dash/src/bench/bench.cpp

103 lines
3.4 KiB
C++
Raw Normal View History

// Copyright (c) 2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "bench.h"
#include "perf.h"
#include <iostream>
#include <iomanip>
#include <sys/time.h>
std::map<std::string, benchmark::BenchFunction> benchmark::BenchRunner::benchmarks;
static double gettimedouble(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec * 0.000001 + tv.tv_sec;
}
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func)
{
benchmarks.insert(std::make_pair(name, func));
}
void
benchmark::BenchRunner::RunAll(double elapsedTimeForOne)
{
perf_init();
std::cout << "#Benchmark" << "," << "count" << "," << "min" << "," << "max" << "," << "average" << ","
<< "min_cycles" << "," << "max_cycles" << "," << "average_cycles" << "\n";
for (std::map<std::string,benchmark::BenchFunction>::iterator it = benchmarks.begin();
it != benchmarks.end(); ++it) {
State state(it->first, elapsedTimeForOne);
benchmark::BenchFunction& func = it->second;
func(state);
}
perf_fini();
}
bool benchmark::State::KeepRunning()
{
if (count & countMask) {
++count;
return true;
}
double now;
uint64_t nowCycles;
if (count == 0) {
lastTime = beginTime = now = gettimedouble();
lastCycles = beginCycles = nowCycles = perf_cpucycles();
}
else {
now = gettimedouble();
double elapsed = now - lastTime;
double elapsedOne = elapsed * countMaskInv;
if (elapsedOne < minTime) minTime = elapsedOne;
if (elapsedOne > maxTime) maxTime = elapsedOne;
// We only use relative values, so don't have to handle 64-bit wrap-around specially
nowCycles = perf_cpucycles();
uint64_t elapsedOneCycles = (nowCycles - lastCycles) * countMaskInv;
if (elapsedOneCycles < minCycles) minCycles = elapsedOneCycles;
if (elapsedOneCycles > maxCycles) maxCycles = elapsedOneCycles;
if (elapsed*128 < maxElapsed) {
// If the execution was much too fast (1/128th of maxElapsed), increase the count mask by 8x and restart timing.
// The restart avoids including the overhead of this code in the measurement.
countMask = ((countMask<<3)|7) & ((1LL<<60)-1);
countMaskInv = 1./(countMask+1);
count = 0;
minTime = std::numeric_limits<double>::max();
maxTime = std::numeric_limits<double>::min();
minCycles = std::numeric_limits<uint64_t>::max();
maxCycles = std::numeric_limits<uint64_t>::min();
return true;
}
if (elapsed*16 < maxElapsed) {
uint64_t newCountMask = ((countMask<<1)|1) & ((1LL<<60)-1);
if ((count & newCountMask)==0) {
countMask = newCountMask;
countMaskInv = 1./(countMask+1);
}
}
}
lastTime = now;
lastCycles = nowCycles;
++count;
if (now - beginTime < maxElapsed) return true; // Keep going
--count;
// Output results
double average = (now-beginTime)/count;
int64_t averageCycles = (nowCycles-beginCycles)/count;
std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << minTime << "," << maxTime << "," << average << ","
<< minCycles << "," << maxCycles << "," << averageCycles << "\n";
return false;
}