neobytes/src/immer/vector.hpp
Alexander Block a370bbfe3d Update immer library to current master (0a718d2d76bab6ebdcf43de943bd6c7d2dbfe2f9) (#2821)
* Update immer library to current master (0a718d2d76bab6ebdcf43de943bd6c7d2dbfe2f9)

* Temporary fix for alignof(std::max_align_t) on MinGW 32bit builds

See https://github.com/arximboldi/immer/issues/78
2019-04-01 14:10:49 +03:00

355 lines
11 KiB
C++

//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#pragma once
#include <immer/detail/rbts/rbtree.hpp>
#include <immer/detail/rbts/rbtree_iterator.hpp>
#include <immer/memory_policy.hpp>
#if IMMER_DEBUG_PRINT
#include <immer/flex_vector.hpp>
#endif
namespace immer {
template <typename T,
typename MemoryPolicy,
detail::rbts::bits_t B,
detail::rbts::bits_t BL>
class flex_vector;
template <typename T,
typename MemoryPolicy,
detail::rbts::bits_t B,
detail::rbts::bits_t BL>
class vector_transient;
/*!
* Immutable sequential container supporting both random access and
* structural sharing.
*
* @tparam T The type of the values to be stored in the container.
* @tparam MemoryPolicy Memory management policy. See @ref
* memory_policy.
*
* @rst
*
* This cotainer provides a good trade-off between cache locality,
* random access, update performance and structural sharing. It does
* so by storing the data in contiguous chunks of :math:`2^{BL}`
* elements. By default, when ``sizeof(T) == sizeof(void*)`` then
* :math:`B=BL=5`, such that data would be stored in contiguous
* chunks of :math:`32` elements.
*
* You may learn more about the meaning and implications of ``B`` and
* ``BL`` parameters in the :doc:`implementation` section.
*
* .. note:: In several methods we say that their complexity is
* *effectively* :math:`O(...)`. Do not confuse this with the word
* *amortized*, which has a very different meaning. In this
* context, *effective* means that while the
* mathematically rigurous
* complexity might be higher, for all practical matters the
* provided complexity is more useful to think about the actual
* cost of the operation.
*
* **Example**
* .. literalinclude:: ../example/vector/intro.cpp
* :language: c++
* :start-after: intro/start
* :end-before: intro/end
*
* @endrst
*/
template <typename T,
typename MemoryPolicy = default_memory_policy,
detail::rbts::bits_t B = default_bits,
detail::rbts::bits_t BL = detail::rbts::derive_bits_leaf<T, MemoryPolicy, B>>
class vector
{
using impl_t = detail::rbts::rbtree<T, MemoryPolicy, B, BL>;
using flex_t = flex_vector<T, MemoryPolicy, B, BL>;
using move_t =
std::integral_constant<bool, MemoryPolicy::use_transient_rvalues>;
public:
static constexpr auto bits = B;
static constexpr auto bits_leaf = BL;
using memory_policy = MemoryPolicy;
using value_type = T;
using reference = const T&;
using size_type = detail::rbts::size_t;
using difference_type = std::ptrdiff_t;
using const_reference = const T&;
using iterator = detail::rbts::rbtree_iterator<T, MemoryPolicy, B, BL>;
using const_iterator = iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using transient_type = vector_transient<T, MemoryPolicy, B, BL>;
/*!
* Default constructor. It creates a vector of `size() == 0`. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
vector() = default;
/*!
* Constructs a vector containing the elements in `values`.
*/
vector(std::initializer_list<T> values)
: impl_{impl_t::from_initializer_list(values)}
{}
/*!
* Constructs a vector containing the elements in the range
* defined by the input iterator `first` and range sentinel `last`.
*/
template <typename Iter, typename Sent,
std::enable_if_t
<detail::compatible_sentinel_v<Iter, Sent>, bool> = true>
vector(Iter first, Sent last)
: impl_{impl_t::from_range(first, last)}
{}
/*!
* Constructs a vector containing the element `val` repeated `n`
* times.
*/
vector(size_type n, T v = {})
: impl_{impl_t::from_fill(n, v)}
{}
/*!
* Returns an iterator pointing at the first element of the
* collection. It does not allocate memory and its complexity is
* @f$ O(1) @f$.
*/
iterator begin() const { return {impl_}; }
/*!
* Returns an iterator pointing just after the last element of the
* collection. It does not allocate and its complexity is @f$ O(1) @f$.
*/
iterator end() const { return {impl_, typename iterator::end_t{}}; }
/*!
* Returns an iterator that traverses the collection backwards,
* pointing at the first element of the reversed collection. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
reverse_iterator rbegin() const { return reverse_iterator{end()}; }
/*!
* Returns an iterator that traverses the collection backwards,
* pointing after the last element of the reversed collection. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
reverse_iterator rend() const { return reverse_iterator{begin()}; }
/*!
* Returns the number of elements in the container. It does
* not allocate memory and its complexity is @f$ O(1) @f$.
*/
size_type size() const { return impl_.size; }
/*!
* Returns `true` if there are no elements in the container. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
bool empty() const { return impl_.size == 0; }
/*!
* Access the last element.
*/
const T& back() const { return impl_.back(); }
/*!
* Access the first element.
*/
const T& front() const { return impl_.front(); }
/*!
* Returns a `const` reference to the element at position `index`.
* It is undefined when @f$ 0 index \geq size() @f$. It does not
* allocate memory and its complexity is *effectively* @f$ O(1)
* @f$.
*/
reference operator[] (size_type index) const
{ return impl_.get(index); }
/*!
* Returns a `const` reference to the element at position
* `index`. It throws an `std::out_of_range` exception when @f$
* index \geq size() @f$. It does not allocate memory and its
* complexity is *effectively* @f$ O(1) @f$.
*/
reference at(size_type index) const
{ return impl_.get_check(index); }
/*!
* Returns whether the vectors are equal.
*/
bool operator==(const vector& other) const
{ return impl_.equals(other.impl_); }
bool operator!=(const vector& other) const
{ return !(*this == other); }
/*!
* Returns a vector with `value` inserted at the end. It may
* allocate memory and its complexity is *effectively* @f$ O(1) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/vector/vector.cpp
* :language: c++
* :dedent: 8
* :start-after: push-back/start
* :end-before: push-back/end
*
* @endrst
*/
vector push_back(value_type value) const&
{ return impl_.push_back(std::move(value)); }
decltype(auto) push_back(value_type value) &&
{ return push_back_move(move_t{}, std::move(value)); }
/*!
* Returns a vector containing value `value` at position `idx`.
* Undefined for `index >= size()`.
* It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/vector/vector.cpp
* :language: c++
* :dedent: 8
* :start-after: set/start
* :end-before: set/end
*
* @endrst
*/
vector set(size_type index, value_type value) const&
{ return impl_.assoc(index, std::move(value)); }
decltype(auto) set(size_type index, value_type value) &&
{ return set_move(move_t{}, index, std::move(value)); }
/*!
* Returns a vector containing the result of the expression
* `fn((*this)[idx])` at position `idx`.
* Undefined for `0 >= size()`.
* It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/vector/vector.cpp
* :language: c++
* :dedent: 8
* :start-after: update/start
* :end-before: update/end
*
* @endrst
*/
template <typename FnT>
vector update(size_type index, FnT&& fn) const&
{ return impl_.update(index, std::forward<FnT>(fn)); }
template <typename FnT>
decltype(auto) update(size_type index, FnT&& fn) &&
{ return update_move(move_t{}, index, std::forward<FnT>(fn)); }
/*!
* Returns a vector containing only the first `min(elems, size())`
* elements. It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/vector/vector.cpp
* :language: c++
* :dedent: 8
* :start-after: take/start
* :end-before: take/end
*
* @endrst
*/
vector take(size_type elems) const&
{ return impl_.take(elems); }
decltype(auto) take(size_type elems) &&
{ return take_move(move_t{}, elems); }
/*!
* Returns an @a transient form of this container, an
* `immer::vector_transient`.
*/
transient_type transient() const&
{ return transient_type{ impl_ }; }
transient_type transient() &&
{ return transient_type{ std::move(impl_) }; }
// Semi-private
const impl_t& impl() const { return impl_; }
#if IMMER_DEBUG_PRINT
void debug_print(std::ostream& out=std::cerr) const
{ flex_t{*this}.debug_print(out); }
#endif
private:
friend flex_t;
friend transient_type;
vector(impl_t impl)
: impl_(std::move(impl))
{
#if IMMER_DEBUG_PRINT
// force the compiler to generate debug_print, so we can call
// it from a debugger
[](volatile auto){}(&vector::debug_print);
#endif
}
vector&& push_back_move(std::true_type, value_type value)
{ impl_.push_back_mut({}, std::move(value)); return std::move(*this); }
vector push_back_move(std::false_type, value_type value)
{ return impl_.push_back(std::move(value)); }
vector&& set_move(std::true_type, size_type index, value_type value)
{ impl_.assoc_mut({}, index, std::move(value)); return std::move(*this); }
vector set_move(std::false_type, size_type index, value_type value)
{ return impl_.assoc(index, std::move(value)); }
template <typename Fn>
vector&& update_move(std::true_type, size_type index, Fn&& fn)
{ impl_.update_mut({}, index, std::forward<Fn>(fn)); return std::move(*this); }
template <typename Fn>
vector update_move(std::false_type, size_type index, Fn&& fn)
{ return impl_.update(index, std::forward<Fn>(fn)); }
vector&& take_move(std::true_type, size_type elems)
{ impl_.take_mut({}, elems); return std::move(*this); }
vector take_move(std::false_type, size_type elems)
{ return impl_.take(elems); }
impl_t impl_ = impl_t::empty();
};
} // namespace immer