2014-06-26 14:41:53 +02:00
|
|
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
2015-12-13 14:51:43 +01:00
|
|
|
// Copyright (c) 2009-2015 The Bitcoin Core developers
|
2014-12-13 05:09:33 +01:00
|
|
|
// Distributed under the MIT software license, see the accompanying
|
2014-06-26 14:41:53 +02:00
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#include "random.h"
|
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
#include "crypto/sha512.h"
|
2015-01-21 01:23:25 +01:00
|
|
|
#include "support/cleanse.h"
|
2014-06-26 14:41:53 +02:00
|
|
|
#ifdef WIN32
|
|
|
|
#include "compat.h" // for Windows API
|
2016-05-30 15:46:16 +02:00
|
|
|
#include <wincrypt.h>
|
2014-06-26 14:41:53 +02:00
|
|
|
#endif
|
2014-09-19 19:21:46 +02:00
|
|
|
#include "util.h" // for LogPrint()
|
Split up util.cpp/h
Split up util.cpp/h into:
- string utilities (hex, base32, base64): no internal dependencies, no dependency on boost (apart from foreach)
- money utilities (parsesmoney, formatmoney)
- time utilities (gettime*, sleep, format date):
- and the rest (logging, argument parsing, config file parsing)
The latter is basically the environment and OS handling,
and is stripped of all utility functions, so we may want to
rename it to something else than util.cpp/h for clarity (Matt suggested
osinterface).
Breaks dependency of sha256.cpp on all the things pulled in by util.
2014-08-21 16:11:09 +02:00
|
|
|
#include "utilstrencodings.h" // for GetTime()
|
2014-06-26 14:41:53 +02:00
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
#include <stdlib.h>
|
2014-09-14 12:43:56 +02:00
|
|
|
#include <limits>
|
2017-05-09 19:10:23 +02:00
|
|
|
#include <chrono>
|
|
|
|
#include <thread>
|
2014-09-14 12:43:56 +02:00
|
|
|
|
2014-06-26 14:41:53 +02:00
|
|
|
#ifndef WIN32
|
|
|
|
#include <sys/time.h>
|
|
|
|
#endif
|
2014-09-14 12:43:56 +02:00
|
|
|
|
2017-03-01 12:40:06 +01:00
|
|
|
#ifdef HAVE_SYS_GETRANDOM
|
|
|
|
#include <sys/syscall.h>
|
|
|
|
#include <linux/random.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_GETENTROPY
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYSCTL_ARND
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#endif
|
|
|
|
|
2017-05-09 19:13:45 +02:00
|
|
|
#include <mutex>
|
|
|
|
|
2014-06-26 14:41:53 +02:00
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
static void RandFailure()
|
|
|
|
{
|
|
|
|
LogPrintf("Failed to read randomness, aborting\n");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
2014-06-26 14:41:53 +02:00
|
|
|
static inline int64_t GetPerformanceCounter()
|
|
|
|
{
|
2017-05-09 19:10:23 +02:00
|
|
|
// Read the hardware time stamp counter when available.
|
|
|
|
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
|
|
|
|
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
|
|
|
|
return __rdtsc();
|
|
|
|
#elif !defined(_MSC_VER) && defined(__i386__)
|
|
|
|
uint64_t r = 0;
|
|
|
|
__asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
|
|
|
|
return r;
|
|
|
|
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
|
|
|
|
uint64_t r1 = 0, r2 = 0;
|
|
|
|
__asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
|
|
|
|
return (r2 << 32) | r1;
|
2014-06-26 14:41:53 +02:00
|
|
|
#else
|
2017-05-09 19:10:23 +02:00
|
|
|
// Fall back to using C++11 clock (usually microsecond or nanosecond precision)
|
|
|
|
return std::chrono::high_resolution_clock::now().time_since_epoch().count();
|
2014-06-26 14:41:53 +02:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2017-06-14 15:22:08 +02:00
|
|
|
|
|
|
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
|
|
|
|
static std::atomic<bool> hwrand_initialized{false};
|
|
|
|
static bool rdrand_supported = false;
|
|
|
|
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
|
|
|
|
static void RDRandInit()
|
|
|
|
{
|
2017-06-17 02:36:22 +02:00
|
|
|
uint32_t eax, ecx, edx;
|
|
|
|
#if defined(__i386__) && ( defined(__PIC__) || defined(__PIE__))
|
2017-06-14 15:22:08 +02:00
|
|
|
// Avoid clobbering ebx, as that is used for PIC on x86.
|
2017-06-17 02:36:22 +02:00
|
|
|
uint32_t tmp;
|
2017-06-14 15:22:08 +02:00
|
|
|
__asm__ ("mov %%ebx, %1; cpuid; mov %1, %%ebx": "=a"(eax), "=g"(tmp), "=c"(ecx), "=d"(edx) : "a"(1));
|
2017-06-17 02:36:22 +02:00
|
|
|
#else
|
|
|
|
uint32_t ebx;
|
|
|
|
__asm__ ("cpuid": "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : "a"(1));
|
|
|
|
#endif
|
|
|
|
//! When calling cpuid function #1, ecx register will have this set if RDRAND is available.
|
2017-06-14 15:22:08 +02:00
|
|
|
if (ecx & CPUID_F1_ECX_RDRAND) {
|
|
|
|
LogPrintf("Using RdRand as entropy source\n");
|
|
|
|
rdrand_supported = true;
|
|
|
|
}
|
|
|
|
hwrand_initialized.store(true);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void RDRandInit() {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static bool GetHWRand(unsigned char* ent32) {
|
|
|
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
|
|
|
|
assert(hwrand_initialized.load(std::memory_order_relaxed));
|
|
|
|
if (rdrand_supported) {
|
|
|
|
uint8_t ok;
|
|
|
|
// Not all assemblers support the rdrand instruction, write it in hex.
|
|
|
|
#ifdef __i386__
|
|
|
|
for (int iter = 0; iter < 4; ++iter) {
|
|
|
|
uint32_t r1, r2;
|
|
|
|
__asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
|
|
|
|
".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
|
|
|
|
"setc %2" :
|
|
|
|
"=a"(r1), "=d"(r2), "=q"(ok) :: "cc");
|
|
|
|
if (!ok) return false;
|
|
|
|
WriteLE32(ent32 + 8 * iter, r1);
|
|
|
|
WriteLE32(ent32 + 8 * iter + 4, r2);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
uint64_t r1, r2, r3, r4;
|
|
|
|
__asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
|
|
|
|
"0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
|
|
|
|
"0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
|
|
|
|
"0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
|
|
|
|
"setc %4" :
|
|
|
|
"=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc");
|
|
|
|
if (!ok) return false;
|
|
|
|
WriteLE64(ent32, r1);
|
|
|
|
WriteLE64(ent32 + 8, r2);
|
|
|
|
WriteLE64(ent32 + 16, r3);
|
|
|
|
WriteLE64(ent32 + 24, r4);
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-06-26 14:41:53 +02:00
|
|
|
void RandAddSeed()
|
|
|
|
{
|
|
|
|
// Seed with CPU performance counter
|
|
|
|
int64_t nCounter = GetPerformanceCounter();
|
|
|
|
RAND_add(&nCounter, sizeof(nCounter), 1.5);
|
2015-01-21 01:23:25 +01:00
|
|
|
memory_cleanse((void*)&nCounter, sizeof(nCounter));
|
2014-06-26 14:41:53 +02:00
|
|
|
}
|
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
static void RandAddSeedPerfmon()
|
2014-06-26 14:41:53 +02:00
|
|
|
{
|
|
|
|
RandAddSeed();
|
|
|
|
|
2015-02-25 03:03:53 +01:00
|
|
|
#ifdef WIN32
|
|
|
|
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
|
|
|
|
// Seed with the entire set of perfmon data
|
|
|
|
|
2014-06-26 14:41:53 +02:00
|
|
|
// This can take up to 2 seconds, so only do it every 10 minutes
|
|
|
|
static int64_t nLastPerfmon;
|
|
|
|
if (GetTime() < nLastPerfmon + 10 * 60)
|
|
|
|
return;
|
|
|
|
nLastPerfmon = GetTime();
|
|
|
|
|
2014-09-19 19:21:46 +02:00
|
|
|
std::vector<unsigned char> vData(250000, 0);
|
2014-06-26 14:41:53 +02:00
|
|
|
long ret = 0;
|
|
|
|
unsigned long nSize = 0;
|
|
|
|
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
|
2014-09-19 19:21:46 +02:00
|
|
|
while (true) {
|
2014-06-26 14:41:53 +02:00
|
|
|
nSize = vData.size();
|
2016-12-13 12:20:26 +01:00
|
|
|
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, vData.data(), &nSize);
|
2014-06-26 14:41:53 +02:00
|
|
|
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
|
|
|
|
break;
|
2014-09-19 19:21:46 +02:00
|
|
|
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
|
2014-06-26 14:41:53 +02:00
|
|
|
}
|
|
|
|
RegCloseKey(HKEY_PERFORMANCE_DATA);
|
2014-09-19 19:21:46 +02:00
|
|
|
if (ret == ERROR_SUCCESS) {
|
2016-12-13 12:20:26 +01:00
|
|
|
RAND_add(vData.data(), nSize, nSize / 100.0);
|
|
|
|
memory_cleanse(vData.data(), nSize);
|
2019-05-22 23:51:39 +02:00
|
|
|
LogPrint(BCLog::RANDOM, "%s: %lu bytes\n", __func__, nSize);
|
2014-06-26 14:41:53 +02:00
|
|
|
} else {
|
|
|
|
static bool warned = false; // Warn only once
|
2014-09-19 19:21:46 +02:00
|
|
|
if (!warned) {
|
2014-06-26 14:41:53 +02:00
|
|
|
LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret);
|
|
|
|
warned = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2017-03-01 12:40:06 +01:00
|
|
|
#ifndef WIN32
|
|
|
|
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
|
|
|
|
* compatible way to get cryptographic randomness on UNIX-ish platforms.
|
|
|
|
*/
|
|
|
|
void GetDevURandom(unsigned char *ent32)
|
|
|
|
{
|
|
|
|
int f = open("/dev/urandom", O_RDONLY);
|
|
|
|
if (f == -1) {
|
|
|
|
RandFailure();
|
|
|
|
}
|
|
|
|
int have = 0;
|
|
|
|
do {
|
|
|
|
ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
|
|
|
|
if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
|
|
|
|
RandFailure();
|
|
|
|
}
|
|
|
|
have += n;
|
|
|
|
} while (have < NUM_OS_RANDOM_BYTES);
|
|
|
|
close(f);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
/** Get 32 bytes of system entropy. */
|
2017-03-01 12:40:06 +01:00
|
|
|
void GetOSRand(unsigned char *ent32)
|
2016-05-30 15:46:16 +02:00
|
|
|
{
|
2017-03-01 12:40:06 +01:00
|
|
|
#if defined(WIN32)
|
2016-05-30 15:46:16 +02:00
|
|
|
HCRYPTPROV hProvider;
|
|
|
|
int ret = CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
|
|
|
|
if (!ret) {
|
|
|
|
RandFailure();
|
|
|
|
}
|
2017-03-01 12:40:06 +01:00
|
|
|
ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
|
2016-05-30 15:46:16 +02:00
|
|
|
if (!ret) {
|
|
|
|
RandFailure();
|
|
|
|
}
|
|
|
|
CryptReleaseContext(hProvider, 0);
|
2017-03-01 12:40:06 +01:00
|
|
|
#elif defined(HAVE_SYS_GETRANDOM)
|
|
|
|
/* Linux. From the getrandom(2) man page:
|
|
|
|
* "If the urandom source has been initialized, reads of up to 256 bytes
|
|
|
|
* will always return as many bytes as requested and will not be
|
|
|
|
* interrupted by signals."
|
|
|
|
*/
|
|
|
|
int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
|
|
|
|
if (rv != NUM_OS_RANDOM_BYTES) {
|
|
|
|
if (rv < 0 && errno == ENOSYS) {
|
|
|
|
/* Fallback for kernel <3.17: the return value will be -1 and errno
|
|
|
|
* ENOSYS if the syscall is not available, in that case fall back
|
|
|
|
* to /dev/urandom.
|
|
|
|
*/
|
|
|
|
GetDevURandom(ent32);
|
|
|
|
} else {
|
|
|
|
RandFailure();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#elif defined(HAVE_GETENTROPY)
|
|
|
|
/* On OpenBSD this can return up to 256 bytes of entropy, will return an
|
|
|
|
* error if more are requested.
|
|
|
|
* The call cannot return less than the requested number of bytes.
|
|
|
|
*/
|
|
|
|
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
|
2016-05-30 15:46:16 +02:00
|
|
|
RandFailure();
|
|
|
|
}
|
2017-03-01 12:40:06 +01:00
|
|
|
#elif defined(HAVE_SYSCTL_ARND)
|
|
|
|
/* FreeBSD and similar. It is possible for the call to return less
|
|
|
|
* bytes than requested, so need to read in a loop.
|
|
|
|
*/
|
|
|
|
static const int name[2] = {CTL_KERN, KERN_ARND};
|
2016-05-30 15:46:16 +02:00
|
|
|
int have = 0;
|
|
|
|
do {
|
2017-03-01 12:40:06 +01:00
|
|
|
size_t len = NUM_OS_RANDOM_BYTES - have;
|
|
|
|
if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, NULL, 0) != 0) {
|
2016-05-30 15:46:16 +02:00
|
|
|
RandFailure();
|
|
|
|
}
|
2017-03-01 12:40:06 +01:00
|
|
|
have += len;
|
|
|
|
} while (have < NUM_OS_RANDOM_BYTES);
|
|
|
|
#else
|
|
|
|
/* Fall back to /dev/urandom if there is no specific method implemented to
|
|
|
|
* get system entropy for this OS.
|
|
|
|
*/
|
|
|
|
GetDevURandom(ent32);
|
2016-05-30 15:46:16 +02:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2014-11-07 13:42:52 +01:00
|
|
|
void GetRandBytes(unsigned char* buf, int num)
|
2014-06-26 14:41:53 +02:00
|
|
|
{
|
|
|
|
if (RAND_bytes(buf, num) != 1) {
|
2016-05-30 15:46:16 +02:00
|
|
|
RandFailure();
|
2014-06-26 14:41:53 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-05-23 17:53:00 +02:00
|
|
|
static void AddDataToRng(void* data, size_t len);
|
|
|
|
|
|
|
|
void RandAddSeedSleep()
|
|
|
|
{
|
|
|
|
int64_t nPerfCounter1 = GetPerformanceCounter();
|
|
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
|
|
int64_t nPerfCounter2 = GetPerformanceCounter();
|
|
|
|
|
|
|
|
// Combine with and update state
|
|
|
|
AddDataToRng(&nPerfCounter1, sizeof(nPerfCounter1));
|
|
|
|
AddDataToRng(&nPerfCounter2, sizeof(nPerfCounter2));
|
|
|
|
|
|
|
|
memory_cleanse(&nPerfCounter1, sizeof(nPerfCounter1));
|
|
|
|
memory_cleanse(&nPerfCounter2, sizeof(nPerfCounter2));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-05-09 19:13:45 +02:00
|
|
|
static std::mutex cs_rng_state;
|
|
|
|
static unsigned char rng_state[32] = {0};
|
|
|
|
static uint64_t rng_counter = 0;
|
|
|
|
|
2017-05-23 17:53:00 +02:00
|
|
|
static void AddDataToRng(void* data, size_t len) {
|
|
|
|
CSHA512 hasher;
|
|
|
|
hasher.Write((const unsigned char*)&len, sizeof(len));
|
|
|
|
hasher.Write((const unsigned char*)data, len);
|
|
|
|
unsigned char buf[64];
|
|
|
|
{
|
|
|
|
std::unique_lock<std::mutex> lock(cs_rng_state);
|
|
|
|
hasher.Write(rng_state, sizeof(rng_state));
|
|
|
|
hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
|
|
|
|
++rng_counter;
|
|
|
|
hasher.Finalize(buf);
|
|
|
|
memcpy(rng_state, buf + 32, 32);
|
|
|
|
}
|
|
|
|
memory_cleanse(buf, 64);
|
|
|
|
}
|
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
void GetStrongRandBytes(unsigned char* out, int num)
|
|
|
|
{
|
|
|
|
assert(num <= 32);
|
|
|
|
CSHA512 hasher;
|
|
|
|
unsigned char buf[64];
|
|
|
|
|
|
|
|
// First source: OpenSSL's RNG
|
|
|
|
RandAddSeedPerfmon();
|
|
|
|
GetRandBytes(buf, 32);
|
|
|
|
hasher.Write(buf, 32);
|
|
|
|
|
|
|
|
// Second source: OS RNG
|
|
|
|
GetOSRand(buf);
|
|
|
|
hasher.Write(buf, 32);
|
|
|
|
|
2017-06-14 15:22:08 +02:00
|
|
|
// Third source: HW RNG, if available.
|
|
|
|
if (GetHWRand(buf)) {
|
|
|
|
hasher.Write(buf, 32);
|
|
|
|
}
|
|
|
|
|
2017-05-09 19:13:45 +02:00
|
|
|
// Combine with and update state
|
|
|
|
{
|
|
|
|
std::unique_lock<std::mutex> lock(cs_rng_state);
|
|
|
|
hasher.Write(rng_state, sizeof(rng_state));
|
|
|
|
hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
|
|
|
|
++rng_counter;
|
|
|
|
hasher.Finalize(buf);
|
|
|
|
memcpy(rng_state, buf + 32, 32);
|
|
|
|
}
|
|
|
|
|
2016-05-30 15:46:16 +02:00
|
|
|
// Produce output
|
|
|
|
memcpy(out, buf, num);
|
|
|
|
memory_cleanse(buf, 64);
|
|
|
|
}
|
|
|
|
|
2014-06-26 14:41:53 +02:00
|
|
|
uint64_t GetRand(uint64_t nMax)
|
|
|
|
{
|
|
|
|
if (nMax == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// The range of the random source must be a multiple of the modulus
|
|
|
|
// to give every possible output value an equal possibility
|
|
|
|
uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax;
|
|
|
|
uint64_t nRand = 0;
|
|
|
|
do {
|
|
|
|
GetRandBytes((unsigned char*)&nRand, sizeof(nRand));
|
|
|
|
} while (nRand >= nRange);
|
|
|
|
return (nRand % nMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
int GetRandInt(int nMax)
|
|
|
|
{
|
|
|
|
return GetRand(nMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint256 GetRandHash()
|
|
|
|
{
|
|
|
|
uint256 hash;
|
|
|
|
GetRandBytes((unsigned char*)&hash, sizeof(hash));
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
2019-01-09 07:30:19 +01:00
|
|
|
bool GetRandBool(double rate)
|
|
|
|
{
|
|
|
|
if (rate == 0.0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t v = 100000000;
|
|
|
|
uint64_t r = GetRand(v + 1);
|
|
|
|
return r <= v * rate;
|
|
|
|
}
|
|
|
|
|
2017-04-24 14:02:12 +02:00
|
|
|
void FastRandomContext::RandomSeed()
|
2014-06-26 14:41:53 +02:00
|
|
|
{
|
2017-04-24 14:02:12 +02:00
|
|
|
uint256 seed = GetRandHash();
|
|
|
|
rng.SetKey(seed.begin(), 32);
|
|
|
|
requires_seed = false;
|
|
|
|
}
|
|
|
|
|
2017-06-07 23:59:41 +02:00
|
|
|
uint256 FastRandomContext::rand256()
|
|
|
|
{
|
|
|
|
if (bytebuf_size < 32) {
|
|
|
|
FillByteBuffer();
|
|
|
|
}
|
|
|
|
uint256 ret;
|
|
|
|
memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32);
|
|
|
|
bytebuf_size -= 32;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
|
|
|
|
{
|
|
|
|
std::vector<unsigned char> ret(len);
|
|
|
|
if (len > 0) {
|
|
|
|
rng.Output(&ret[0], len);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-04-24 14:02:12 +02:00
|
|
|
FastRandomContext::FastRandomContext(const uint256& seed) : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
|
|
|
|
{
|
|
|
|
rng.SetKey(seed.begin(), 32);
|
2014-06-26 14:41:53 +02:00
|
|
|
}
|
2017-03-01 12:40:06 +01:00
|
|
|
|
|
|
|
bool Random_SanityCheck()
|
|
|
|
{
|
2017-05-09 19:10:23 +02:00
|
|
|
uint64_t start = GetPerformanceCounter();
|
|
|
|
|
2017-03-01 12:40:06 +01:00
|
|
|
/* This does not measure the quality of randomness, but it does test that
|
|
|
|
* OSRandom() overwrites all 32 bytes of the output given a maximum
|
|
|
|
* number of tries.
|
|
|
|
*/
|
|
|
|
static const ssize_t MAX_TRIES = 1024;
|
|
|
|
uint8_t data[NUM_OS_RANDOM_BYTES];
|
|
|
|
bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
|
|
|
|
int num_overwritten;
|
|
|
|
int tries = 0;
|
|
|
|
/* Loop until all bytes have been overwritten at least once, or max number tries reached */
|
|
|
|
do {
|
|
|
|
memset(data, 0, NUM_OS_RANDOM_BYTES);
|
|
|
|
GetOSRand(data);
|
|
|
|
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
|
|
|
|
overwritten[x] |= (data[x] != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
num_overwritten = 0;
|
|
|
|
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
|
|
|
|
if (overwritten[x]) {
|
|
|
|
num_overwritten += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tries += 1;
|
|
|
|
} while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
|
2017-05-09 19:10:23 +02:00
|
|
|
if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */
|
|
|
|
|
|
|
|
// Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
|
|
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
|
|
uint64_t stop = GetPerformanceCounter();
|
|
|
|
if (stop == start) return false;
|
|
|
|
|
|
|
|
// We called GetPerformanceCounter. Use it as entropy.
|
|
|
|
RAND_add((const unsigned char*)&start, sizeof(start), 1);
|
|
|
|
RAND_add((const unsigned char*)&stop, sizeof(stop), 1);
|
|
|
|
|
|
|
|
return true;
|
2017-03-01 12:40:06 +01:00
|
|
|
}
|
2017-04-24 14:02:12 +02:00
|
|
|
|
|
|
|
FastRandomContext::FastRandomContext(bool fDeterministic) : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
|
|
|
|
{
|
|
|
|
if (!fDeterministic) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint256 seed;
|
|
|
|
rng.SetKey(seed.begin(), 32);
|
|
|
|
}
|
2017-06-14 15:22:08 +02:00
|
|
|
|
|
|
|
void RandomInit()
|
|
|
|
{
|
|
|
|
RDRandInit();
|
|
|
|
}
|