2019-12-31 18:35:41 +01:00
|
|
|
// Copyright (c) 2009-2019 The Bitcoin Core developers
|
2017-12-20 17:22:56 +01:00
|
|
|
// Copyright (c) 2017 The Zcash developers
|
2014-10-26 09:33:52 +01:00
|
|
|
// Distributed under the MIT software license, see the accompanying
|
2012-05-18 16:02:28 +02:00
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
2011-07-11 21:30:40 +02:00
|
|
|
|
2020-03-19 23:46:56 +01:00
|
|
|
#include <key.h>
|
2013-04-13 07:13:08 +02:00
|
|
|
|
2020-03-19 23:46:56 +01:00
|
|
|
#include <crypto/common.h>
|
|
|
|
#include <crypto/hmac_sha512.h>
|
|
|
|
#include <random.h>
|
2014-04-20 17:36:25 +02:00
|
|
|
|
2014-06-06 01:26:27 +02:00
|
|
|
#include <secp256k1.h>
|
2023-06-26 22:50:21 +02:00
|
|
|
#include <secp256k1_ellswift.h>
|
2015-11-11 06:56:19 +01:00
|
|
|
#include <secp256k1_recovery.h>
|
2013-05-01 06:52:05 +02:00
|
|
|
|
2019-08-06 05:08:33 +02:00
|
|
|
static secp256k1_context* secp256k1_context_sign = nullptr;
|
2015-11-11 06:56:19 +01:00
|
|
|
|
|
|
|
/** These functions are taken from the libsecp256k1 distribution and are very ugly. */
|
2017-12-20 17:22:56 +01:00
|
|
|
|
|
|
|
/**
|
|
|
|
* This parses a format loosely based on a DER encoding of the ECPrivateKey type from
|
|
|
|
* section C.4 of SEC 1 <http://www.secg.org/sec1-v2.pdf>, with the following caveats:
|
|
|
|
*
|
|
|
|
* * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
|
|
|
|
* required to be encoded as one octet if it is less than 256, as DER would require.
|
|
|
|
* * The octet-length of the SEQUENCE must not be greater than the remaining
|
|
|
|
* length of the key encoding, but need not match it (i.e. the encoding may contain
|
|
|
|
* junk after the encoded SEQUENCE).
|
|
|
|
* * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
|
|
|
|
* * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
|
|
|
|
* or not it is validly encoded DER.
|
|
|
|
*
|
|
|
|
* out32 must point to an output buffer of length at least 32 bytes.
|
|
|
|
*/
|
2022-08-11 10:10:47 +02:00
|
|
|
int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
|
2020-06-13 03:24:13 +02:00
|
|
|
const unsigned char *end = seckey + seckeylen;
|
2015-11-11 06:56:19 +01:00
|
|
|
memset(out32, 0, 32);
|
|
|
|
/* sequence header */
|
2020-06-13 03:24:13 +02:00
|
|
|
if (end - seckey < 1 || *seckey != 0x30u) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
2020-06-13 03:24:13 +02:00
|
|
|
seckey++;
|
2015-11-11 06:56:19 +01:00
|
|
|
/* sequence length constructor */
|
2020-06-13 03:24:13 +02:00
|
|
|
if (end - seckey < 1 || !(*seckey & 0x80u)) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
2020-06-13 03:24:13 +02:00
|
|
|
ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
|
2015-11-11 06:56:19 +01:00
|
|
|
if (lenb < 1 || lenb > 2) {
|
|
|
|
return 0;
|
|
|
|
}
|
2020-06-13 03:24:13 +02:00
|
|
|
if (end - seckey < lenb) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* sequence length */
|
2020-06-13 03:24:13 +02:00
|
|
|
ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
|
|
|
|
seckey += lenb;
|
|
|
|
if (end - seckey < len) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* sequence element 0: version number (=1) */
|
2020-06-13 03:24:13 +02:00
|
|
|
if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
2020-06-13 03:24:13 +02:00
|
|
|
seckey += 3;
|
2015-11-11 06:56:19 +01:00
|
|
|
/* sequence element 1: octet string, up to 32 bytes */
|
2020-06-13 03:24:13 +02:00
|
|
|
if (end - seckey < 2 || seckey[0] != 0x04u) {
|
2017-12-20 17:22:56 +01:00
|
|
|
return 0;
|
|
|
|
}
|
2020-06-13 03:24:13 +02:00
|
|
|
ptrdiff_t oslen = seckey[1];
|
|
|
|
seckey += 2;
|
|
|
|
if (oslen > 32 || end - seckey < oslen) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
2020-06-13 03:24:13 +02:00
|
|
|
memcpy(out32 + (32 - oslen), seckey, oslen);
|
2015-11-11 06:56:19 +01:00
|
|
|
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
|
|
|
|
memset(out32, 0, 32);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2017-12-20 17:22:56 +01:00
|
|
|
/**
|
|
|
|
* This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
|
|
|
|
* <http://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
|
|
|
|
* included.
|
|
|
|
*
|
2020-06-13 03:24:13 +02:00
|
|
|
* seckey must point to an output buffer of length at least CKey::SIZE bytes.
|
|
|
|
* seckeylen must initially be set to the size of the seckey buffer. Upon return it
|
2017-12-20 17:22:56 +01:00
|
|
|
* will be set to the number of bytes used in the buffer.
|
|
|
|
* key32 must point to a 32-byte raw private key.
|
|
|
|
*/
|
2022-08-11 10:10:47 +02:00
|
|
|
int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
|
2020-06-13 03:24:13 +02:00
|
|
|
assert(*seckeylen >= CKey::SIZE);
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_pubkey pubkey;
|
|
|
|
size_t pubkeylen = 0;
|
|
|
|
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
|
2020-06-13 03:24:13 +02:00
|
|
|
*seckeylen = 0;
|
2015-11-11 06:56:19 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (compressed) {
|
|
|
|
static const unsigned char begin[] = {
|
|
|
|
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
|
|
|
|
};
|
|
|
|
static const unsigned char middle[] = {
|
|
|
|
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
|
|
|
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
|
|
|
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
|
|
|
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
|
|
|
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
|
|
|
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
|
|
|
|
};
|
2020-06-13 03:24:13 +02:00
|
|
|
unsigned char *ptr = seckey;
|
2015-11-11 06:56:19 +01:00
|
|
|
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
|
|
|
memcpy(ptr, key32, 32); ptr += 32;
|
|
|
|
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
2021-08-09 01:26:00 +02:00
|
|
|
pubkeylen = CPubKey::COMPRESSED_SIZE;
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
|
|
|
|
ptr += pubkeylen;
|
2020-06-13 03:24:13 +02:00
|
|
|
*seckeylen = ptr - seckey;
|
|
|
|
assert(*seckeylen == CKey::COMPRESSED_SIZE);
|
2015-11-11 06:56:19 +01:00
|
|
|
} else {
|
|
|
|
static const unsigned char begin[] = {
|
|
|
|
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
|
|
|
|
};
|
|
|
|
static const unsigned char middle[] = {
|
|
|
|
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
|
|
|
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
|
|
|
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
|
|
|
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
|
|
|
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
|
|
|
|
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
|
|
|
|
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
|
|
|
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
|
|
|
|
};
|
2020-06-13 03:24:13 +02:00
|
|
|
unsigned char *ptr = seckey;
|
2015-11-11 06:56:19 +01:00
|
|
|
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
|
|
|
memcpy(ptr, key32, 32); ptr += 32;
|
|
|
|
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
2021-08-09 01:26:00 +02:00
|
|
|
pubkeylen = CPubKey::SIZE;
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
|
|
|
|
ptr += pubkeylen;
|
2020-06-13 03:24:13 +02:00
|
|
|
*seckeylen = ptr - seckey;
|
|
|
|
assert(*seckeylen == CKey::SIZE);
|
2015-11-11 06:56:19 +01:00
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
2013-05-01 06:52:05 +02:00
|
|
|
|
|
|
|
bool CKey::Check(const unsigned char *vch) {
|
2015-11-11 06:56:19 +01:00
|
|
|
return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
|
2012-05-16 18:36:38 +02:00
|
|
|
}
|
|
|
|
|
2013-05-01 06:52:05 +02:00
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) {
|
|
|
|
do {
|
2016-11-02 11:16:19 +01:00
|
|
|
GetStrongRandBytes(keydata.data(), keydata.size());
|
|
|
|
} while (!Check(keydata.data()));
|
2013-05-01 06:52:05 +02:00
|
|
|
fValid = true;
|
|
|
|
fCompressed = fCompressedIn;
|
2012-05-16 18:36:38 +02:00
|
|
|
}
|
|
|
|
|
2021-08-09 01:21:35 +02:00
|
|
|
bool CKey::Negate()
|
|
|
|
{
|
|
|
|
assert(fValid);
|
2020-06-13 03:24:13 +02:00
|
|
|
return secp256k1_ec_seckey_negate(secp256k1_context_sign, keydata.data());
|
2021-08-09 01:21:35 +02:00
|
|
|
}
|
|
|
|
|
2013-05-01 06:52:05 +02:00
|
|
|
CPrivKey CKey::GetPrivKey() const {
|
|
|
|
assert(fValid);
|
2020-06-13 03:24:13 +02:00
|
|
|
CPrivKey seckey;
|
2015-11-11 06:56:19 +01:00
|
|
|
int ret;
|
2020-06-13 03:24:13 +02:00
|
|
|
size_t seckeylen;
|
|
|
|
seckey.resize(SIZE);
|
|
|
|
seckeylen = SIZE;
|
|
|
|
ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, begin(), fCompressed);
|
2014-06-06 01:26:27 +02:00
|
|
|
assert(ret);
|
2020-06-13 03:24:13 +02:00
|
|
|
seckey.resize(seckeylen);
|
|
|
|
return seckey;
|
2012-05-16 18:36:38 +02:00
|
|
|
}
|
|
|
|
|
2013-05-01 06:52:05 +02:00
|
|
|
CPubKey CKey::GetPubKey() const {
|
|
|
|
assert(fValid);
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_pubkey pubkey;
|
2021-08-09 01:26:00 +02:00
|
|
|
size_t clen = CPubKey::SIZE;
|
2014-10-21 20:38:25 +02:00
|
|
|
CPubKey result;
|
2015-11-11 06:56:19 +01:00
|
|
|
int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
|
2014-06-06 01:26:27 +02:00
|
|
|
assert(ret);
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
|
|
|
|
assert(result.size() == clen);
|
2014-10-21 20:38:25 +02:00
|
|
|
assert(result.IsValid());
|
|
|
|
return result;
|
2012-05-16 18:36:38 +02:00
|
|
|
}
|
|
|
|
|
2018-08-13 11:54:07 +02:00
|
|
|
// Check that the sig has a low R value and will be less than 71 bytes
|
|
|
|
bool SigHasLowR(const secp256k1_ecdsa_signature* sig)
|
|
|
|
{
|
|
|
|
unsigned char compact_sig[64];
|
|
|
|
secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);
|
|
|
|
|
|
|
|
// In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
|
|
|
|
// its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
|
|
|
|
// to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
|
|
|
|
// our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
|
|
|
|
return compact_sig[0] < 0x80;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
|
2013-05-01 06:52:05 +02:00
|
|
|
if (!fValid)
|
2012-05-16 18:36:38 +02:00
|
|
|
return false;
|
2017-12-20 17:22:56 +01:00
|
|
|
vchSig.resize(CPubKey::SIGNATURE_SIZE);
|
|
|
|
size_t nSigLen = CPubKey::SIGNATURE_SIZE;
|
2015-03-27 23:31:44 +01:00
|
|
|
unsigned char extra_entropy[32] = {0};
|
|
|
|
WriteLE32(extra_entropy, test_case);
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_ecdsa_signature sig;
|
2018-08-13 11:54:07 +02:00
|
|
|
uint32_t counter = 0;
|
|
|
|
int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
|
|
|
|
|
|
|
|
// Grind for low R
|
|
|
|
while (ret && !SigHasLowR(&sig) && grind) {
|
|
|
|
WriteLE32(extra_entropy, ++counter);
|
|
|
|
ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, extra_entropy);
|
|
|
|
}
|
2014-12-18 14:49:19 +01:00
|
|
|
assert(ret);
|
2018-03-07 17:44:39 +01:00
|
|
|
secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);
|
2014-12-18 14:49:19 +01:00
|
|
|
vchSig.resize(nSigLen);
|
2021-09-09 20:18:50 +02:00
|
|
|
// Additional verification step to prevent using a potentially corrupted signature
|
|
|
|
secp256k1_pubkey pk;
|
|
|
|
ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pk, begin());
|
|
|
|
assert(ret);
|
2023-09-08 09:57:53 +02:00
|
|
|
ret = secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pk);
|
2021-09-09 20:18:50 +02:00
|
|
|
assert(ret);
|
2014-12-18 14:49:19 +01:00
|
|
|
return true;
|
2012-05-16 18:36:38 +02:00
|
|
|
}
|
|
|
|
|
2014-11-06 10:17:48 +01:00
|
|
|
bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
|
|
|
|
if (pubkey.IsCompressed() != fCompressed) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
unsigned char rnd[8];
|
|
|
|
std::string str = "Bitcoin key verification\n";
|
|
|
|
GetRandBytes(rnd, sizeof(rnd));
|
|
|
|
uint256 hash;
|
2021-05-19 17:39:18 +02:00
|
|
|
CHash256().Write(MakeUCharSpan(str)).Write(rnd).Finalize(hash);
|
2014-11-06 10:17:48 +01:00
|
|
|
std::vector<unsigned char> vchSig;
|
|
|
|
Sign(hash, vchSig);
|
|
|
|
return pubkey.Verify(hash, vchSig);
|
|
|
|
}
|
|
|
|
|
2013-05-01 06:52:05 +02:00
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
|
|
|
|
if (!fValid)
|
2012-05-16 18:36:38 +02:00
|
|
|
return false;
|
2017-12-20 17:22:56 +01:00
|
|
|
vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
|
2013-05-01 06:52:05 +02:00
|
|
|
int rec = -1;
|
2021-09-09 20:18:50 +02:00
|
|
|
secp256k1_ecdsa_recoverable_signature rsig;
|
|
|
|
int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &rsig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr);
|
2015-11-11 06:56:19 +01:00
|
|
|
assert(ret);
|
2021-09-09 20:18:50 +02:00
|
|
|
ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &rsig);
|
2014-12-18 14:49:19 +01:00
|
|
|
assert(ret);
|
2013-05-01 06:52:05 +02:00
|
|
|
assert(rec != -1);
|
|
|
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
|
2021-09-09 20:18:50 +02:00
|
|
|
// Additional verification step to prevent using a potentially corrupted signature
|
|
|
|
secp256k1_pubkey epk, rpk;
|
|
|
|
ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &epk, begin());
|
|
|
|
assert(ret);
|
2023-09-08 09:57:53 +02:00
|
|
|
ret = secp256k1_ecdsa_recover(secp256k1_context_static, &rpk, &rsig, hash.begin());
|
2021-09-09 20:18:50 +02:00
|
|
|
assert(ret);
|
2023-09-08 09:57:53 +02:00
|
|
|
ret = secp256k1_ec_pubkey_cmp(secp256k1_context_static, &epk, &rpk);
|
2021-09-09 20:18:50 +02:00
|
|
|
assert(ret == 0);
|
2013-05-01 06:52:05 +02:00
|
|
|
return true;
|
|
|
|
}
|
2012-05-16 18:36:38 +02:00
|
|
|
|
2020-06-13 03:24:13 +02:00
|
|
|
bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
|
|
|
|
if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size()))
|
2013-08-29 08:53:26 +02:00
|
|
|
return false;
|
|
|
|
fCompressed = vchPubKey.IsCompressed();
|
|
|
|
fValid = true;
|
2014-06-06 01:26:27 +02:00
|
|
|
|
2013-08-29 10:11:47 +02:00
|
|
|
if (fSkipCheck)
|
|
|
|
return true;
|
2014-06-06 01:26:27 +02:00
|
|
|
|
2014-11-06 10:17:48 +01:00
|
|
|
return VerifyPubKey(vchPubKey);
|
2013-08-29 08:53:26 +02:00
|
|
|
}
|
|
|
|
|
2015-04-22 00:09:37 +02:00
|
|
|
bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
|
2013-07-15 01:05:25 +02:00
|
|
|
assert(IsValid());
|
|
|
|
assert(IsCompressed());
|
2016-11-02 11:16:19 +01:00
|
|
|
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
|
2013-07-15 01:05:25 +02:00
|
|
|
if ((nChild >> 31) == 0) {
|
|
|
|
CPubKey pubkey = GetPubKey();
|
2021-08-09 01:26:00 +02:00
|
|
|
assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
|
2016-11-02 11:16:19 +01:00
|
|
|
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
|
2013-07-15 01:05:25 +02:00
|
|
|
} else {
|
2017-12-20 17:22:56 +01:00
|
|
|
assert(size() == 32);
|
2016-11-02 11:16:19 +01:00
|
|
|
BIP32Hash(cc, nChild, 0, begin(), vout.data());
|
2013-07-15 01:05:25 +02:00
|
|
|
}
|
2016-11-02 11:16:19 +01:00
|
|
|
memcpy(ccChild.begin(), vout.data()+32, 32);
|
2014-06-06 01:26:27 +02:00
|
|
|
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
|
2020-06-13 03:24:13 +02:00
|
|
|
bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
|
2013-07-15 01:05:25 +02:00
|
|
|
keyChild.fCompressed = true;
|
|
|
|
keyChild.fValid = ret;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2023-06-26 22:50:21 +02:00
|
|
|
EllSwiftPubKey CKey::EllSwiftCreate(Span<const std::byte> ent32) const
|
|
|
|
{
|
|
|
|
assert(fValid);
|
|
|
|
assert(ent32.size() == 32);
|
|
|
|
std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
|
|
|
|
|
|
|
|
auto success = secp256k1_ellswift_create(secp256k1_context_sign,
|
|
|
|
UCharCast(encoded_pubkey.data()),
|
|
|
|
keydata.data(),
|
|
|
|
UCharCast(ent32.data()));
|
|
|
|
|
|
|
|
// Should always succeed for valid keys (asserted above).
|
|
|
|
assert(success);
|
|
|
|
return {encoded_pubkey};
|
|
|
|
}
|
|
|
|
|
|
|
|
ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
|
|
|
|
{
|
|
|
|
assert(fValid);
|
|
|
|
|
|
|
|
ECDHSecret output;
|
|
|
|
// BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
|
|
|
|
// accordingly:
|
|
|
|
bool success = secp256k1_ellswift_xdh(secp256k1_context_sign,
|
|
|
|
UCharCast(output.data()),
|
|
|
|
UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
|
|
|
|
UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
|
|
|
|
keydata.data(),
|
|
|
|
initiating ? 0 : 1,
|
|
|
|
secp256k1_ellswift_xdh_hash_function_bip324,
|
|
|
|
nullptr);
|
|
|
|
// Should always succeed for valid keys (assert above).
|
|
|
|
assert(success);
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
2016-09-27 13:25:42 +02:00
|
|
|
bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
|
2013-07-15 01:05:25 +02:00
|
|
|
out.nDepth = nDepth + 1;
|
|
|
|
CKeyID id = key.GetPubKey().GetID();
|
|
|
|
memcpy(&out.vchFingerprint[0], &id, 4);
|
2016-09-27 13:25:42 +02:00
|
|
|
out.nChild = _nChild;
|
|
|
|
return key.Derive(out.key, out.chaincode, _nChild, chaincode);
|
2013-07-15 01:05:25 +02:00
|
|
|
}
|
|
|
|
|
2021-11-01 13:59:15 +01:00
|
|
|
void CExtKey::SetSeed(Span<const uint8_t> seed)
|
|
|
|
{
|
2014-04-20 17:36:25 +02:00
|
|
|
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
|
2016-11-02 11:16:19 +01:00
|
|
|
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
|
2021-11-01 13:59:15 +01:00
|
|
|
CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(seed.data(), seed.size()).Finalize(vout.data());
|
2017-07-13 01:23:59 +02:00
|
|
|
key.Set(vout.data(), vout.data() + 32, true);
|
|
|
|
memcpy(chaincode.begin(), vout.data() + 32, 32);
|
2013-07-15 01:05:25 +02:00
|
|
|
nDepth = 0;
|
|
|
|
nChild = 0;
|
|
|
|
memset(vchFingerprint, 0, sizeof(vchFingerprint));
|
|
|
|
}
|
|
|
|
|
|
|
|
CExtPubKey CExtKey::Neuter() const {
|
|
|
|
CExtPubKey ret;
|
|
|
|
ret.nDepth = nDepth;
|
|
|
|
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
|
|
|
|
ret.nChild = nChild;
|
|
|
|
ret.pubkey = key.GetPubKey();
|
2015-04-22 00:09:37 +02:00
|
|
|
ret.chaincode = chaincode;
|
2013-07-15 01:05:25 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-09-15 13:35:55 +02:00
|
|
|
void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
|
2013-07-15 01:05:25 +02:00
|
|
|
code[0] = nDepth;
|
|
|
|
memcpy(code+1, vchFingerprint, 4);
|
2021-10-11 03:32:06 +02:00
|
|
|
WriteBE32(code+5, nChild);
|
2015-04-22 00:09:37 +02:00
|
|
|
memcpy(code+9, chaincode.begin(), 32);
|
2013-07-15 01:05:25 +02:00
|
|
|
code[41] = 0;
|
|
|
|
assert(key.size() == 32);
|
|
|
|
memcpy(code+42, key.begin(), 32);
|
|
|
|
}
|
|
|
|
|
2017-09-15 13:35:55 +02:00
|
|
|
void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
|
2013-07-15 01:05:25 +02:00
|
|
|
nDepth = code[0];
|
|
|
|
memcpy(vchFingerprint, code+1, 4);
|
2021-10-11 03:32:06 +02:00
|
|
|
nChild = ReadBE32(code+5);
|
2015-04-22 00:09:37 +02:00
|
|
|
memcpy(chaincode.begin(), code+9, 32);
|
2017-09-15 13:35:55 +02:00
|
|
|
key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
|
2013-07-15 01:05:25 +02:00
|
|
|
}
|
|
|
|
|
2014-06-03 01:21:03 +02:00
|
|
|
bool ECC_InitSanityCheck() {
|
2014-11-08 23:29:45 +01:00
|
|
|
CKey key;
|
|
|
|
key.MakeNewKey(true);
|
|
|
|
CPubKey pubkey = key.GetPubKey();
|
|
|
|
return key.VerifyPubKey(pubkey);
|
2014-06-03 01:21:03 +02:00
|
|
|
}
|
Update key.cpp to use new libsecp256k1
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
2015-04-22 23:28:26 +02:00
|
|
|
|
|
|
|
void ECC_Start() {
|
2019-08-06 05:08:33 +02:00
|
|
|
assert(secp256k1_context_sign == nullptr);
|
Update key.cpp to use new libsecp256k1
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
2015-04-22 23:28:26 +02:00
|
|
|
|
2023-09-08 09:57:53 +02:00
|
|
|
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
2019-08-06 05:08:33 +02:00
|
|
|
assert(ctx != nullptr);
|
Update key.cpp to use new libsecp256k1
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
2015-04-22 23:28:26 +02:00
|
|
|
|
|
|
|
{
|
|
|
|
// Pass in a random blinding seed to the secp256k1 context.
|
2016-11-02 11:16:19 +01:00
|
|
|
std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
|
|
|
|
GetRandBytes(vseed.data(), 32);
|
|
|
|
bool ret = secp256k1_context_randomize(ctx, vseed.data());
|
Update key.cpp to use new libsecp256k1
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
2015-04-22 23:28:26 +02:00
|
|
|
assert(ret);
|
|
|
|
}
|
|
|
|
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_context_sign = ctx;
|
Update key.cpp to use new libsecp256k1
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
2015-04-22 23:28:26 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void ECC_Stop() {
|
2015-11-11 06:56:19 +01:00
|
|
|
secp256k1_context *ctx = secp256k1_context_sign;
|
2019-08-06 05:08:33 +02:00
|
|
|
secp256k1_context_sign = nullptr;
|
Update key.cpp to use new libsecp256k1
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
2015-04-22 23:28:26 +02:00
|
|
|
|
|
|
|
if (ctx) {
|
|
|
|
secp256k1_context_destroy(ctx);
|
|
|
|
}
|
|
|
|
}
|