNewTip));
}
// Notify external listeners about the new tip.
uiInterface.NotifyBlockTip(hashNewTip);
}
} while(pindexMostWork != chainActive.Tip());
// Write changes periodically to disk, after relay.
if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) {
return false;
}
return true;
}
bool InvalidateBlock(CValidationState& state, CBlockIndex *pindex) {
AssertLockHeld(cs_main);
// Mark the block itself as invalid.
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
while (chainActive.Contains(pindex)) {
CBlockIndex *pindexWalk = chainActive.Tip();
pindexWalk->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindexWalk);
setBlockIndexCandidates.erase(pindexWalk);
// ActivateBestChain considers blocks already in chainActive
// unconditionally valid already, so force disconnect away from it.
if (!DisconnectTip(state)) {
return false;
}
}
// The resulting new best tip may not be in setBlockIndexCandidates anymore, so
// add them again.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) {
setBlockIndexCandidates.insert(pindex);
}
it++;
}
InvalidChainFound(pindex);
return true;
}
bool ReconsiderBlock(CValidationState& state, CBlockIndex *pindex) {
AssertLockHeld(cs_main);
int nHeight = pindex->nHeight;
// Remove the invalidity flag from this block and all its descendants.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) {
it->second->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(it->second);
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) {
setBlockIndexCandidates.insert(it->second);
}
if (it->second == pindexBestInvalid) {
// Reset invalid block marker if it was pointing to one of those.
pindexBestInvalid = NULL;
}
}
it++;
}
// Remove the invalidity flag from all ancestors too.
while (pindex != NULL) {
if (pindex->nStatus & BLOCK_FAILED_MASK) {
pindex->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(pindex);
}
pindex = pindex->pprev;
}
return true;
}
CBlockIndex* AddToBlockIndex(const CBlockHeader& block)
{
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end())
return it->second;
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
assert(pindexNew);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == NULL || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
bool ReceivedBlockTransactions(const CBlock &block, CValidationState& state, CBlockIndex *pindexNew, const CDiskBlockPos& pos)
{
pindexNew->nTx = block.vtx.size();
pindexNew->nChainTx = 0;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus |= BLOCK_HAVE_DATA;
pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS);
{
LOCK(cs_nBlockSequenceId);
pindexNew->nSequenceId = nBlockSequenceId++;
}
setDirtyBlockIndex.insert(pindexNew);
if (pindexNew->pprev == NULL || pindexNew->pprev->nChainTx) {
// If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS.
deque<CBlockIndex*> queue;
queue.push_back(pindexNew);
// Recursively process any descendant blocks that now may be eligible to be connected.
while (!queue.empty()) {
CBlockIndex *pindex = queue.front();
queue.pop_front();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
setBlockIndexCandidates.insert(pindex);
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator it = range.first;
queue.push_back(it->second);
range.first++;
mapBlocksUnlinked.erase(it);
}
}
} else {
if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) {
mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew));
}
}
return true;
}
bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false)
{
LOCK(cs_LastBlockFile);
unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
if (!fKnown) {
while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
LogPrintf("Leaving block file %i: %s\n", nFile, vinfoBlockFile[nFile].ToString());
FlushBlockFile(true);
nFile++;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
}
pos.nFile = nFile;
pos.nPos = vinfoBlockFile[nFile].nSize;
}
nLastBlockFile = nFile;
vinfoBlockFile[nFile].nSize += nAddSize;
vinfoBlockFile[nFile].AddBlock(nHeight, nTime);
if (!fKnown) {
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenBlockFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
}
setDirtyFileInfo.insert(nFile);
return true;
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
pos.nPos = vinfoBlockFile[nFile].nUndoSize;
nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize;
setDirtyFileInfo.insert(nFile);
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenUndoFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
return true;
}
bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, bool fCheckPOW)
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits))
return state.DoS(50, error("CheckBlockHeader() : proof of work failed"),
REJECT_INVALID, "high-hash");
// Check timestamp
if (block.GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60)
return state.Invalid(error("CheckBlockHeader() : block timestamp too far in the future"),
REJECT_INVALID, "time-too-new");
return true;
}
bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW, bool fCheckMerkleRoot)
{
// These are checks that are independent of context.
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
if (!CheckBlockHeader(block, state, fCheckPOW))
return false;
// Check the merkle root.
if (fCheckMerkleRoot) {
bool mutated;
uint256 hashMerkleRoot2 = block.BuildMerkleTree(&mutated);
if (block.hashMerkleRoot != hashMerkleRoot2)
return state.DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"),
REJECT_INVALID, "bad-txnmrklroot", true);
// Check for merkle tree malleability (CVE-2012-2459): repeating sequences
// of transactions in a block without affecting the merkle root of a block,
// while still invalidating it.
if (mutated)
return state.DoS(100, error("CheckBlock() : duplicate transaction"),
REJECT_INVALID, "bad-txns-duplicate", true);
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
// Size limits
if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CheckBlock() : size limits failed"),
REJECT_INVALID, "bad-blk-length");
// First transaction must be coinbase, the rest must not be
if (block.vtx.empty() || !block.vtx[0].IsCoinBase())
return state.DoS(100, error("CheckBlock() : first tx is not coinbase"),
REJECT_INVALID, "bad-cb-missing");
for (unsigned int i = 1; i < block.vtx.size(); i++)
if (block.vtx[i].IsCoinBase())
return state.DoS(100, error("CheckBlock() : more than one coinbase"),
REJECT_INVALID, "bad-cb-multiple");
// Check transactions
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!CheckTransaction(tx, state))
return error("CheckBlock() : CheckTransaction failed");
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, block.vtx)
{
nSigOps += GetLegacySigOpCount(tx);
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"),
REJECT_INVALID, "bad-blk-sigops", true);
return true;
}
bool ContextualCheckBlockHeader(const CBlockHeader& block, CValidationState& state, CBlockIndex * const pindexPrev)
{
uint256 hash = block.GetHash();
if (hash == Params().HashGenesisBlock())
return true;
assert(pindexPrev);
int nHeight = pindexPrev->nHeight+1;
// Check proof of work
if ((!Params().SkipProofOfWorkCheck()) &&
(block.nBits != GetNextWorkRequired(pindexPrev, &block)))
return state.DoS(100, error("%s : incorrect proof of work", __func__),
REJECT_INVALID, "bad-diffbits");
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(error("%s : block's timestamp is too early", __func__),
REJECT_INVALID, "time-too-old");
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckBlock(nHeight, hash))
return state.DoS(100, error("%s : rejected by checkpoint lock-in at %d", __func__, nHeight),
REJECT_CHECKPOINT, "checkpoint mismatch");
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint();
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(100, error("%s : forked chain older than last checkpoint (height %d)", __func__, nHeight));
// Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded:
if (block.nVersion < 2 && IsSuperMajority(2, pindexPrev, Params().RejectBlockOutdatedMajority()))
{
return state.Invalid(error("%s : rejected nVersion=1 block", __func__),
REJECT_OBSOLETE, "bad-version");
}
return true;
}
bool ContextualCheckBlock(const CBlock& block, CValidationState& state, CBlockIndex * const pindexPrev)
{
const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1;
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!IsFinalTx(tx, nHeight, block.GetBlockTime())) {
return state.DoS(10, error("%s : contains a non-final transaction", __func__), REJECT_INVALID, "bad-txns-nonfinal");
}
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
if (block.nVersion >= 2 && IsSuperMajority(2, pindexPrev, Params().EnforceBlockUpgradeMajority()))
{
CScript expect = CScript() << nHeight;
if (block.vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) {
return state.DoS(100, error("%s : block height mismatch in coinbase", __func__), REJECT_INVALID, "bad-cb-height");
}
}
return true;
}
bool AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, CBlockIndex** ppindex)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator miSelf = mapBlockIndex.find(hash);
CBlockIndex *pindex = NULL;
if (miSelf != mapBlockIndex.end()) {
// Block header is already known.
pindex = miSelf->second;
if (ppindex)
*ppindex = pindex;
if (pindex->nStatus & BLOCK_FAILED_MASK)
return state.Invalid(error("%s : block is marked invalid", __func__), 0, "duplicate");
return true;
}
if (!CheckBlockHeader(block, state))
return false;
// Get prev block index
CBlockIndex* pindexPrev = NULL;
if (hash != Params().HashGenesisBlock()) {
BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("%s : prev block not found", __func__), 0, "bad-prevblk");
pindexPrev = (*mi).second;
}
if (!ContextualCheckBlockHeader(block, state, pindexPrev))
return false;
if (pindex == NULL)
pindex = AddToBlockIndex(block);
if (ppindex)
*ppindex = pindex;
return true;
}
bool AcceptBlock(CBlock& block, CValidationState& state, CBlockIndex** ppindex, CDiskBlockPos* dbp)
{
AssertLockHeld(cs_main);
CBlockIndex *&pindex = *ppindex;
if (!AcceptBlockHeader(block, state, &pindex))
return false;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
// TODO: deal better with duplicate blocks.
// return state.DoS(20, error("AcceptBlock() : already have block %d %s", pindex->nHeight, pindex->GetBlockHash().ToString()), REJECT_DUPLICATE, "duplicate");
return true;
}
if ((!CheckBlock(block, state)) || !ContextualCheckBlock(block, state, pindex->pprev)) {
if (state.IsInvalid() && !state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
}
return false;
}
int nHeight = pindex->nHeight;
// Write block to history file
try {
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (dbp != NULL)
blockPos = *dbp;
if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.GetBlockTime(), dbp != NULL))
return error("AcceptBlock() : FindBlockPos failed");
if (dbp == NULL)
if (!WriteBlockToDisk(block, blockPos))
return state.Abort("Failed to write block");
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("AcceptBlock() : ReceivedBlockTransactions failed");
} catch (const std::runtime_error& e) {
return state.Abort(std::string("System error: ") + e.what());
}
return true;
}
static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired)
{
unsigned int nToCheck = Params().ToCheckBlockUpgradeMajority();
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
bool ProcessNewBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp)
{
// Preliminary checks
bool checked = CheckBlock(*pblock, state);
{
LOCK(cs_main);
MarkBlockAsReceived(pblock->GetHash());
if (!checked) {
return error("%s : CheckBlock FAILED", __func__);
}
// Store to disk
CBlockIndex *pindex = NULL;
bool ret = AcceptBlock(*pblock, state, &pindex, dbp);
if (pindex && pfrom) {
mapBlockSource[pindex->GetBlockHash()] = pfrom->GetId();
}
if (!ret)
return error("%s : AcceptBlock FAILED", __func__);
}
if (!ActivateBestChain(state, pblock))
return error("%s : ActivateBestChain failed", __func__);
return true;
}
bool TestBlockValidity(CValidationState &state, const CBlock& block, CBlockIndex * const pindexPrev, bool fCheckPOW, bool fCheckMerkleRoot)
{
AssertLockHeld(cs_main);
assert(pindexPrev == chainActive.Tip());
CCoinsViewCache viewNew(pcoinsTip);
CBlockIndex indexDummy(block);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
// NOTE: CheckBlockHeader is called by CheckBlock
if (!ContextualCheckBlockHeader(block, state, pindexPrev))
return false;
if (!CheckBlock(block, state, fCheckPOW, fCheckMerkleRoot))
return false;
if (!ContextualCheckBlock(block, state, pindexPrev))
return false;
if (!ConnectBlock(block, state, &indexDummy, viewNew, true))
return false;
assert(state.IsValid());
return true;
}
bool AbortNode(const std::string &strMessage, const std::string &userMessage) {
strMiscWarning = strMessage;
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(
userMessage.empty() ? _("Error: A fatal internal error occured, see debug.log for details") : userMessage,
"", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
bool CheckDiskSpace(uint64_t nAdditionalBytes)
{
uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode("Disk space is low!", _("Error: Disk space is low!"));
return true;
}
FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
if (pos.IsNull())
return NULL;
boost::filesystem::path path = GetBlockPosFilename(pos, prefix);
boost::filesystem::create_directories(path.parent_path());
FILE* file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly)
file = fopen(path.string().c_str(), "wb+");
if (!file) {
LogPrintf("Unable to open file %s\n", path.string());
return NULL;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string());
fclose(file);
return NULL;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix)
{
return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
}
CBlockIndex * InsertBlockIndex(uint256 hash)
{
if (hash == 0)
return NULL;
// Return existing
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error("LoadBlockIndex() : new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB()
{
if (!pblocktree->LoadBlockIndexGuts())
return false;
boost::this_thread::interruption_point();
// Calculate nChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
if (pindex->nStatus & BLOCK_HAVE_DATA) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
mapBlocksUnlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->nChainTx || pindex->pprev == NULL))
setBlockIndexCandidates.insert(pindex);
if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == NULL || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
set<int> setBlkDataFiles;
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
CDiskBlockPos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
fReindex |= fReindexing;
// Check whether we have a transaction index
pblocktree->ReadFlag("txindex", fTxIndex);
LogPrintf("LoadBlockIndexDB(): transaction index %s\n", fTxIndex ? "enabled" : "disabled");
// Load pointer to end of best chain
BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock());
if (it == mapBlockIndex.end())
return true;
chainActive.SetTip(it->second);
PruneBlockIndexCandidates();
LogPrintf("LoadBlockIndexDB(): hashBestChain=%s height=%d date=%s progress=%f\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainActive.Tip()));
return true;
}
CVerifyDB::CVerifyDB()
{
uiInterface.ShowProgress(_("Verifying blocks..."), 0);
}
CVerifyDB::~CVerifyDB()
{
uiInterface.ShowProgress("", 100);
}
bool CVerifyDB::VerifyDB(CCoinsView *coinsview, int nCheckLevel, int nCheckDepth)
{
LOCK(cs_main);
if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > chainActive.Height())
nCheckDepth = chainActive.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(coinsview);
CBlockIndex* pindexState = chainActive.Tip();
CBlockIndex* pindexFailure = NULL;
int nGoodTransactions = 0;
CValidationState state;
for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev)
{
boost::this_thread::interruption_point();
uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100)))));
if (pindex->nHeight < chainActive.Height()-nCheckDepth)
break;
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex))
return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !CheckBlock(block, state))
return error("VerifyDB() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (!pos.IsNull()) {
if (!undo.ReadFromDisk(pos, pindex->pprev->GetBlockHash()))
return error("VerifyDB() : *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
if (nCheckLevel >= 3 && pindex == pindexState && (coins.GetCacheSize() + pcoinsTip->GetCacheSize()) <= nCoinCacheSize) {
bool fClean = true;
if (!DisconnectBlock(block, state, pindex, coins, &fClean))
return error("VerifyDB() : *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
pindexState = pindex->pprev;
if (!fClean) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else
nGoodTransactions += block.vtx.size();
}
}
if (pindexFailure)
return error("VerifyDB() : *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions);
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
CBlockIndex *pindex = pindexState;
while (pindex != chainActive.Tip()) {
boost::this_thread::interruption_point();
uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50))));
pindex = chainActive.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex))
return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
if (!ConnectBlock(block, state, pindex, coins))
return error("VerifyDB() : *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions);
return true;
}
void UnloadBlockIndex()
{
mapBlockIndex.clear();
setBlockIndexCandidates.clear();
chainActive.SetTip(NULL);
pindexBestInvalid = NULL;
}
bool LoadBlockIndex()
{
// Load block index from databases
if (!fReindex && !LoadBlockIndexDB())
return false;
return true;
}
bool InitBlockIndex() {
LOCK(cs_main);
// Check whether we're already initialized
if (chainActive.Genesis() != NULL)
return true;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg("-txindex", false);
pblocktree->WriteFlag("txindex", fTxIndex);
LogPrintf("Initializing databases...\n");
// Only add the genesis block if not reindexing (in which case we reuse the one already on disk)
if (!fReindex) {
try {
CBlock &block = const_cast<CBlock&>(Params().GenesisBlock());
// Start new block file
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
CValidationState state;
if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.GetBlockTime()))
return error("LoadBlockIndex() : FindBlockPos failed");
if (!WriteBlockToDisk(block, blockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
CBlockIndex *pindex = AddToBlockIndex(block);
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("LoadBlockIndex() : genesis block not accepted");
if (!ActivateBestChain(state, &block))
return error("LoadBlockIndex() : genesis block cannot be activated");
// Force a chainstate write so that when we VerifyDB in a moment, it doesn't check stale data
return FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
} catch (const std::runtime_error& e) {
return error("LoadBlockIndex() : failed to initialize block database: %s", e.what());
}
}
return true;
}
bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp)
{
// Map of disk positions for blocks with unknown parent (only used for reindex)
static std::multimap<uint256, CDiskBlockPos> mapBlocksUnknownParent;
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
try {
// This takes over fileIn and calls fclose() on it in the CBufferedFile destructor
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64_t nRewind = blkdat.GetPos();
while (!blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[MESSAGE_START_SIZE];
blkdat.FindByte(Params().MessageStart()[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> FLATDATA(buf);
if (memcmp(buf, Params().MessageStart(), MESSAGE_START_SIZE))
continue;
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SIZE)
continue;
} catch (const std::exception&) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
if (dbp)
dbp->nPos = nBlockPos;
blkdat.SetLimit(nBlockPos + nSize);
blkdat.SetPos(nBlockPos);
CBlock block;
blkdat >> block;
nRewind = blkdat.GetPos();
// detect out of order blocks, and store them for later
uint256 hash = block.GetHash();
if (hash != Params().HashGenesisBlock() && mapBlockIndex.find(block.hashPrevBlock) == mapBlockIndex.end()) {
LogPrint("reindex", "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(),
block.hashPrevBlock.ToString());
if (dbp)
mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp));
continue;
}
// process in case the block isn't known yet
if (mapBlockIndex.count(hash) == 0 || (mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) {
CValidationState state;
if (ProcessNewBlock(state, NULL, &block, dbp))
nLoaded++;
if (state.IsError())
break;
} else if (hash != Params().HashGenesisBlock() && mapBlockIndex[hash]->nHeight % 1000 == 0) {
LogPrintf("Block Import: already had block %s at height %d\n", hash.ToString(), mapBlockIndex[hash]->nHeight);
}
// Recursively process earlier encountered successors of this block
deque<uint256> queue;
queue.push_back(hash);
while (!queue.empty()) {
uint256 head = queue.front();
queue.pop_front();
std::pair<std::multimap<uint256, CDiskBlockPos>::iterator, std::multimap<uint256, CDiskBlockPos>::iterator> range = mapBlocksUnknownParent.equal_range(head);
while (range.first != range.second) {
std::multimap<uint256, CDiskBlockPos>::iterator it = range.first;
if (ReadBlockFromDisk(block, it->second))
{
LogPrintf("%s: Processing out of order child %s of %s\n", __func__, block.GetHash().ToString(),
head.ToString());
CValidationState dummy;
if (ProcessNewBlock(dummy, NULL, &block, &it->second))
{
nLoaded++;
queue.push_back(block.GetHash());
}
}
range.first++;
mapBlocksUnknownParent.erase(it);
}
}
} catch (const std::exception& e) {
LogPrintf("%s : Deserialize or I/O error - %s", __func__, e.what());
}
}
} catch (const std::runtime_error& e) {
AbortNode(std::string("System error: ") + e.what());
}
if (nLoaded > 0)
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (!CLIENT_VERSION_IS_RELEASE)
strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
if (GetBoolArg("-testsafemode", false))
strStatusBar = strRPC = "testsafemode enabled";
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
if (fLargeWorkForkFound)
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues.");
}
else if (fLargeWorkInvalidChainFound)
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade.");
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
txInMap = mempool.exists(inv.hash);
return txInMap || mapOrphanTransactions.count(inv.hash) ||
pcoinsTip->HaveCoins(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
void static ProcessGetData(CNode* pfrom)
{
std::deque<CInv>::iterator it = pfrom->vRecvGetData.begin();
vector<CInv> vNotFound;
LOCK(cs_main);
while (it != pfrom->vRecvGetData.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
const CInv &inv = *it;
{
boost::this_thread::interruption_point();
it++;
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
{
bool send = false;
BlockMap::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
// If the requested block is at a height below our last
// checkpoint, only serve it if it's in the checkpointed chain
int nHeight = mi->second->nHeight;
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint();
if (pcheckpoint && nHeight < pcheckpoint->nHeight) {
if (!chainActive.Contains(mi->second))
{
LogPrintf("ProcessGetData(): ignoring request for old block that isn't in the main chain\n");
} else {
send = true;
}
} else {
send = true;
}
}
if (send)
{
// Send block from disk
CBlock block;
if (!ReadBlockFromDisk(block, (*mi).second))
assert(!"cannot load block from disk");
if (inv.type == MSG_BLOCK)
pfrom->PushMessage("block", block);
else // MSG_FILTERED_BLOCK)
{
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
{
CMerkleBlock merkleBlock(block, *pfrom->pfilter);
pfrom->PushMessage("merkleblock", merkleBlock);
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
// This avoids hurting performance by pointlessly requiring a round-trip
// Note that there is currently no way for a node to request any single transactions we didnt send here -
// they must either disconnect and retry or request the full block.
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
// however we MUST always provide at least what the remote peer needs
typedef std::pair<unsigned int, uint256> PairType;
BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn)
if (!pfrom->setInventoryKnown.count(CInv(MSG_TX, pair.second)))
pfrom->PushMessage("tx", block.vtx[pair.first]);
}
// else
// no response
}
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash()));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
CTransaction tx;
if (mempool.lookup(inv.hash, tx)) {
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
pushed = true;
}
}
if (!pushed) {
vNotFound.push_back(inv);
}
}
// Track requests for our stuff.
g_signals.Inventory(inv.hash);
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
break;
}
}
pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
pfrom->PushMessage("notfound", vNotFound);
}
}
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv, int64_t nTimeReceived)
{
RandAddSeedPerfmon();
LogPrint("net", "received: %s (%u bytes) peer=%d\n", strCommand, vRecv.size(), pfrom->id);
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->PushMessage("reject", strCommand, REJECT_DUPLICATE, string("Duplicate version message"));
Misbehaving(pfrom->GetId(), 1);
return false;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PEER_PROTO_VERSION)
{
// disconnect from peers older than this proto version
LogPrintf("peer=%d using obsolete version %i; disconnecting\n", pfrom->id, pfrom->nVersion);
pfrom->PushMessage("reject", strCommand, REJECT_OBSOLETE,
strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION));
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty()) {
vRecv >> LIMITED_STRING(pfrom->strSubVer, 256);
pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer);
}
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
if (!vRecv.empty())
vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message
else
pfrom->fRelayTxes = true;
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString());
pfrom->fDisconnect = true;
return true;
}
pfrom->addrLocal = addrMe;
if (pfrom->fInbound && addrMe.IsRoutable())
{
SeenLocal(addrMe);
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
// Potentially mark this peer as a preferred download peer.
UpdatePreferredDownload(pfrom, State(pfrom->GetId()));
// Change version
pfrom->PushMessage("verack");
pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (fListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
{
pfrom->PushAddress(addr);
} else if (IsPeerAddrLocalGood(pfrom)) {
addr.SetIP(pfrom->addrLocal);
pfrom->PushAddress(addr);
}
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
string remoteAddr;
if (fLogIPs)
remoteAddr = ", peeraddr=" + pfrom->addr.ToString();
LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, peer=%d%s\n",
pfrom->cleanSubVer, pfrom->nVersion,
pfrom->nStartingHeight, addrMe.ToString(), pfrom->id,
remoteAddr);
AddTimeData(pfrom->addr, nTime);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
Misbehaving(pfrom->GetId(), 1);
return false;
}
else if (strCommand == "verack")
{
pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
Misbehaving(pfrom->GetId(), 20);
return error("message addr size() = %u", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
boost::this_thread::interruption_point();
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64_t hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60));
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
Misbehaving(pfrom->GetId(), 20);
return error("message inv size() = %u", vInv.size());
}
LOCK(cs_main);
std::vector<CInv> vToFetch;
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
boost::this_thread::interruption_point();
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(inv);
LogPrint("net", "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom->id);
if (!fAlreadyHave && !fImporting && !fReindex && inv.type != MSG_BLOCK)
pfrom->AskFor(inv);
if (inv.type == MSG_BLOCK) {
UpdateBlockAvailability(pfrom->GetId(), inv.hash);
if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(inv.hash)) {
// First request the headers preceeding the announced block. In the normal fully-synced
// case where a new block is announced that succeeds the current tip (no reorganization),
// there are no such headers.
// Secondly, and only when we are close to being synced, we request the announced block directly,
// to avoid an extra round-trip. Note that we must *first* ask for the headers, so by the
// time the block arrives, the header chain leading up to it is already validated. Not
// doing this will result in the received block being rejected as an orphan in case it is
// not a direct successor.
pfrom->PushMessage("getheaders", chainActive.GetLocator(pindexBestHeader), inv.hash);
if (chainActive.Tip()->GetBlockTime() > GetAdjustedTime() - Params().TargetSpacing() * 20) {
vToFetch.push_back(inv);
// Mark block as in flight already, even though the actual "getdata" message only goes out
// later (within the same cs_main lock, though).
MarkBlockAsInFlight(pfrom->GetId(), inv.hash);
}
LogPrint("net", "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, inv.hash.ToString(), pfrom->id);
}
}
// Track requests for our stuff
g_signals.Inventory(inv.hash);
if (pfrom->nSendSize > (SendBufferSize() * 2)) {
Misbehaving(pfrom->GetId(), 50);
return error("send buffer size() = %u", pfrom->nSendSize);
}
}
if (!vToFetch.empty())
pfrom->PushMessage("getdata", vToFetch);
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
Misbehaving(pfrom->GetId(), 20);
return error("message getdata size() = %u", vInv.size());
}
if (fDebug || (vInv.size() != 1))
LogPrint("net", "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom->id);
if ((fDebug && vInv.size() > 0) || (vInv.size() == 1))
LogPrint("net", "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom->id);
pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end());
ProcessGetData(pfrom);
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
// Find the last block the caller has in the main chain
CBlockIndex* pindex = FindForkInGlobalIndex(chainActive, locator);
// Send the rest of the chain
if (pindex)
pindex = chainActive.Next(pindex);
int nLimit = 500;
LogPrint("net", "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop==uint256(0) ? "end" : hashStop.ToString(), nLimit, pfrom->id);
for (; pindex; pindex = chainActive.Next(pindex))
{
if (pindex->GetBlockHash() == hashStop)
{
LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
BlockMap::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = FindForkInGlobalIndex(chainActive, locator);
if (pindex)
pindex = chainActive.Next(pindex);
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
vector<CBlock> vHeaders;
int nLimit = MAX_HEADERS_RESULTS;
LogPrint("net", "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString(), pfrom->id);
for (; pindex; pindex = chainActive.Next(pindex))
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
bool fMissingInputs = false;
CValidationState state;
mapAlreadyAskedFor.erase(inv);
if (AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs))
{
mempool.check(pcoinsTip);
RelayTransaction(tx);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
LogPrint("mempool", "AcceptToMemoryPool: peer=%d %s : accepted %s (poolsz %u)\n",
pfrom->id, pfrom->cleanSubVer,
tx.GetHash().ToString(),
mempool.mapTx.size());
// Recursively process any orphan transactions that depended on this one
set<NodeId> setMisbehaving;
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
map<uint256, set<uint256> >::iterator itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue[i]);
if (itByPrev == mapOrphanTransactionsByPrev.end())
continue;
for (set<uint256>::iterator mi = itByPrev->second.begin();
mi != itByPrev->second.end();
++mi)
{
const uint256& orphanHash = *mi;
const CTransaction& orphanTx = mapOrphanTransactions[orphanHash].tx;
NodeId fromPeer = mapOrphanTransactions[orphanHash].fromPeer;
bool fMissingInputs2 = false;
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan
// resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get
// anyone relaying LegitTxX banned)
CValidationState stateDummy;
vEraseQueue.push_back(orphanHash);
if (setMisbehaving.count(fromPeer))
continue;
if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2))
{
LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString());
RelayTransaction(orphanTx);
vWorkQueue.push_back(orphanHash);
}
else if (!fMissingInputs2)
{
int nDos = 0;
if (stateDummy.IsInvalid(nDos) && nDos > 0)
{
// Punish peer that gave us an invalid orphan tx
Misbehaving(fromPeer, nDos);
setMisbehaving.insert(fromPeer);
LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString());
}
// too-little-fee orphan
LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString());
}
mempool.check(pcoinsTip);
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(tx, pfrom->GetId());
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS));
unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx);
if (nEvicted > 0)
LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted);
} else if (pfrom->fWhitelisted) {
// Always relay transactions received from whitelisted peers, even
// if they are already in the mempool (allowing the node to function
// as a gateway for nodes hidden behind it).
RelayTransaction(tx);
}
int nDoS = 0;
if (state.IsInvalid(nDoS))
{
LogPrint("mempool", "%s from peer=%d %s was not accepted into the memory pool: %s\n", tx.GetHash().ToString(),
pfrom->id, pfrom->cleanSubVer,
state.GetRejectReason());
pfrom->PushMessage("reject", strCommand, state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), inv.hash);
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
}
}
else if (strCommand == "headers" && !fImporting && !fReindex) // Ignore headers received while importing
{
std::vector<CBlockHeader> headers;
// Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > MAX_HEADERS_RESULTS) {
Misbehaving(pfrom->GetId(), 20);
return error("headers message size = %u", nCount);
}
headers.resize(nCount);
for (unsigned int n = 0; n < nCount; n++) {
vRecv >> headers[n];
ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
}
LOCK(cs_main);
if (nCount == 0) {
// Nothing interesting. Stop asking this peers for more headers.
return true;
}
CBlockIndex *pindexLast = NULL;
BOOST_FOREACH(const CBlockHeader& header, headers) {
CValidationState state;
if (pindexLast != NULL && header.hashPrevBlock != pindexLast->GetBlockHash()) {
Misbehaving(pfrom->GetId(), 20);
return error("non-continuous headers sequence");
}
if (!AcceptBlockHeader(header, state, &pindexLast)) {
int nDoS;
if (state.IsInvalid(nDoS)) {
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
return error("invalid header received");
}
}
}
if (pindexLast)
UpdateBlockAvailability(pfrom->GetId(), pindexLast->GetBlockHash());
if (nCount == MAX_HEADERS_RESULTS && pindexLast) {
// Headers message had its maximum size; the peer may have more headers.
// TODO: optimize: if pindexLast is an ancestor of chainActive.Tip or pindexBestHeader, continue
// from there instead.
LogPrint("net", "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom->id, pfrom->nStartingHeight);
pfrom->PushMessage("getheaders", chainActive.GetLocator(pindexLast), uint256(0));
}
}
else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlock block;
vRecv >> block;
CInv inv(MSG_BLOCK, block.GetHash());
LogPrint("net", "received block %s peer=%d\n", inv.hash.ToString(), pfrom->id);
pfrom->AddInventoryKnown(inv);
CValidationState state;
ProcessNewBlock(state, pfrom, &block);
int nDoS;
if (state.IsInvalid(nDoS)) {
pfrom->PushMessage("reject", strCommand, state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), inv.hash);
if (nDoS > 0) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), nDoS);
}
}
}
else if (strCommand == "getaddr")
{
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
LOCK2(cs_main, pfrom->cs_filter);
std::vector<uint256> vtxid;
mempool.queryHashes(vtxid);
vector<CInv> vInv;
BOOST_FOREACH(uint256& hash, vtxid) {
CInv inv(MSG_TX, hash);
CTransaction tx;
bool fInMemPool = mempool.lookup(hash, tx);
if (!fInMemPool) continue; // another thread removed since queryHashes, maybe...
if ((pfrom->pfilter && pfrom->pfilter->IsRelevantAndUpdate(tx)) ||
(!pfrom->pfilter))
vInv.push_back(inv);
if (vInv.size() == MAX_INV_SZ) {
pfrom->PushMessage("inv", vInv);
vInv.clear();
}
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "pong")
{
int64_t pingUsecEnd = nTimeReceived;
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
if (pfrom->nPingNonceSent != 0) {
if (nonce == pfrom->nPingNonceSent) {
// Matching pong received, this ping is no longer outstanding
bPingFinished = true;
int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart;
if (pingUsecTime > 0) {
// Successful ping time measurement, replace previous
pfrom->nPingUsecTime = pingUsecTime;
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
// This is most likely a bug in another implementation somewhere, cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
// This is most likely a bug in another implementation somewhere, cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint("net", "pong peer=%d %s: %s, %x expected, %x received, %u bytes\n",
pfrom->id,
pfrom->cleanSubVer,
sProblem,
pfrom->nPingNonceSent,
nonce,
nAvail);
}
if (bPingFinished) {
pfrom->nPingNonceSent = 0;
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
Misbehaving(pfrom->GetId(), 10);
}
}
}
else if (strCommand == "filterload")
{
CBloomFilter filter;
vRecv >> filter;
if (!filter.IsWithinSizeConstraints())
// There is no excuse for sending a too-large filter
Misbehaving(pfrom->GetId(), 100);
else
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter(filter);
pfrom->pfilter->UpdateEmptyFull();
}
pfrom->fRelayTxes = true;
}
else if (strCommand == "filteradd")
{
vector<unsigned char> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
// and thus, the maximum size any matched object can have) in a filteradd message
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
Misbehaving(pfrom->GetId(), 100);
} else {
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
pfrom->pfilter->insert(vData);
else
Misbehaving(pfrom->GetId(), 100);
}
}
else if (strCommand == "filterclear")
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter();
pfrom->fRelayTxes = true;
}
else if (strCommand == "reject")
{
if (fDebug) {
try {
string strMsg; unsigned char ccode; string strReason;
vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, MAX_REJECT_MESSAGE_LENGTH);
ostringstream ss;
ss << strMsg << " code " << itostr(ccode) << ": " << strReason;
if (strMsg == "block" || strMsg == "tx")
{
uint256 hash;
vRecv >> hash;
ss << ": hash " << hash.ToString();
}
LogPrint("net", "Reject %s\n", SanitizeString(ss.str()));
} catch (const std::ios_base::failure&) {
// Avoid feedback loops by preventing reject messages from triggering a new reject message.
LogPrint("net", "Unparseable reject message received\n");
}
}
}
else
{
// Ignore unknown commands for extensibility
LogPrint("net", "Unknown command \"%s\" from peer=%d\n", SanitizeString(strCommand), pfrom->id);
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
// requires LOCK(cs_vRecvMsg)
bool ProcessMessages(CNode* pfrom)
{
//if (fDebug)
// LogPrintf("ProcessMessages(%u messages)\n", pfrom->vRecvMsg.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fOk = true;
if (!pfrom->vRecvGetData.empty())
ProcessGetData(pfrom);
// this maintains the order of responses
if (!pfrom->vRecvGetData.empty()) return fOk;
std::deque<CNetMessage>::iterator it = pfrom->vRecvMsg.begin();
while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
// get next message
CNetMessage& msg = *it;
//if (fDebug)
// LogPrintf("ProcessMessages(message %u msgsz, %u bytes, complete:%s)\n",
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
// end, if an incomplete message is found
if (!msg.complete())
break;
// at this point, any failure means we can delete the current message
it++;
// Scan for message start
if (memcmp(msg.hdr.pchMessageStart, Params().MessageStart(), MESSAGE_START_SIZE) != 0) {
LogPrintf("PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", msg.hdr.GetCommand(), pfrom->id);
fOk = false;
break;
}
// Read header
CMessageHeader& hdr = msg.hdr;
if (!hdr.IsValid())
{
LogPrintf("PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", hdr.GetCommand(), pfrom->id);
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
// Checksum
CDataStream& vRecv = msg.vRecv;
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
LogPrintf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand, nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Process message
bool fRet = false;
try
{
fRet = ProcessMessage(pfrom, strCommand, vRecv, msg.nTime);
boost::this_thread::interruption_point();
}
catch (const std::ios_base::failure& e)
{
pfrom->PushMessage("reject", strCommand, REJECT_MALFORMED, string("error parsing message"));
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand, nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand, nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (const boost::thread_interrupted&) {
throw;
}
catch (const std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
LogPrintf("ProcessMessage(%s, %u bytes) FAILED peer=%d\n", strCommand, nMessageSize, pfrom->id);
break;
}
// In case the connection got shut down, its receive buffer was wiped
if (!pfrom->fDisconnect)
pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it);
return fOk;
}
bool SendMessages(CNode* pto, bool fSendTrickle)
{
{
// Don't send anything until we get their version message
if (pto->nVersion == 0)
return true;
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) {
// Ping automatically sent as a latency probe & keepalive.
pingSend = true;
}
if (pingSend) {
uint64_t nonce = 0;
while (nonce == 0) {
GetRandBytes((unsigned char*)&nonce, sizeof(nonce));
}
pto->fPingQueued = false;
pto->nPingUsecStart = GetTimeMicros();
if (pto->nVersion > BIP0031_VERSION) {
pto->nPingNonceSent = nonce;
pto->PushMessage("ping", nonce);
} else {
// Peer is too old to support ping command with nonce, pong will never arrive.
pto->nPingNonceSent = 0;
pto->PushMessage("ping");
}
}
TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState()
if (!lockMain)
return true;
// Address refresh broadcast
static int64_t nLastRebroadcast;
if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60))
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
// Periodically clear setAddrKnown to allow refresh broadcasts
if (nLastRebroadcast)
pnode->setAddrKnown.clear();
// Rebroadcast our address
AdvertizeLocal(pnode);
}
if (!vNodes.empty())
nLastRebroadcast = GetTime();
}
//
// Message: addr
//
if (fSendTrickle)
{
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
// returns true if wasn't already contained in the set
if (pto->setAddrKnown.insert(addr).second)
{
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage("addr", vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage("addr", vAddr);
}
CNodeState &state = *State(pto->GetId());
if (state.fShouldBan) {
if (pto->fWhitelisted)
LogPrintf("Warning: not punishing whitelisted peer %s!\n", pto->addr.ToString());
else {
pto->fDisconnect = true;
if (pto->addr.IsLocal())
LogPrintf("Warning: not banning local peer %s!\n", pto->addr.ToString());
else
{
CNode::Ban(pto->addr);
}
}
state.fShouldBan = false;
}
BOOST_FOREACH(const CBlockReject& reject, state.rejects)
pto->PushMessage("reject", (string)"block", reject.chRejectCode, reject.strRejectReason, reject.hashBlock);
state.rejects.clear();
// Start block sync
if (pindexBestHeader == NULL)
pindexBestHeader = chainActive.Tip();
bool fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->fOneShot); // Download if this is a nice peer, or we have no nice peers and this one might do.
if (!state.fSyncStarted && !pto->fClient && fFetch && !fImporting && !fReindex) {
// Only actively request headers from a single peer, unless we're close to today.
if (nSyncStarted == 0 || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) {
state.fSyncStarted = true;
nSyncStarted++;
CBlockIndex *pindexStart = pindexBestHeader->pprev ? pindexBestHeader->pprev : pindexBestHeader;
LogPrint("net", "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->id, pto->nStartingHeight);
pto->PushMessage("getheaders", chainActive.GetLocator(pindexStart), uint256(0));
}
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if (!fReindex && !fImporting && !IsInitialBlockDownload())
{
g_signals.Broadcast();
}
//
// Message: inventory
//
vector<CInv> vInv;
vector<CInv> vInvWait;
{
LOCK(pto->cs_inventory);
vInv.reserve(pto->vInventoryToSend.size());
vInvWait.reserve(pto->vInventoryToSend.size());
BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend)
{
if (pto->setInventoryKnown.count(inv))
continue;
// trickle out tx inv to protect privacy
if (inv.type == MSG_TX && !fSendTrickle)
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint256 hashRand = inv.hash ^ hashSalt;
hashRand = Hash(BEGIN(hashRand), END(hashRand));
bool fTrickleWait = ((hashRand & 3) != 0);
if (fTrickleWait)
{
vInvWait.push_back(inv);
continue;
}
}
// returns true if wasn't already contained in the set
if (pto->setInventoryKnown.insert(inv).second)
{
vInv.push_back(inv);
if (vInv.size() >= 1000)
{
pto->PushMessage("inv", vInv);
vInv.clear();
}
}
}
pto->vInventoryToSend = vInvWait;
}
if (!vInv.empty())
pto->PushMessage("inv", vInv);
// Detect whether we're stalling
int64_t nNow = GetTimeMicros();
if (!pto->fDisconnect && state.nStallingSince && state.nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT) {
// Stalling only triggers when the block download window cannot move. During normal steady state,
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
// should only happen during initial block download.
LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->id);
pto->fDisconnect = true;
}
//
// Message: getdata (blocks)
//
vector<CInv> vGetData;
if (!pto->fDisconnect && !pto->fClient && fFetch && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
vector<CBlockIndex*> vToDownload;
NodeId staller = -1;
FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller);
BOOST_FOREACH(CBlockIndex *pindex, vToDownload) {
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(pto->GetId(), pindex->GetBlockHash(), pindex);
LogPrint("net", "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
pindex->nHeight, pto->id);
}
if (state.nBlocksInFlight == 0 && staller != -1) {
if (State(staller)->nStallingSince == 0) {
State(staller)->nStallingSince = nNow;
LogPrint("net", "Stall started peer=%d\n", staller);
}
}
}
//
// Message: getdata (non-blocks)
//
while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(inv))
{
if (fDebug)
LogPrint("net", "Requesting %s peer=%d\n", inv.ToString(), pto->id);
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage("getdata", vGetData);
}
return true;
}
bool CBlockUndo::WriteToDisk(CDiskBlockPos &pos, const uint256 &hashBlock)
{
// Open history file to append
CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("CBlockUndo::WriteToDisk : OpenUndoFile failed");
// Write index header
unsigned int nSize = fileout.GetSerializeSize(*this);
fileout << FLATDATA(Params().MessageStart()) << nSize;
// Write undo data
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("CBlockUndo::WriteToDisk : ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << *this;
// calculate & write checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << *this;
fileout << hasher.GetHash();
return true;
}
bool CBlockUndo::ReadFromDisk(const CDiskBlockPos &pos, const uint256 &hashBlock)
{
// Open history file to read
CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("CBlockUndo::ReadFromDisk : OpenBlockFile failed");
// Read block
uint256 hashChecksum;
try {
filein >> *this;
filein >> hashChecksum;
}
catch (const std::exception& e) {
return error("%s : Deserialize or I/O error - %s", __func__, e.what());
}
// Verify checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << *this;
if (hashChecksum != hasher.GetHash())
return error("CBlockUndo::ReadFromDisk : Checksum mismatch");
return true;
}
std::string CBlockFileInfo::ToString() const {
return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst), DateTimeStrFormat("%Y-%m-%d", nTimeLast));
}
class CMainCleanup
{
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
BlockMap::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
// orphan transactions
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
}
} instance_of_cmaincleanup;