2022-06-14 08:30:28 +02:00
|
|
|
// Copyright (c) 2018-2019 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#ifndef BITCOIN_UTIL_GOLOMBRICE_H
|
|
|
|
#define BITCOIN_UTIL_GOLOMBRICE_H
|
|
|
|
|
|
|
|
#include <streams.h>
|
|
|
|
|
|
|
|
#include <cstdint>
|
|
|
|
|
|
|
|
template <typename OStream>
|
|
|
|
void GolombRiceEncode(BitStreamWriter<OStream>& bitwriter, uint8_t P, uint64_t x)
|
|
|
|
{
|
|
|
|
// Write quotient as unary-encoded: q 1's followed by one 0.
|
|
|
|
uint64_t q = x >> P;
|
|
|
|
while (q > 0) {
|
|
|
|
int nbits = q <= 64 ? static_cast<int>(q) : 64;
|
|
|
|
bitwriter.Write(~0ULL, nbits);
|
|
|
|
q -= nbits;
|
|
|
|
}
|
|
|
|
bitwriter.Write(0, 1);
|
|
|
|
|
|
|
|
// Write the remainder in P bits. Since the remainder is just the bottom
|
|
|
|
// P bits of x, there is no need to mask first.
|
|
|
|
bitwriter.Write(x, P);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename IStream>
|
|
|
|
uint64_t GolombRiceDecode(BitStreamReader<IStream>& bitreader, uint8_t P)
|
|
|
|
{
|
|
|
|
// Read unary-encoded quotient: q 1's followed by one 0.
|
|
|
|
uint64_t q = 0;
|
|
|
|
while (bitreader.Read(1) == 1) {
|
|
|
|
++q;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t r = bitreader.Read(P);
|
|
|
|
|
|
|
|
return (q << P) + r;
|
|
|
|
}
|
|
|
|
|
2022-01-06 14:54:06 +01:00
|
|
|
// Map a value x that is uniformly distributed in the range [0, 2^64) to a
|
|
|
|
// value uniformly distributed in [0, n) by returning the upper 64 bits of
|
|
|
|
// x * n.
|
|
|
|
//
|
|
|
|
// See: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
|
|
|
static inline uint64_t MapIntoRange(uint64_t x, uint64_t n)
|
|
|
|
{
|
|
|
|
#ifdef __SIZEOF_INT128__
|
|
|
|
return (static_cast<unsigned __int128>(x) * static_cast<unsigned __int128>(n)) >> 64;
|
|
|
|
#else
|
|
|
|
// To perform the calculation on 64-bit numbers without losing the
|
|
|
|
// result to overflow, split the numbers into the most significant and
|
|
|
|
// least significant 32 bits and perform multiplication piece-wise.
|
|
|
|
//
|
|
|
|
// See: https://stackoverflow.com/a/26855440
|
|
|
|
const uint64_t x_hi = x >> 32;
|
|
|
|
const uint64_t x_lo = x & 0xFFFFFFFF;
|
|
|
|
const uint64_t n_hi = n >> 32;
|
|
|
|
const uint64_t n_lo = n & 0xFFFFFFFF;
|
|
|
|
|
|
|
|
const uint64_t ac = x_hi * n_hi;
|
|
|
|
const uint64_t ad = x_hi * n_lo;
|
|
|
|
const uint64_t bc = x_lo * n_hi;
|
|
|
|
const uint64_t bd = x_lo * n_lo;
|
|
|
|
|
|
|
|
const uint64_t mid34 = (bd >> 32) + (bc & 0xFFFFFFFF) + (ad & 0xFFFFFFFF);
|
|
|
|
const uint64_t upper64 = ac + (bc >> 32) + (ad >> 32) + (mid34 >> 32);
|
|
|
|
return upper64;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2022-06-14 08:30:28 +02:00
|
|
|
#endif // BITCOIN_UTIL_GOLOMBRICE_H
|