neobytes/src/wallet/crypter.cpp
UdjinM6 1448506570
Switch KeePassHttp integration to new AES lib, add tests and a note about KeePassHttp security (#1818)
* Add a note about KeePassHttp security

* Use new AES lib instead of OpenSSL for KeePassHttp encryption/decryption

* Add tests to make sure new AES lib works corrctly for KeePassHttp encryption/decryption and produces the same results as OpenSSL did
2017-12-29 01:10:34 +03:00

505 lines
16 KiB
C++

// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypter.h"
#include "crypto/aes.h"
#include "crypto/sha512.h"
#include "script/script.h"
#include "script/standard.h"
#include "util.h"
#include <string>
#include <vector>
#include <boost/foreach.hpp>
int CCrypter::BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const
{
// This mimics the behavior of openssl's EVP_BytesToKey with an aes256cbc
// cipher and sha512 message digest. Because sha512's output size (64b) is
// greater than the aes256 block size (16b) + aes256 key size (32b),
// there's no need to process more than once (D_0).
if(!count || !key || !iv)
return 0;
unsigned char buf[CSHA512::OUTPUT_SIZE];
CSHA512 di;
di.Write((const unsigned char*)strKeyData.c_str(), strKeyData.size());
if(chSalt.size())
di.Write(&chSalt[0], chSalt.size());
di.Finalize(buf);
for(int i = 0; i != count - 1; i++)
di.Reset().Write(buf, sizeof(buf)).Finalize(buf);
memcpy(key, buf, WALLET_CRYPTO_KEY_SIZE);
memcpy(iv, buf + WALLET_CRYPTO_KEY_SIZE, WALLET_CRYPTO_IV_SIZE);
memory_cleanse(buf, sizeof(buf));
return WALLET_CRYPTO_KEY_SIZE;
}
bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod)
{
if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE)
return false;
int i = 0;
if (nDerivationMethod == 0)
i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, chKey, chIV);
if (i != (int)WALLET_CRYPTO_KEY_SIZE)
{
memory_cleanse(chKey, sizeof(chKey));
memory_cleanse(chIV, sizeof(chIV));
return false;
}
fKeySet = true;
return true;
}
bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV)
{
if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_IV_SIZE)
return false;
memcpy(&chKey[0], &chNewKey[0], sizeof chKey);
memcpy(&chIV[0], &chNewIV[0], sizeof chIV);
fKeySet = true;
return true;
}
bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) const
{
if (!fKeySet)
return false;
// max ciphertext len for a n bytes of plaintext is
// n + AES_BLOCKSIZE bytes
vchCiphertext.resize(vchPlaintext.size() + AES_BLOCKSIZE);
AES256CBCEncrypt enc(chKey, chIV, true);
size_t nLen = enc.Encrypt(&vchPlaintext[0], vchPlaintext.size(), &vchCiphertext[0]);
if(nLen < vchPlaintext.size())
return false;
vchCiphertext.resize(nLen);
return true;
}
bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) const
{
if (!fKeySet)
return false;
// plaintext will always be equal to or lesser than length of ciphertext
int nLen = vchCiphertext.size();
vchPlaintext.resize(nLen);
AES256CBCDecrypt dec(chKey, chIV, true);
nLen = dec.Decrypt(&vchCiphertext[0], vchCiphertext.size(), &vchPlaintext[0]);
if(nLen == 0)
return false;
vchPlaintext.resize(nLen);
return true;
}
static bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext)
{
CCrypter cKeyCrypter;
std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE);
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE);
if(!cKeyCrypter.SetKey(vMasterKey, chIV))
return false;
return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext);
}
// General secure AES 256 CBC encryption routine
bool EncryptAES256(const SecureString& sKey, const SecureString& sPlaintext, const std::string& sIV, std::string& sCiphertext)
{
// Verify key sizes
if(sKey.size() != 32 || sIV.size() != AES_BLOCKSIZE) {
LogPrintf("crypter EncryptAES256 - Invalid key or block size: Key: %d sIV:%d\n", sKey.size(), sIV.size());
return false;
}
// max ciphertext len for a n bytes of plaintext is
// n + AES_BLOCKSIZE bytes
sCiphertext.resize(sPlaintext.size() + AES_BLOCKSIZE);
AES256CBCEncrypt enc((const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0], true);
size_t nLen = enc.Encrypt((const unsigned char*) &sPlaintext[0], sPlaintext.size(), (unsigned char*) &sCiphertext[0]);
if(nLen < sPlaintext.size())
return false;
sCiphertext.resize(nLen);
return true;
}
static bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext)
{
CCrypter cKeyCrypter;
std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE);
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE);
if(!cKeyCrypter.SetKey(vMasterKey, chIV))
return false;
return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext));
}
// General secure AES 256 CBC decryption routine
bool DecryptAES256(const SecureString& sKey, const std::string& sCiphertext, const std::string& sIV, SecureString& sPlaintext)
{
// Verify key sizes
if(sKey.size() != 32 || sIV.size() != AES_BLOCKSIZE) {
LogPrintf("crypter DecryptAES256 - Invalid key or block size\n");
return false;
}
// plaintext will always be equal to or lesser than length of ciphertext
int nLen = sCiphertext.size();
sPlaintext.resize(nLen);
AES256CBCDecrypt dec((const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0], true);
nLen = dec.Decrypt((const unsigned char*) &sCiphertext[0], sCiphertext.size(), (unsigned char*) &sPlaintext[0]);
if(nLen == 0)
return false;
sPlaintext.resize(nLen);
return true;
}
static bool DecryptKey(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCryptedSecret, const CPubKey& vchPubKey, CKey& key)
{
CKeyingMaterial vchSecret;
if(!DecryptSecret(vMasterKey, vchCryptedSecret, vchPubKey.GetHash(), vchSecret))
return false;
if (vchSecret.size() != 32)
return false;
key.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed());
return key.VerifyPubKey(vchPubKey);
}
bool CCryptoKeyStore::SetCrypted()
{
LOCK(cs_KeyStore);
if (fUseCrypto)
return true;
if (!mapKeys.empty())
return false;
fUseCrypto = true;
return true;
}
bool CCryptoKeyStore::Lock(bool fAllowMixing)
{
if (!SetCrypted())
return false;
if(!fAllowMixing) {
LOCK(cs_KeyStore);
vMasterKey.clear();
}
fOnlyMixingAllowed = fAllowMixing;
NotifyStatusChanged(this);
return true;
}
bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn, bool fForMixingOnly)
{
{
LOCK(cs_KeyStore);
if (!SetCrypted())
return false;
bool keyPass = false;
bool keyFail = false;
CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
for (; mi != mapCryptedKeys.end(); ++mi)
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
CKey key;
if (!DecryptKey(vMasterKeyIn, vchCryptedSecret, vchPubKey, key))
{
keyFail = true;
break;
}
keyPass = true;
if (fDecryptionThoroughlyChecked)
break;
}
if (keyPass && keyFail)
{
LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all.\n");
assert(false);
}
if (keyFail || (!keyPass && cryptedHDChain.IsNull()))
return false;
vMasterKey = vMasterKeyIn;
if(!cryptedHDChain.IsNull()) {
bool chainPass = false;
// try to decrypt seed and make sure it matches
CHDChain hdChainTmp;
if (DecryptHDChain(hdChainTmp)) {
// make sure seed matches this chain
chainPass = cryptedHDChain.GetID() == hdChainTmp.GetSeedHash();
}
if (!chainPass) {
vMasterKey.clear();
return false;
}
}
fDecryptionThoroughlyChecked = true;
}
fOnlyMixingAllowed = fForMixingOnly;
NotifyStatusChanged(this);
return true;
}
bool CCryptoKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey)
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::AddKeyPubKey(key, pubkey);
if (IsLocked(true))
return false;
std::vector<unsigned char> vchCryptedSecret;
CKeyingMaterial vchSecret(key.begin(), key.end());
if (!EncryptSecret(vMasterKey, vchSecret, pubkey.GetHash(), vchCryptedSecret))
return false;
if (!AddCryptedKey(pubkey, vchCryptedSecret))
return false;
}
return true;
}
bool CCryptoKeyStore::AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
{
LOCK(cs_KeyStore);
if (!SetCrypted())
return false;
mapCryptedKeys[vchPubKey.GetID()] = make_pair(vchPubKey, vchCryptedSecret);
}
return true;
}
bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::GetKey(address, keyOut);
CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
if (mi != mapCryptedKeys.end())
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
return DecryptKey(vMasterKey, vchCryptedSecret, vchPubKey, keyOut);
}
}
return false;
}
bool CCryptoKeyStore::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::GetPubKey(address, vchPubKeyOut);
CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
if (mi != mapCryptedKeys.end())
{
vchPubKeyOut = (*mi).second.first;
return true;
}
// Check for watch-only pubkeys
return CBasicKeyStore::GetPubKey(address, vchPubKeyOut);
}
return false;
}
bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn)
{
{
LOCK(cs_KeyStore);
if (!mapCryptedKeys.empty() || IsCrypted())
return false;
fUseCrypto = true;
BOOST_FOREACH(KeyMap::value_type& mKey, mapKeys)
{
const CKey &key = mKey.second;
CPubKey vchPubKey = key.GetPubKey();
CKeyingMaterial vchSecret(key.begin(), key.end());
std::vector<unsigned char> vchCryptedSecret;
if (!EncryptSecret(vMasterKeyIn, vchSecret, vchPubKey.GetHash(), vchCryptedSecret))
return false;
if (!AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
}
mapKeys.clear();
}
return true;
}
bool CCryptoKeyStore::EncryptHDChain(const CKeyingMaterial& vMasterKeyIn)
{
// should call EncryptKeys first
if (!IsCrypted())
return false;
if (!cryptedHDChain.IsNull())
return true;
if (cryptedHDChain.IsCrypted())
return true;
// make sure seed matches this chain
if (hdChain.GetID() != hdChain.GetSeedHash())
return false;
std::vector<unsigned char> vchCryptedSeed;
if (!EncryptSecret(vMasterKeyIn, hdChain.GetSeed(), hdChain.GetID(), vchCryptedSeed))
return false;
hdChain.Debug(__func__);
cryptedHDChain = hdChain;
cryptedHDChain.SetCrypted(true);
SecureVector vchSecureCryptedSeed(vchCryptedSeed.begin(), vchCryptedSeed.end());
if (!cryptedHDChain.SetSeed(vchSecureCryptedSeed, false))
return false;
SecureVector vchMnemonic;
SecureVector vchMnemonicPassphrase;
// it's ok to have no mnemonic if wallet was initialized via hdseed
if (hdChain.GetMnemonic(vchMnemonic, vchMnemonicPassphrase)) {
std::vector<unsigned char> vchCryptedMnemonic;
std::vector<unsigned char> vchCryptedMnemonicPassphrase;
if (!vchMnemonic.empty() && !EncryptSecret(vMasterKeyIn, vchMnemonic, hdChain.GetID(), vchCryptedMnemonic))
return false;
if (!vchMnemonicPassphrase.empty() && !EncryptSecret(vMasterKeyIn, vchMnemonicPassphrase, hdChain.GetID(), vchCryptedMnemonicPassphrase))
return false;
SecureVector vchSecureCryptedMnemonic(vchCryptedMnemonic.begin(), vchCryptedMnemonic.end());
SecureVector vchSecureCryptedMnemonicPassphrase(vchCryptedMnemonicPassphrase.begin(), vchCryptedMnemonicPassphrase.end());
if (!cryptedHDChain.SetMnemonic(vchSecureCryptedMnemonic, vchSecureCryptedMnemonicPassphrase, false))
return false;
}
if (!hdChain.SetNull())
return false;
return true;
}
bool CCryptoKeyStore::DecryptHDChain(CHDChain& hdChainRet) const
{
if (!IsCrypted())
return true;
if (cryptedHDChain.IsNull())
return false;
if (!cryptedHDChain.IsCrypted())
return false;
SecureVector vchSecureSeed;
SecureVector vchSecureCryptedSeed = cryptedHDChain.GetSeed();
std::vector<unsigned char> vchCryptedSeed(vchSecureCryptedSeed.begin(), vchSecureCryptedSeed.end());
if (!DecryptSecret(vMasterKey, vchCryptedSeed, cryptedHDChain.GetID(), vchSecureSeed))
return false;
hdChainRet = cryptedHDChain;
if (!hdChainRet.SetSeed(vchSecureSeed, false))
return false;
// hash of decrypted seed must match chain id
if (hdChainRet.GetSeedHash() != cryptedHDChain.GetID())
return false;
SecureVector vchSecureCryptedMnemonic;
SecureVector vchSecureCryptedMnemonicPassphrase;
// it's ok to have no mnemonic if wallet was initialized via hdseed
if (cryptedHDChain.GetMnemonic(vchSecureCryptedMnemonic, vchSecureCryptedMnemonicPassphrase)) {
SecureVector vchSecureMnemonic;
SecureVector vchSecureMnemonicPassphrase;
std::vector<unsigned char> vchCryptedMnemonic(vchSecureCryptedMnemonic.begin(), vchSecureCryptedMnemonic.end());
std::vector<unsigned char> vchCryptedMnemonicPassphrase(vchSecureCryptedMnemonicPassphrase.begin(), vchSecureCryptedMnemonicPassphrase.end());
if (!vchCryptedMnemonic.empty() && !DecryptSecret(vMasterKey, vchCryptedMnemonic, cryptedHDChain.GetID(), vchSecureMnemonic))
return false;
if (!vchCryptedMnemonicPassphrase.empty() && !DecryptSecret(vMasterKey, vchCryptedMnemonicPassphrase, cryptedHDChain.GetID(), vchSecureMnemonicPassphrase))
return false;
if (!hdChainRet.SetMnemonic(vchSecureMnemonic, vchSecureMnemonicPassphrase, false))
return false;
}
hdChainRet.SetCrypted(false);
hdChainRet.Debug(__func__);
return true;
}
bool CCryptoKeyStore::SetHDChain(const CHDChain& chain)
{
if (IsCrypted())
return false;
if (chain.IsCrypted())
return false;
hdChain = chain;
return true;
}
bool CCryptoKeyStore::SetCryptedHDChain(const CHDChain& chain)
{
if (!SetCrypted())
return false;
if (!chain.IsCrypted())
return false;
cryptedHDChain = chain;
return true;
}
bool CCryptoKeyStore::GetHDChain(CHDChain& hdChainRet) const
{
if(IsCrypted()) {
hdChainRet = cryptedHDChain;
return !cryptedHDChain.IsNull();
}
hdChainRet = hdChain;
return !hdChain.IsNull();
}