dash/test/functional/p2p_eviction.py

130 lines
5.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# Copyright (c) 2019 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
""" Test node eviction logic
When the number of peers has reached the limit of maximum connections,
the next connecting inbound peer will trigger the eviction mechanism.
We cannot currently test the parts of the eviction logic that are based on
address/netgroup since in the current framework, all peers are connecting from
the same local address. See Issue #14210 for more info.
Therefore, this test is limited to the remaining protection criteria.
"""
import time
from test_framework.blocktools import COINBASE_MATURITY, create_block, create_coinbase
from test_framework.messages import CTransaction, FromHex, msg_pong, msg_tx
Merge #19760: test: Remove confusing mininode terminology d5800da5199527a366024bc80cad7fcca17d5c4a [test] Remove final references to mininode (John Newbery) 5e8df3312e47a73e747ee892face55ed9ababeea test: resort imports (John Newbery) 85165d4332b0f72d30e0c584b476249b542338e6 scripted-diff: Rename mininode to p2p (John Newbery) 9e2897d020b114a10c860f90c5405be029afddba scripted-diff: Rename mininode_lock to p2p_lock (John Newbery) Pull request description: New contributors are often confused by the terminology in the test framework, and what the difference between a _node_ and a _peer_ is. To summarize: - a 'node' is a bitcoind instance. This is the thing whose behavior is being tested. Each bitcoind node is managed by a python `TestNode` object which is used to start/stop the node, manage the node's data directory, read state about the node (eg process status, log file), and interact with the node over different interfaces. - one of the interfaces that we can use to interact with the node is the p2p interface. Each connection to a node using this interface is managed by a python `P2PInterface` or derived object (which is owned by the `TestNode` object). We can open zero, one or many p2p connections to each bitcoind node. The node sees these connections as 'peers'. For historic reasons, the word 'mininode' has been used to refer to those p2p interface objects that we use to connect to the bitcoind node (the code was originally taken from the 'mini-node' branch of https://github.com/jgarzik/pynode/tree/mini-node). However that name has proved to be confusing for new contributors, so rename the remaining references. ACKs for top commit: amitiuttarwar: ACK d5800da519 MarcoFalke: ACK d5800da5199527a366024bc80cad7fcca17d5c4a 🚞 Tree-SHA512: 2c46c2ac3c4278b6e3c647cfd8108428a41e80788fc4f0e386e5b0c47675bc687d94779496c09a3e5ea1319617295be10c422adeeff2d2bd68378e00e0eeb5de
2024-01-15 20:35:29 +01:00
from test_framework.p2p import P2PDataStore, P2PInterface
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import assert_equal
class SlowP2PDataStore(P2PDataStore):
def on_ping(self, message):
time.sleep(0.1)
self.send_message(msg_pong(message.nonce))
class SlowP2PInterface(P2PInterface):
def on_ping(self, message):
time.sleep(0.1)
self.send_message(msg_pong(message.nonce))
class P2PEvict(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 1
# The choice of maxconnections=32 results in a maximum of 21 inbound connections
# (32 - 10 outbound - 1 feeler). 20 inbound peers are protected from eviction:
# 4 by netgroup, 4 that sent us blocks, 4 that sent us transactions and 8 via lowest ping time
self.extra_args = [['-maxconnections=32']]
def run_test(self):
protected_peers = set() # peers that we expect to be protected from eviction
current_peer = -1
node = self.nodes[0]
node.generatetoaddress(COINBASE_MATURITY + 1, node.get_deterministic_priv_key().address)
self.log.info("Create 4 peers and protect them from eviction by sending us a block")
for _ in range(4):
block_peer = node.add_p2p_connection(SlowP2PDataStore())
current_peer += 1
block_peer.sync_with_ping()
best_block = node.getbestblockhash()
tip = int(best_block, 16)
best_block_time = node.getblock(best_block)['time']
block = create_block(tip, create_coinbase(node.getblockcount() + 1), best_block_time + 1)
block.solve()
block_peer.send_blocks_and_test([block], node, success=True)
protected_peers.add(current_peer)
self.log.info("Create 5 slow-pinging peers, making them eviction candidates")
for _ in range(5):
node.add_p2p_connection(SlowP2PInterface())
current_peer += 1
self.log.info("Create 4 peers and protect them from eviction by sending us a tx")
for i in range(4):
txpeer = node.add_p2p_connection(SlowP2PInterface())
current_peer += 1
txpeer.sync_with_ping()
prevtx = node.getblock(node.getblockhash(i + 1), 2)['tx'][0]
rawtx = node.createrawtransaction(
inputs=[{'txid': prevtx['txid'], 'vout': 0}],
outputs=[{node.get_deterministic_priv_key().address: 50 - 0.00125}],
)
sigtx = node.signrawtransactionwithkey(
hexstring=rawtx,
privkeys=[node.get_deterministic_priv_key().key],
prevtxs=[{
'txid': prevtx['txid'],
'vout': 0,
'scriptPubKey': prevtx['vout'][0]['scriptPubKey']['hex'],
}],
)['hex']
txpeer.send_message(msg_tx(FromHex(CTransaction(), sigtx)))
protected_peers.add(current_peer)
self.log.info("Create 8 peers and protect them from eviction by having faster pings")
for _ in range(8):
fastpeer = node.add_p2p_connection(P2PInterface())
current_peer += 1
self.wait_until(lambda: "ping" in fastpeer.last_message, timeout=10)
# Make sure by asking the node what the actual min pings are
peerinfo = node.getpeerinfo()
pings = {}
for i in range(len(peerinfo)):
pings[i] = peerinfo[i]['minping'] if 'minping' in peerinfo[i] else 1000000
sorted_pings = sorted(pings.items(), key=lambda x: x[1])
# Usually the 8 fast peers are protected. In rare case of unreliable pings,
# one of the slower peers might have a faster min ping though.
for i in range(8):
protected_peers.add(sorted_pings[i][0])
self.log.info("Create peer that triggers the eviction mechanism")
node.add_p2p_connection(SlowP2PInterface())
# One of the non-protected peers must be evicted. We can't be sure which one because
# 4 peers are protected via netgroup, which is identical for all peers,
# and the eviction mechanism doesn't preserve the order of identical elements.
evicted_peers = []
for i in range(len(node.p2ps)):
if not node.p2ps[i].is_connected:
evicted_peers.append(i)
self.log.info("Test that one peer was evicted")
self.log.debug("{} evicted peer: {}".format(len(evicted_peers), set(evicted_peers)))
assert_equal(len(evicted_peers), 1)
self.log.info("Test that no peer expected to be protected was evicted")
self.log.debug("{} protected peers: {}".format(len(protected_peers), protected_peers))
assert evicted_peers[0] not in protected_peers
if __name__ == '__main__':
P2PEvict().main()