dash/src/bloom.cpp

399 lines
14 KiB
C++
Raw Normal View History

// Copyright (c) 2012-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "bloom.h"
2014-11-18 22:03:02 +01:00
#include "primitives/transaction.h"
#include "evo/specialtx.h"
#include "evo/providertx.h"
#include "evo/cbtx.h"
#include "llmq/quorums_commitment.h"
#include "hash.h"
2014-08-23 03:35:51 +02:00
#include "script/script.h"
#include "script/standard.h"
#include "random.h"
#include "streams.h"
#include <math.h>
#include <stdlib.h>
2014-08-23 05:09:47 +02:00
#include <boost/foreach.hpp>
#define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
#define LN2 0.6931471805599453094172321214581765680755001343602552
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn, unsigned char nFlagsIn) :
/**
* The ideal size for a bloom filter with a given number of elements and false positive rate is:
* - nElements * log(fp rate) / ln(2)^2
* We ignore filter parameters which will create a bloom filter larger than the protocol limits
*/
vData(std::min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
/**
* The ideal number of hash functions is filter size * ln(2) / number of elements
* Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
* See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
*/
isFull(false),
isEmpty(true),
nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
nTweak(nTweakIn),
nFlags(nFlagsIn)
{
}
// Private constructor used by CRollingBloomFilter
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn) :
vData((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)) / 8),
isFull(false),
isEmpty(true),
nHashFuncs((unsigned int)(vData.size() * 8 / nElements * LN2)),
nTweak(nTweakIn),
nFlags(BLOOM_UPDATE_NONE)
{
}
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
{
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
}
void CBloomFilter::insert(const std::vector<unsigned char>& vKey)
{
if (isFull)
return;
for (unsigned int i = 0; i < nHashFuncs; i++)
{
unsigned int nIndex = Hash(i, vKey);
// Sets bit nIndex of vData
2014-03-20 05:21:23 +01:00
vData[nIndex >> 3] |= (1 << (7 & nIndex));
}
isEmpty = false;
}
void CBloomFilter::insert(const COutPoint& outpoint)
{
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
stream << outpoint;
std::vector<unsigned char> data(stream.begin(), stream.end());
insert(data);
}
void CBloomFilter::insert(const uint256& hash)
{
std::vector<unsigned char> data(hash.begin(), hash.end());
insert(data);
}
bool CBloomFilter::contains(const std::vector<unsigned char>& vKey) const
{
if (isFull)
return true;
if (isEmpty)
return false;
for (unsigned int i = 0; i < nHashFuncs; i++)
{
unsigned int nIndex = Hash(i, vKey);
// Checks bit nIndex of vData
2014-03-20 05:21:23 +01:00
if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
return false;
}
return true;
}
bool CBloomFilter::contains(const COutPoint& outpoint) const
{
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
stream << outpoint;
std::vector<unsigned char> data(stream.begin(), stream.end());
return contains(data);
}
bool CBloomFilter::contains(const uint256& hash) const
{
std::vector<unsigned char> data(hash.begin(), hash.end());
return contains(data);
}
bool CBloomFilter::contains(const uint160& hash) const
{
std::vector<unsigned char> data(hash.begin(), hash.end());
return contains(data);
}
2014-07-21 20:50:07 +02:00
void CBloomFilter::clear()
{
vData.assign(vData.size(),0);
isFull = false;
isEmpty = true;
}
void CBloomFilter::reset(unsigned int nNewTweak)
{
clear();
nTweak = nNewTweak;
}
bool CBloomFilter::IsWithinSizeConstraints() const
{
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
}
// Match if the filter contains any arbitrary script data element in script
bool CBloomFilter::CheckScript(const CScript &script) const
{
CScript::const_iterator pc = script.begin();
std::vector<unsigned char> data;
while (pc < script.end()) {
opcodetype opcode;
if (!script.GetOp(pc, opcode, data))
break;
if (data.size() != 0 && contains(data))
return true;
}
return false;
}
// If the transaction is a special transaction that has a registration
// transaction hash, test the registration transaction hash.
// If the transaction is a special transaction with any public keys or any
// public key hashes test them.
// If the transaction is a special transaction with payout addresses test
// the hash160 of those addresses.
// Filter is updated only if it has BLOOM_UPDATE_ALL flag to be able to have
// simple SPV wallets that doesn't work with DIP2 transactions (multicoin
// wallets, etc.)
bool CBloomFilter::CheckSpecialTransactionMatchesAndUpdate(const CTransaction &tx)
{
if(tx.nVersion != 3 || tx.nType == TRANSACTION_NORMAL) {
return false; // it is not a special transaction
}
switch(tx.nType) {
case(TRANSACTION_PROVIDER_REGISTER): {
CProRegTx proTx;
if (GetTxPayload(tx, proTx)) {
if(contains(proTx.collateralOutpoint) ||
contains(proTx.keyIDOwner) ||
contains(proTx.keyIDVoting) ||
CheckScript(proTx.scriptPayout)) {
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
insert(tx.GetHash());
return true;
}
}
return false;
}
case(TRANSACTION_PROVIDER_UPDATE_SERVICE): {
CProUpServTx proTx;
if (GetTxPayload(tx, proTx)) {
if(contains(proTx.proTxHash)) {
return true;
}
if(CheckScript(proTx.scriptOperatorPayout)) {
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
insert(proTx.proTxHash);
return true;
}
}
return false;
}
case(TRANSACTION_PROVIDER_UPDATE_REGISTRAR): {
CProUpRegTx proTx;
if (GetTxPayload(tx, proTx)) {
if(contains(proTx.proTxHash))
return true;
if(contains(proTx.keyIDVoting) ||
CheckScript(proTx.scriptPayout)) {
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
insert(proTx.proTxHash);
return true;
}
}
return false;
}
case(TRANSACTION_PROVIDER_UPDATE_REVOKE): {
CProUpRevTx proTx;
if (GetTxPayload(tx, proTx)) {
if(contains(proTx.proTxHash))
return true;
}
return false;
}
case(TRANSACTION_COINBASE):
case(TRANSACTION_QUORUM_COMMITMENT):
// No aditional checks for this transaction types
return false;
}
LogPrintf("Unknown special transaction type in Bloom filter check.");
return false;
}
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
{
bool fFound = false;
// Match if the filter contains the hash of tx
// for finding tx when they appear in a block
if (isFull)
return true;
if (isEmpty)
return false;
const uint256& hash = tx.GetHash();
if (contains(hash))
fFound = true;
// Check additional matches for special transactions
fFound = fFound || CheckSpecialTransactionMatchesAndUpdate(tx);
for (unsigned int i = 0; i < tx.vout.size(); i++)
{
const CTxOut& txout = tx.vout[i];
// Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
// If this matches, also add the specific output that was matched.
// This means clients don't have to update the filter themselves when a new relevant tx
// is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
if(CheckScript(txout.scriptPubKey)) {
fFound = true;
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
insert(COutPoint(hash, i));
else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
{
txnouttype type;
std::vector<std::vector<unsigned char> > vSolutions;
if (Solver(txout.scriptPubKey, type, vSolutions) &&
(type == TX_PUBKEY || type == TX_MULTISIG))
insert(COutPoint(hash, i));
}
}
}
if (fFound)
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Match if the filter contains an outpoint tx spends
if (contains(txin.prevout))
return true;
// Match if the filter contains any arbitrary script data element in any scriptSig in tx
if(CheckScript(txin.scriptSig))
return true;
}
return false;
}
void CBloomFilter::UpdateEmptyFull()
{
bool full = true;
bool empty = true;
for (unsigned int i = 0; i < vData.size(); i++)
{
full &= vData[i] == 0xff;
empty &= vData[i] == 0;
}
isFull = full;
isEmpty = empty;
}
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate)
{
double logFpRate = log(fpRate);
/* The optimal number of hash functions is log(fpRate) / log(0.5), but
* restrict it to the range 1-50. */
nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
/* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
nEntriesPerGeneration = (nElements + 1) / 2;
uint32_t nMaxElements = nEntriesPerGeneration * 3;
/* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
* => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
* => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
* => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
*/
uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
data.clear();
/* For each data element we need to store 2 bits. If both bits are 0, the
* bit is treated as unset. If the bits are (01), (10), or (11), the bit is
* treated as set in generation 1, 2, or 3 respectively.
* These bits are stored in separate integers: position P corresponds to bit
* (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
data.resize(((nFilterBits + 63) / 64) << 1);
reset();
}
/* Similar to CBloomFilter::Hash */
static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, const std::vector<unsigned char>& vDataToHash) {
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
}
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
{
if (nEntriesThisGeneration == nEntriesPerGeneration) {
nEntriesThisGeneration = 0;
nGeneration++;
if (nGeneration == 4) {
nGeneration = 1;
}
uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
/* Wipe old entries that used this generation number. */
for (uint32_t p = 0; p < data.size(); p += 2) {
uint64_t p1 = data[p], p2 = data[p + 1];
uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
data[p] = p1 & mask;
data[p + 1] = p2 & mask;
}
}
nEntriesThisGeneration++;
for (int n = 0; n < nHashFuncs; n++) {
uint32_t h = RollingBloomHash(n, nTweak, vKey);
int bit = h & 0x3F;
uint32_t pos = (h >> 6) % data.size();
/* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
data[pos & ~1] = (data[pos & ~1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration & 1)) << bit;
data[pos | 1] = (data[pos | 1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration >> 1)) << bit;
}
}
void CRollingBloomFilter::insert(const uint256& hash)
{
std::vector<unsigned char> vData(hash.begin(), hash.end());
insert(vData);
}
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
{
for (int n = 0; n < nHashFuncs; n++) {
uint32_t h = RollingBloomHash(n, nTweak, vKey);
int bit = h & 0x3F;
uint32_t pos = (h >> 6) % data.size();
/* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
if (!(((data[pos & ~1] | data[pos | 1]) >> bit) & 1)) {
return false;
}
}
return true;
}
bool CRollingBloomFilter::contains(const uint256& hash) const
{
std::vector<unsigned char> vData(hash.begin(), hash.end());
return contains(vData);
}
void CRollingBloomFilter::reset()
{
nTweak = GetRand(std::numeric_limits<unsigned int>::max());
nEntriesThisGeneration = 0;
nGeneration = 1;
for (std::vector<uint64_t>::iterator it = data.begin(); it != data.end(); it++) {
*it = 0;
}
}