dash/src/key.cpp

254 lines
6.8 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "key.h"
#include "crypto/sha2.h"
#include "eccryptoverify.h"
#include "pubkey.h"
#include "random.h"
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
#include <secp256k1.h>
#else
#include "ecwrapper.h"
2014-06-06 01:26:27 +02:00
#endif
//! anonymous namespace
namespace {
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
#include <secp256k1.h>
class CSecp256k1Init {
public:
CSecp256k1Init() {
secp256k1_start();
}
~CSecp256k1Init() {
secp256k1_stop();
}
};
static CSecp256k1Init instance_of_csecp256k1;
#endif
} // anon namespace
bool CKey::Check(const unsigned char *vch) {
return eccrypto::Check(vch);
}
void CKey::MakeNewKey(bool fCompressedIn) {
do {
GetRandBytes(vch, sizeof(vch));
} while (!Check(vch));
fValid = true;
fCompressed = fCompressedIn;
}
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
#else
CECKey key;
if (!key.SetPrivKey(&privkey[0], privkey.size()))
return false;
key.GetSecretBytes(vch);
2014-06-06 01:26:27 +02:00
#endif
fCompressed = fCompressedIn;
fValid = true;
return true;
}
CPrivKey CKey::GetPrivKey() const {
assert(fValid);
2014-06-06 01:26:27 +02:00
CPrivKey privkey;
int privkeylen, ret;
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
privkey.resize(279);
privkeylen = 279;
ret = secp256k1_ecdsa_privkey_export(begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
2014-06-06 01:26:27 +02:00
assert(ret);
privkey.resize(privkeylen);
#else
CECKey key;
key.SetSecretBytes(vch);
privkeylen = key.GetPrivKeySize(fCompressed);
assert(privkeylen);
privkey.resize(privkeylen);
ret = key.GetPrivKey(&privkey[0], fCompressed);
assert(ret == (int)privkey.size());
2014-06-06 01:26:27 +02:00
#endif
return privkey;
}
CPubKey CKey::GetPubKey() const {
assert(fValid);
CPubKey result;
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
int clen = 65;
int ret = secp256k1_ecdsa_pubkey_create((unsigned char*)result.begin(), &clen, begin(), fCompressed);
assert((int)result.size() == clen);
2014-06-06 01:26:27 +02:00
assert(ret);
#else
std::vector<unsigned char> pubkey;
CECKey key;
key.SetSecretBytes(vch);
key.GetPubKey(pubkey, fCompressed);
result.Set(pubkey.begin(), pubkey.end());
2014-06-06 01:26:27 +02:00
#endif
assert(result.IsValid());
return result;
}
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS) const {
if (!fValid)
return false;
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
vchSig.resize(72);
int nSigLen = 72;
CKey nonce;
do {
nonce.MakeNewKey(true);
if (secp256k1_ecdsa_sign((const unsigned char*)&hash, 32, (unsigned char*)&vchSig[0], &nSigLen, begin(), nonce.begin()))
break;
} while(true);
vchSig.resize(nSigLen);
return true;
#else
CECKey key;
key.SetSecretBytes(vch);
return key.Sign(hash, vchSig, lowS);
2014-06-06 01:26:27 +02:00
#endif
}
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid)
return false;
vchSig.resize(65);
int rec = -1;
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
CKey nonce;
do {
nonce.MakeNewKey(true);
if (secp256k1_ecdsa_sign_compact((const unsigned char*)&hash, 32, &vchSig[1], begin(), nonce.begin(), &rec))
break;
} while(true);
#else
CECKey key;
key.SetSecretBytes(vch);
if (!key.SignCompact(hash, &vchSig[1], rec))
return false;
2014-06-06 01:26:27 +02:00
#endif
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
return true;
}
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
#else
CECKey key;
if (!key.SetPrivKey(&privkey[0], privkey.size(), fSkipCheck))
return false;
key.GetSecretBytes(vch);
2014-06-06 01:26:27 +02:00
#endif
fCompressed = vchPubKey.IsCompressed();
fValid = true;
2014-06-06 01:26:27 +02:00
if (fSkipCheck)
return true;
2014-06-06 01:26:27 +02:00
if (GetPubKey() != vchPubKey)
return false;
2014-06-06 01:26:27 +02:00
return true;
}
2013-07-15 01:05:25 +02:00
bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
assert(IsValid());
assert(IsCompressed());
unsigned char out[64];
LockObject(out);
if ((nChild >> 31) == 0) {
CPubKey pubkey = GetPubKey();
assert(pubkey.begin() + 33 == pubkey.end());
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
} else {
assert(begin() + 32 == end());
BIP32Hash(cc, nChild, 0, begin(), out);
}
memcpy(ccChild, out+32, 32);
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
bool ret = secp256k1_ecdsa_privkey_tweak_add((unsigned char*)keyChild.begin(), out);
#else
2013-07-15 01:05:25 +02:00
bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out);
2014-06-06 01:26:27 +02:00
#endif
2013-07-15 01:05:25 +02:00
UnlockObject(out);
keyChild.fCompressed = true;
keyChild.fValid = ret;
return ret;
}
bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
out.nDepth = nDepth + 1;
CKeyID id = key.GetPubKey().GetID();
memcpy(&out.vchFingerprint[0], &id, 4);
out.nChild = nChild;
return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode);
}
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
2013-07-15 01:05:25 +02:00
unsigned char out[64];
LockObject(out);
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
2013-07-15 01:05:25 +02:00
key.Set(&out[0], &out[32], true);
memcpy(vchChainCode, &out[32], 32);
UnlockObject(out);
nDepth = 0;
nChild = 0;
memset(vchFingerprint, 0, sizeof(vchFingerprint));
}
CExtPubKey CExtKey::Neuter() const {
CExtPubKey ret;
ret.nDepth = nDepth;
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
ret.nChild = nChild;
ret.pubkey = key.GetPubKey();
memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
return ret;
}
void CExtKey::Encode(unsigned char code[74]) const {
code[0] = nDepth;
memcpy(code+1, vchFingerprint, 4);
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
memcpy(code+9, vchChainCode, 32);
code[41] = 0;
assert(key.size() == 32);
memcpy(code+42, key.begin(), 32);
}
void CExtKey::Decode(const unsigned char code[74]) {
nDepth = code[0];
memcpy(vchFingerprint, code+1, 4);
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
memcpy(vchChainCode, code+9, 32);
key.Set(code+42, code+74, true);
}
bool ECC_InitSanityCheck() {
2014-06-06 01:26:27 +02:00
#ifdef USE_SECP256K1
return true;
#else
return CECKey::SanityCheck();
2014-06-06 01:26:27 +02:00
#endif
}