dash/test/functional/p2p_addr_relay.py

208 lines
7.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# Copyright (c) 2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""
Test addr relay
"""
from test_framework.messages import (
CAddress,
NODE_NETWORK,
msg_addr,
msg_getaddr
)
Merge #19760: test: Remove confusing mininode terminology d5800da5199527a366024bc80cad7fcca17d5c4a [test] Remove final references to mininode (John Newbery) 5e8df3312e47a73e747ee892face55ed9ababeea test: resort imports (John Newbery) 85165d4332b0f72d30e0c584b476249b542338e6 scripted-diff: Rename mininode to p2p (John Newbery) 9e2897d020b114a10c860f90c5405be029afddba scripted-diff: Rename mininode_lock to p2p_lock (John Newbery) Pull request description: New contributors are often confused by the terminology in the test framework, and what the difference between a _node_ and a _peer_ is. To summarize: - a 'node' is a bitcoind instance. This is the thing whose behavior is being tested. Each bitcoind node is managed by a python `TestNode` object which is used to start/stop the node, manage the node's data directory, read state about the node (eg process status, log file), and interact with the node over different interfaces. - one of the interfaces that we can use to interact with the node is the p2p interface. Each connection to a node using this interface is managed by a python `P2PInterface` or derived object (which is owned by the `TestNode` object). We can open zero, one or many p2p connections to each bitcoind node. The node sees these connections as 'peers'. For historic reasons, the word 'mininode' has been used to refer to those p2p interface objects that we use to connect to the bitcoind node (the code was originally taken from the 'mini-node' branch of https://github.com/jgarzik/pynode/tree/mini-node). However that name has proved to be confusing for new contributors, so rename the remaining references. ACKs for top commit: amitiuttarwar: ACK d5800da519 MarcoFalke: ACK d5800da5199527a366024bc80cad7fcca17d5c4a 🚞 Tree-SHA512: 2c46c2ac3c4278b6e3c647cfd8108428a41e80788fc4f0e386e5b0c47675bc687d94779496c09a3e5ea1319617295be10c422adeeff2d2bd68378e00e0eeb5de
2024-01-15 20:35:29 +01:00
from test_framework.p2p import P2PInterface
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
)
2024-04-02 17:28:22 +02:00
class AddrReceiver(P2PInterface):
num_ipv4_received = 0
def on_addr(self, message):
for addr in message.addrs:
assert_equal(addr.nServices, 1)
if not 8333 <= addr.port < 8343:
raise AssertionError("Invalid addr.port of {} (8333-8342 expected)".format(addr.port))
assert addr.ip.startswith('123.123.123.')
self.num_ipv4_received += 1
class GetAddrStore(P2PInterface):
getaddr_received = False
num_ipv4_received = 0
def on_getaddr(self, message):
self.getaddr_received = True
def on_addr(self, message):
for addr in message.addrs:
self.num_ipv4_received += 1
def addr_received(self):
return self.num_ipv4_received != 0
class AddrTest(BitcoinTestFramework):
counter = 0
def set_test_params(self):
self.num_nodes = 1
def run_test(self):
self.oversized_addr_test()
self.relay_tests()
self.getaddr_tests()
self.blocksonly_mode_tests()
def setup_addr_msg(self, num):
addrs = []
for i in range(num):
addr = CAddress()
addr.time = self.mocktime + i
addr.nServices = NODE_NETWORK
addr.ip = f"123.123.123.{self.counter % 256}"
addr.port = 8333 + i
addrs.append(addr)
self.counter += 1
msg = msg_addr()
msg.addrs = addrs
return msg
def send_addr_msg(self, source, msg, receivers):
source.send_and_ping(msg)
# pop m_next_addr_send timer
self.bump_mocktime(5 * 60)
for peer in receivers:
peer.sync_send_with_ping()
def oversized_addr_test(self):
self.log.info('Send an addr message that is too large')
addr_source = self.nodes[0].add_p2p_connection(P2PInterface())
msg = self.setup_addr_msg(1010)
with self.nodes[0].assert_debug_log(['addr message size = 1010']):
addr_source.send_and_ping(msg)
self.nodes[0].disconnect_p2ps()
def relay_tests(self):
self.log.info('Test address relay')
self.log.info('Check that addr message content is relayed and added to addrman')
addr_source = self.nodes[0].add_p2p_connection(P2PInterface())
num_receivers = 7
receivers = []
for _ in range(num_receivers):
receivers.append(self.nodes[0].add_p2p_connection(AddrReceiver()))
# Keep this with length <= 10. Addresses from larger messages are not
# relayed.
num_ipv4_addrs = 10
msg = self.setup_addr_msg(num_ipv4_addrs)
with self.nodes[0].assert_debug_log(
[
'Added {} addresses from 127.0.0.1: 0 tried'.format(num_ipv4_addrs),
'received: addr (301 bytes) peer=1',
]
):
self.send_addr_msg(addr_source, msg, receivers)
total_ipv4_received = sum(r.num_ipv4_received for r in receivers)
# Every IPv4 address must be relayed to two peers, other than the
# originating node (addr_source).
ipv4_branching_factor = 2
assert_equal(total_ipv4_received, num_ipv4_addrs * ipv4_branching_factor)
self.nodes[0].disconnect_p2ps()
self.log.info('Check relay of addresses received from outbound peers')
inbound_peer = self.nodes[0].add_p2p_connection(AddrReceiver())
full_outbound_peer = self.nodes[0].add_outbound_p2p_connection(GetAddrStore(), p2p_idx=0, connection_type="outbound-full-relay")
msg = self.setup_addr_msg(2)
self.send_addr_msg(full_outbound_peer, msg, [inbound_peer])
self.log.info('Check that the first addr message received from an outbound peer is not relayed')
# Currently, there is a flag that prevents the first addr message received
# from a new outbound peer to be relayed to others. Originally meant to prevent
# large GETADDR responses from being relayed, it now typically affects the self-announcement
# of the outbound peer which is often sent before the GETADDR response.
assert_equal(inbound_peer.num_ipv4_received, 0)
self.log.info('Check that subsequent addr messages sent from an outbound peer are relayed')
msg2 = self.setup_addr_msg(2)
self.send_addr_msg(full_outbound_peer, msg2, [inbound_peer])
assert_equal(inbound_peer.num_ipv4_received, 2)
self.log.info('Check address relay to outbound peers')
block_relay_peer = self.nodes[0].add_outbound_p2p_connection(GetAddrStore(), p2p_idx=1, connection_type="block-relay-only")
msg3 = self.setup_addr_msg(2)
self.send_addr_msg(inbound_peer, msg3, [full_outbound_peer, block_relay_peer])
self.log.info('Check that addresses are relayed to full outbound peers')
assert_equal(full_outbound_peer.num_ipv4_received, 2)
self.log.info('Check that addresses are not relayed to block-relay-only outbound peers')
assert_equal(block_relay_peer.num_ipv4_received, 0)
self.nodes[0].disconnect_p2ps()
def getaddr_tests(self):
self.log.info('Test getaddr behavior')
self.log.info('Check that we send a getaddr message upon connecting to an outbound-full-relay peer')
full_outbound_peer = self.nodes[0].add_outbound_p2p_connection(GetAddrStore(), p2p_idx=0, connection_type="outbound-full-relay")
full_outbound_peer.sync_with_ping()
assert full_outbound_peer.getaddr_received
self.log.info('Check that we do not send a getaddr message upon connecting to a block-relay-only peer')
block_relay_peer = self.nodes[0].add_outbound_p2p_connection(GetAddrStore(), p2p_idx=1, connection_type="block-relay-only")
block_relay_peer.sync_with_ping()
assert_equal(block_relay_peer.getaddr_received, False)
self.log.info('Check that we answer getaddr messages only from inbound peers')
inbound_peer = self.nodes[0].add_p2p_connection(GetAddrStore())
inbound_peer.sync_with_ping()
# Add some addresses to addrman
for i in range(1000):
first_octet = i >> 8
second_octet = i % 256
a = f"{first_octet}.{second_octet}.1.1"
self.nodes[0].addpeeraddress(a, 8333)
full_outbound_peer.send_and_ping(msg_getaddr())
block_relay_peer.send_and_ping(msg_getaddr())
inbound_peer.send_and_ping(msg_getaddr())
self.bump_mocktime(5 * 60)
inbound_peer.wait_until(inbound_peer.addr_received)
assert_equal(full_outbound_peer.num_ipv4_received, 0)
assert_equal(block_relay_peer.num_ipv4_received, 0)
assert inbound_peer.num_ipv4_received > 100
self.nodes[0].disconnect_p2ps()
def blocksonly_mode_tests(self):
self.log.info('Test addr relay in -blocksonly mode')
self.restart_node(0, ["-blocksonly"])
self.log.info('Check that we send getaddr messages')
full_outbound_peer = self.nodes[0].add_outbound_p2p_connection(GetAddrStore(), p2p_idx=0, connection_type="outbound-full-relay")
full_outbound_peer.sync_with_ping()
assert full_outbound_peer.getaddr_received
self.log.info('Check that we relay address messages')
addr_source = self.nodes[0].add_p2p_connection(P2PInterface())
msg = self.setup_addr_msg(2)
self.send_addr_msg(addr_source, msg, [full_outbound_peer])
assert_equal(full_outbound_peer.num_ipv4_received, 2)
self.nodes[0].disconnect_p2ps()
if __name__ == '__main__':
AddrTest().main()