dash/src/net.h

1457 lines
52 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
2014-12-13 05:09:33 +01:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <addrdb.h>
#include <addrman.h>
#include <bloom.h>
#include <chainparams.h>
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <compat.h>
#include <fs.h>
#include <crypto/siphash.h>
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <hash.h>
#include <i2p.h>
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <limitedmap.h>
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
#include <net_permissions.h>
#include <netaddress.h>
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <policy/feerate.h>
#include <protocol.h>
#include <random.h>
#include <saltedhasher.h>
#include <streams.h>
#include <sync.h>
Merge #16224: gui: Bilingual GUI error messages 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad util: Cleanup translation.h (Hennadii Stepanov) e95e658b8ec6e02229691a1941d688e96d4df6af doc: Do not translate technical or extremely rare errors (Hennadii Stepanov) 7e923d47ba9891856b86bc9f718cf2f1f773bdf6 Make InitError bilingual (Hennadii Stepanov) 917ca93553917251e0fd59717a347c63cdfd8a14 Make ThreadSafe{MessageBox|Question} bilingual (Hennadii Stepanov) 23b9fa2e5ec0425980301d2eebad81e660a5ea39 gui: Add detailed text to BitcoinGUI::message (Hennadii Stepanov) Pull request description: This is an alternative to #15340 (it works with the `Chain` interface; see: https://github.com/bitcoin/bitcoin/pull/15340#issuecomment-502674004). Refs: - #16218 (partial fix) - https://github.com/bitcoin/bitcoin/pull/15894#issuecomment-487947077 This PR: - makes GUI error messages bilingual: user's native language + untranslated (i.e. English) - insures that only untranslated messages are written to the debug log file and to `stderr` (that is not the case on master). If a translated string is unavailable only an English string appears to a user. Here are some **examples** (updated): ![Screenshot from 2020-04-24 17-08-37](https://user-images.githubusercontent.com/32963518/80222043-e2458780-864e-11ea-83fc-197b7121dba5.png) ![Screenshot from 2020-04-24 17-12-17](https://user-images.githubusercontent.com/32963518/80222051-e5407800-864e-11ea-92f7-dfef1144becd.png) * `qt5ct: using qt5ct plugin` message is my local environment specific; please ignore it. --- Note for reviewers: `InitWarning()` is out of this PR scope. ACKs for top commit: Sjors: re-tACK 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad MarcoFalke: ACK 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad 🐦 Tree-SHA512: 3cc8ec44f84403e54b57d11714c86b0855ed90eb794b5472e432005073354b9e3f7b4e8e7bf347a4c21be47299dbc7170f2d0c4b80e308205ff09596e55a4f96 # Conflicts: # src/dashd.cpp # src/httpserver.cpp # src/index/base.cpp # src/init.cpp # src/interfaces/chain.cpp # src/interfaces/chain.h # src/interfaces/node.cpp # src/net.h # src/qt/bitcoingui.cpp # src/ui_interface.h # src/wallet/init.cpp # src/wallet/load.cpp
2020-05-08 18:17:47 +02:00
#include <threadinterrupt.h>
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <uint256.h>
merge bitcoin#14555: Move util files to directory (script modified to account for Dash backports, doesn't account for rebasing) ------------- BEGIN SCRIPT --------------- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp git mv src/utilasmap.h src/util/asmap.h git mv src/utilasmap.cpp src/util/asmap.cpp git mv src/utilstring.h src/util/string.h git mv src/utilstring.cpp src/util/string.cpp gsed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/<utilasmap\.h>/<util\/asmap\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/<utilstring\.h>/<util\/string\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') gsed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h gsed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h gsed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h gsed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h gsed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h gsed -i 's/BITCOIN_UTILASMAP_H/BITCOIN_UTIL_ASMAP_H/g' src/util/asmap.h gsed -i 's/BITCOIN_UTILSTRING_H/BITCOIN_UTIL_STRING_H/g' src/util/string.h gsed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am gsed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am gsed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am gsed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am gsed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am gsed -i 's/utilasmap\.\(h\|cpp\)/util\/asmap\.\1/g' src/Makefile.am gsed -i 's/utilstring\.\(h\|cpp\)/util\/string\.\1/g' src/Makefile.am gsed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh gsed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh gsed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh gsed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh ------------- END SCRIPT ---------------
2021-06-27 08:33:13 +02:00
#include <util/system.h>
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <consensus/params.h>
2017-07-12 22:08:18 +02:00
#include <atomic>
#include <cstdint>
#include <deque>
#include <map>
#include <thread>
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
#include <memory>
#include <condition_variable>
Collection of minor performance optimizations (#2855) * Merge #13176: Improve CRollingBloomFilter performance: replace modulus with FastMod 9aac9f90d5e56752cc6cbfac48063ad29a01143c replace modulus with FastMod (Martin Ankerl) Pull request description: Not sure if this is optimization is necessary, but anyway I have some spare time so here it is. This replaces the slow modulo operation with a much faster 64bit multiplication & shift. This works when the hash is uniformly distributed between 0 and 2^32-1. This speeds up the benchmark by a factor of about 1.3: ``` RollingBloom, 5, 1500000, 3.73733, 4.97569e-07, 4.99002e-07, 4.98372e-07 # before RollingBloom, 5, 1500000, 2.86842, 3.81630e-07, 3.83730e-07, 3.82473e-07 # FastMod ``` Be aware that this changes the internal data of the filter, so this should probably not be used for CBloomFilter because of interoperability problems. Tree-SHA512: 04104f3fb09f56c9d14458a6aad919aeb0a5af944e8ee6a31f00e93c753e22004648c1cd65bf36752b6addec528d19fb665c27b955ce1666a85a928e17afa47a * Use unordered_map in CSporkManager In one of my profiling sessions with many InstantSend transactions happening, calls into CSporkManager added up to about 1% of total CPU time. This is easily avoidable by using unordered maps. * Use std::unordered_map instead of std::map in limitedmap * Use unordered_set for CNode::setAskFor * Add serialization support for unordered maps and sets * Use unordered_map for mapArgs and mapMultiArgs * Let limitedmap prune in batches and use unordered_multimap Due to the batched pruning, there is no need to maintain an ordered map of values anymore. Only when nPruneAfterSize, there is a need to create a temporary ordered vector of values to figure out what can be removed. * Instead of using a multimap for mapAskFor, use a vector which we sort on demand CNode::AskFor will now push entries into an initially unordered vector instead of an ordered multimap. Only when we later want to use vecAskFor in SendMessages, we sort the vector. The vector will actually be mostly sorted in most cases as insertion order usually mimics the desired ordering. Only the last few entries might need some shuffling around. Doing the sort on-demand should be less wasteful then trying to maintain correct order all the time. * Fix compilation of tests * Fix limitedmap tests * Rename limitedmap to unordered_limitedmap to ensure backports conflict This ensures that future backports that depends on limitedmap's ordering conflict so that we are made aware of needed action. * Fix compilation error on Travis
2019-04-11 14:42:14 +02:00
#include <unordered_set>
#include <optional>
#include <queue>
#ifndef WIN32
#define USE_WAKEUP_PIPE
#endif
class CScheduler;
class CNode;
Merge #14605: Return of the Banman 18185b57c32d0a43afeca4c125b9352c692923e9 scripted-diff: batch-recase BanMan variables (Carl Dong) c2e04d37f3841d109c1fe60693f9622e2836cc29 banman: Add, use CBanEntry ctor that takes ban reason (Carl Dong) 1ffa4ce27d4ea6c1067d8984455df97994c7713e banman: reformulate nBanUtil calculation (Carl Dong) daae598feb034f2f56e0b00ecfb4854d693d3641 banman: add thread annotations and mark members const where possible (Cory Fields) 84fc3fbd0304a7d6e660bf783c84bed2dd415141 scripted-diff: batch-rename BanMan members (Cory Fields) af3503d903b1a608cd212e2d74b274103199078c net: move BanMan to its own files (Cory Fields) d0469b2e9386a7a4b268cb9725347e7517acace6 banman: pass in default ban time as a parameter (Cory Fields) 2e56702ecedd83c4b7cb8de9de5c437c8c08e645 banman: pass the banfile path in (Cory Fields) 4c0d961eb0d7825a1e6f8389d7f5545114ee18c6 banman: create and split out banman (Cory Fields) 83c1ea2e5e66b8a83072e3d5ad6a4ced406eb1ba net: split up addresses/ban dumps in preparation for moving them (Cory Fields) 136bd7926c72659dd277a7b795ea17f72e523338 tests: remove member connman/peerLogic in TestingSetup (Cory Fields) 7cc2b9f6786f9bc33853220551eed33ca6b7b7b2 net: Break disconnecting out of Ban() (Cory Fields) Pull request description: **Old English à la Beowulf** ``` Banman wæs bréme --blaéd wíde sprang-- Connmanes eafera Coreum in. aéglaéca léodum forstandan Swá bealdode bearn Connmanes guma gúðum cúð gódum daédum· dréah æfter dóme· nealles druncne slóg ``` **Modern English Translation** ``` Banman was famed --his renown spread wide-- Conman's hier, in Core-land. against the evil creature defend the people Thus he was bold, the son of Connman man famed in war, for good deeds; he led his life for glory, never, having drunk, slew ``` -- With @theuni's blessing, here is Banman, rebased. Original PR: https://github.com/bitcoin/bitcoin/pull/11457 -- Followup PRs: 1. Give `CNode` a `Disconnect` method ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248065847)) 2. Add a comment to `std::atomic_bool fDisconnect` in `net.h` that setting this to true will cause the node to be disconnected the next time `DisconnectNodes()` runs ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248384309)) Tree-SHA512: 9c207edbf577415c22c9811113e393322d936a843d4ff265186728152a67c057779ac4d4f27b895de9729f7a53e870f828b9ebc8bcdab757520c2aebe1e9be35
2019-01-21 18:45:59 +01:00
class BanMan;
Merge #16224: gui: Bilingual GUI error messages 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad util: Cleanup translation.h (Hennadii Stepanov) e95e658b8ec6e02229691a1941d688e96d4df6af doc: Do not translate technical or extremely rare errors (Hennadii Stepanov) 7e923d47ba9891856b86bc9f718cf2f1f773bdf6 Make InitError bilingual (Hennadii Stepanov) 917ca93553917251e0fd59717a347c63cdfd8a14 Make ThreadSafe{MessageBox|Question} bilingual (Hennadii Stepanov) 23b9fa2e5ec0425980301d2eebad81e660a5ea39 gui: Add detailed text to BitcoinGUI::message (Hennadii Stepanov) Pull request description: This is an alternative to #15340 (it works with the `Chain` interface; see: https://github.com/bitcoin/bitcoin/pull/15340#issuecomment-502674004). Refs: - #16218 (partial fix) - https://github.com/bitcoin/bitcoin/pull/15894#issuecomment-487947077 This PR: - makes GUI error messages bilingual: user's native language + untranslated (i.e. English) - insures that only untranslated messages are written to the debug log file and to `stderr` (that is not the case on master). If a translated string is unavailable only an English string appears to a user. Here are some **examples** (updated): ![Screenshot from 2020-04-24 17-08-37](https://user-images.githubusercontent.com/32963518/80222043-e2458780-864e-11ea-83fc-197b7121dba5.png) ![Screenshot from 2020-04-24 17-12-17](https://user-images.githubusercontent.com/32963518/80222051-e5407800-864e-11ea-92f7-dfef1144becd.png) * `qt5ct: using qt5ct plugin` message is my local environment specific; please ignore it. --- Note for reviewers: `InitWarning()` is out of this PR scope. ACKs for top commit: Sjors: re-tACK 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad MarcoFalke: ACK 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad 🐦 Tree-SHA512: 3cc8ec44f84403e54b57d11714c86b0855ed90eb794b5472e432005073354b9e3f7b4e8e7bf347a4c21be47299dbc7170f2d0c4b80e308205ff09596e55a4f96 # Conflicts: # src/dashd.cpp # src/httpserver.cpp # src/index/base.cpp # src/init.cpp # src/interfaces/chain.cpp # src/interfaces/chain.h # src/interfaces/node.cpp # src/net.h # src/qt/bitcoingui.cpp # src/ui_interface.h # src/wallet/init.cpp # src/wallet/load.cpp
2020-05-08 18:17:47 +02:00
struct bilingual_str;
/** Default for -whitelistrelay. */
static const bool DEFAULT_WHITELISTRELAY = true;
/** Default for -whitelistforcerelay. */
static const bool DEFAULT_WHITELISTFORCERELAY = false;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Minimum time between warnings printed to log. */
static const int WARNING_INTERVAL = 10 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
/** The maximum number of addresses from our addrman to return in response to a getaddr message. */
static constexpr size_t MAX_ADDR_TO_SEND = 1000;
/** Maximum length of incoming protocol messages (no message over 3 MiB is currently acceptable). */
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 3 * 1024 * 1024;
/** Maximum length of the user agent string in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
/** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** Eviction protection time for incoming connections */
static const int INBOUND_EVICTION_PROTECTION_TIME = 1;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
/** Maximum number of block-relay-only outgoing connections */
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
/** Maximum number of feeler connections */
static const int MAX_FEELER_CONNECTIONS = 1;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** The maximum number of peer connections to maintain.
* Masternodes are forced to accept at least this many connections
*/
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
Merge #14733: P2P: Make peer timeout configurable, speed up very slow test and ensure correct code path tested. 48b37db50 make peertimeout a debug argument, remove error message translation (Zain Iqbal Allarakhia) 8042bbfbf p2p: allow p2ptimeout to be configurable, speed up slow test (Zain Iqbal Allarakhia) Pull request description: **Summary:** 1. _Primary_: Adds a `debug_only=true` flag for peertimeout, defaults to 60 sec., the current hard-coded setting. 2. _Secondary_: Drastically speeds up `p2p_timeout.py` test. 3. _Secondary_: Tests that the correct code path is being tested by adding log assertions to the test. **Rationale:** - P2P timeout was hard-coded: make it explicitly specified and configurable, instead of a magic number. - Addresses #13518; `p2p_timeout.py` takes 4 sec. to run instead of 61 sec. - Makes `p2p_timeout.py` more explicit. Previously, we relied on a comment to inform us of the timeout amount being tested. Now it is specified directly in the test via passing in the new arg; `-peertimeout=3`. - Opens us up to testing more P2P scenarios; oftentimes slow tests are the reason we don't test. **Locally verified changes:** _With Proposed Change (4.7 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:04:19.077000Z TestFramework (INFO): Initializing test directory /tmp/testhja7g2n7 2018-11-19T00:04:23.479000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:04:23.683000Z TestFramework (INFO): Cleaning up /tmp/testhja7g2n7 on exit 2018-11-19T00:04:23.683000Z TestFramework (INFO): Tests successful real 0m4.743s ``` _Currently on master (62.8 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:06:10.948000Z TestFramework (INFO): Initializing test directory /tmp/test6mo6k21h 2018-11-19T00:07:13.376000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:07:13.631000Z TestFramework (INFO): Cleaning up /tmp/test6mo6k21h on exit 2018-11-19T00:07:13.631000Z TestFramework (INFO): Tests successful real 1m2.836s ``` _Error message demonstrated for new argument `-peertimeout`:_ ``` $ ./bitcoind -peertimeout=-5 ... Error: peertimeout cannot be configured with a negative value. ``` Tree-SHA512: ff7a244ebea54c4059407bf4fb86465714e6a79cef5d2bcaa22cfe831a81761aaf597ba4d5172fc2ec12266f54712216fc41b5d24849e5d9dab39ba6f09e3a2a
2018-12-04 12:06:35 +01:00
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
static const bool DEFAULT_FORCEDNSSEED = false;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
2020-12-30 20:34:42 +01:00
#if defined USE_KQUEUE
#define DEFAULT_SOCKETEVENTS "kqueue"
#elif defined USE_EPOLL
#define DEFAULT_SOCKETEVENTS "epoll"
#elif defined USE_POLL
#define DEFAULT_SOCKETEVENTS "poll"
#else
#define DEFAULT_SOCKETEVENTS "select"
#endif
typedef int64_t NodeId;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
struct AddedNodeInfo
{
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
class CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg
{
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg&&) = default;
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
// No copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
std::vector<unsigned char> data;
std::string command;
};
Merge #14605: Return of the Banman 18185b57c32d0a43afeca4c125b9352c692923e9 scripted-diff: batch-recase BanMan variables (Carl Dong) c2e04d37f3841d109c1fe60693f9622e2836cc29 banman: Add, use CBanEntry ctor that takes ban reason (Carl Dong) 1ffa4ce27d4ea6c1067d8984455df97994c7713e banman: reformulate nBanUtil calculation (Carl Dong) daae598feb034f2f56e0b00ecfb4854d693d3641 banman: add thread annotations and mark members const where possible (Cory Fields) 84fc3fbd0304a7d6e660bf783c84bed2dd415141 scripted-diff: batch-rename BanMan members (Cory Fields) af3503d903b1a608cd212e2d74b274103199078c net: move BanMan to its own files (Cory Fields) d0469b2e9386a7a4b268cb9725347e7517acace6 banman: pass in default ban time as a parameter (Cory Fields) 2e56702ecedd83c4b7cb8de9de5c437c8c08e645 banman: pass the banfile path in (Cory Fields) 4c0d961eb0d7825a1e6f8389d7f5545114ee18c6 banman: create and split out banman (Cory Fields) 83c1ea2e5e66b8a83072e3d5ad6a4ced406eb1ba net: split up addresses/ban dumps in preparation for moving them (Cory Fields) 136bd7926c72659dd277a7b795ea17f72e523338 tests: remove member connman/peerLogic in TestingSetup (Cory Fields) 7cc2b9f6786f9bc33853220551eed33ca6b7b7b2 net: Break disconnecting out of Ban() (Cory Fields) Pull request description: **Old English à la Beowulf** ``` Banman wæs bréme --blaéd wíde sprang-- Connmanes eafera Coreum in. aéglaéca léodum forstandan Swá bealdode bearn Connmanes guma gúðum cúð gódum daédum· dréah æfter dóme· nealles druncne slóg ``` **Modern English Translation** ``` Banman was famed --his renown spread wide-- Conman's hier, in Core-land. against the evil creature defend the people Thus he was bold, the son of Connman man famed in war, for good deeds; he led his life for glory, never, having drunk, slew ``` -- With @theuni's blessing, here is Banman, rebased. Original PR: https://github.com/bitcoin/bitcoin/pull/11457 -- Followup PRs: 1. Give `CNode` a `Disconnect` method ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248065847)) 2. Add a comment to `std::atomic_bool fDisconnect` in `net.h` that setting this to true will cause the node to be disconnected the next time `DisconnectNodes()` runs ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248384309)) Tree-SHA512: 9c207edbf577415c22c9811113e393322d936a843d4ff265186728152a67c057779ac4d4f27b895de9729f7a53e870f828b9ebc8bcdab757520c2aebe1e9be35
2019-01-21 18:45:59 +01:00
class NetEventsInterface;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
class CConnman
{
2020-04-07 07:00:41 +02:00
friend class CNode;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
public:
enum NumConnections {
CONNECTIONS_NONE = 0,
CONNECTIONS_IN = (1U << 0),
CONNECTIONS_OUT = (1U << 1),
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
CONNECTIONS_VERIFIED = (1U << 2),
CONNECTIONS_VERIFIED_IN = (CONNECTIONS_VERIFIED | CONNECTIONS_IN),
CONNECTIONS_VERIFIED_OUT = (CONNECTIONS_VERIFIED | CONNECTIONS_OUT),
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
enum SocketEventsMode {
SOCKETEVENTS_SELECT = 0,
SOCKETEVENTS_POLL = 1,
2020-04-07 17:58:38 +02:00
SOCKETEVENTS_EPOLL = 2,
2020-12-30 20:34:42 +01:00
SOCKETEVENTS_KQUEUE = 3,
};
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
struct Options
{
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
int m_max_outbound_full_relay = 0;
int m_max_outbound_block_relay = 0;
int nMaxAddnode = 0;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
int nMaxFeeler = 0;
CClientUIInterface* uiInterface = nullptr;
NetEventsInterface* m_msgproc = nullptr;
Merge #14605: Return of the Banman 18185b57c32d0a43afeca4c125b9352c692923e9 scripted-diff: batch-recase BanMan variables (Carl Dong) c2e04d37f3841d109c1fe60693f9622e2836cc29 banman: Add, use CBanEntry ctor that takes ban reason (Carl Dong) 1ffa4ce27d4ea6c1067d8984455df97994c7713e banman: reformulate nBanUtil calculation (Carl Dong) daae598feb034f2f56e0b00ecfb4854d693d3641 banman: add thread annotations and mark members const where possible (Cory Fields) 84fc3fbd0304a7d6e660bf783c84bed2dd415141 scripted-diff: batch-rename BanMan members (Cory Fields) af3503d903b1a608cd212e2d74b274103199078c net: move BanMan to its own files (Cory Fields) d0469b2e9386a7a4b268cb9725347e7517acace6 banman: pass in default ban time as a parameter (Cory Fields) 2e56702ecedd83c4b7cb8de9de5c437c8c08e645 banman: pass the banfile path in (Cory Fields) 4c0d961eb0d7825a1e6f8389d7f5545114ee18c6 banman: create and split out banman (Cory Fields) 83c1ea2e5e66b8a83072e3d5ad6a4ced406eb1ba net: split up addresses/ban dumps in preparation for moving them (Cory Fields) 136bd7926c72659dd277a7b795ea17f72e523338 tests: remove member connman/peerLogic in TestingSetup (Cory Fields) 7cc2b9f6786f9bc33853220551eed33ca6b7b7b2 net: Break disconnecting out of Ban() (Cory Fields) Pull request description: **Old English à la Beowulf** ``` Banman wæs bréme --blaéd wíde sprang-- Connmanes eafera Coreum in. aéglaéca léodum forstandan Swá bealdode bearn Connmanes guma gúðum cúð gódum daédum· dréah æfter dóme· nealles druncne slóg ``` **Modern English Translation** ``` Banman was famed --his renown spread wide-- Conman's hier, in Core-land. against the evil creature defend the people Thus he was bold, the son of Connman man famed in war, for good deeds; he led his life for glory, never, having drunk, slew ``` -- With @theuni's blessing, here is Banman, rebased. Original PR: https://github.com/bitcoin/bitcoin/pull/11457 -- Followup PRs: 1. Give `CNode` a `Disconnect` method ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248065847)) 2. Add a comment to `std::atomic_bool fDisconnect` in `net.h` that setting this to true will cause the node to be disconnected the next time `DisconnectNodes()` runs ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248384309)) Tree-SHA512: 9c207edbf577415c22c9811113e393322d936a843d4ff265186728152a67c057779ac4d4f27b895de9729f7a53e870f828b9ebc8bcdab757520c2aebe1e9be35
2019-01-21 18:45:59 +01:00
BanMan* m_banman = nullptr;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundLimit = 0;
Merge #14733: P2P: Make peer timeout configurable, speed up very slow test and ensure correct code path tested. 48b37db50 make peertimeout a debug argument, remove error message translation (Zain Iqbal Allarakhia) 8042bbfbf p2p: allow p2ptimeout to be configurable, speed up slow test (Zain Iqbal Allarakhia) Pull request description: **Summary:** 1. _Primary_: Adds a `debug_only=true` flag for peertimeout, defaults to 60 sec., the current hard-coded setting. 2. _Secondary_: Drastically speeds up `p2p_timeout.py` test. 3. _Secondary_: Tests that the correct code path is being tested by adding log assertions to the test. **Rationale:** - P2P timeout was hard-coded: make it explicitly specified and configurable, instead of a magic number. - Addresses #13518; `p2p_timeout.py` takes 4 sec. to run instead of 61 sec. - Makes `p2p_timeout.py` more explicit. Previously, we relied on a comment to inform us of the timeout amount being tested. Now it is specified directly in the test via passing in the new arg; `-peertimeout=3`. - Opens us up to testing more P2P scenarios; oftentimes slow tests are the reason we don't test. **Locally verified changes:** _With Proposed Change (4.7 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:04:19.077000Z TestFramework (INFO): Initializing test directory /tmp/testhja7g2n7 2018-11-19T00:04:23.479000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:04:23.683000Z TestFramework (INFO): Cleaning up /tmp/testhja7g2n7 on exit 2018-11-19T00:04:23.683000Z TestFramework (INFO): Tests successful real 0m4.743s ``` _Currently on master (62.8 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:06:10.948000Z TestFramework (INFO): Initializing test directory /tmp/test6mo6k21h 2018-11-19T00:07:13.376000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:07:13.631000Z TestFramework (INFO): Cleaning up /tmp/test6mo6k21h on exit 2018-11-19T00:07:13.631000Z TestFramework (INFO): Tests successful real 1m2.836s ``` _Error message demonstrated for new argument `-peertimeout`:_ ``` $ ./bitcoind -peertimeout=-5 ... Error: peertimeout cannot be configured with a negative value. ``` Tree-SHA512: ff7a244ebea54c4059407bf4fb86465714e6a79cef5d2bcaa22cfe831a81761aaf597ba4d5172fc2ec12266f54712216fc41b5d24849e5d9dab39ba6f09e3a2a
2018-12-04 12:06:35 +01:00
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
std::vector<NetWhitelistPermissions> vWhitelistedRange;
std::vector<NetWhitebindPermissions> vWhiteBinds;
std::vector<CService> vBinds;
std::vector<CService> onion_binds;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
SocketEventsMode socketEventsMode = SOCKETEVENTS_SELECT;
std::vector<bool> m_asmap;
bool m_i2p_accept_incoming;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
void Init(const Options& connOptions) {
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections);
m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler;
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
clientInterface = connOptions.uiInterface;
Merge #14605: Return of the Banman 18185b57c32d0a43afeca4c125b9352c692923e9 scripted-diff: batch-recase BanMan variables (Carl Dong) c2e04d37f3841d109c1fe60693f9622e2836cc29 banman: Add, use CBanEntry ctor that takes ban reason (Carl Dong) 1ffa4ce27d4ea6c1067d8984455df97994c7713e banman: reformulate nBanUtil calculation (Carl Dong) daae598feb034f2f56e0b00ecfb4854d693d3641 banman: add thread annotations and mark members const where possible (Cory Fields) 84fc3fbd0304a7d6e660bf783c84bed2dd415141 scripted-diff: batch-rename BanMan members (Cory Fields) af3503d903b1a608cd212e2d74b274103199078c net: move BanMan to its own files (Cory Fields) d0469b2e9386a7a4b268cb9725347e7517acace6 banman: pass in default ban time as a parameter (Cory Fields) 2e56702ecedd83c4b7cb8de9de5c437c8c08e645 banman: pass the banfile path in (Cory Fields) 4c0d961eb0d7825a1e6f8389d7f5545114ee18c6 banman: create and split out banman (Cory Fields) 83c1ea2e5e66b8a83072e3d5ad6a4ced406eb1ba net: split up addresses/ban dumps in preparation for moving them (Cory Fields) 136bd7926c72659dd277a7b795ea17f72e523338 tests: remove member connman/peerLogic in TestingSetup (Cory Fields) 7cc2b9f6786f9bc33853220551eed33ca6b7b7b2 net: Break disconnecting out of Ban() (Cory Fields) Pull request description: **Old English à la Beowulf** ``` Banman wæs bréme --blaéd wíde sprang-- Connmanes eafera Coreum in. aéglaéca léodum forstandan Swá bealdode bearn Connmanes guma gúðum cúð gódum daédum· dréah æfter dóme· nealles druncne slóg ``` **Modern English Translation** ``` Banman was famed --his renown spread wide-- Conman's hier, in Core-land. against the evil creature defend the people Thus he was bold, the son of Connman man famed in war, for good deeds; he led his life for glory, never, having drunk, slew ``` -- With @theuni's blessing, here is Banman, rebased. Original PR: https://github.com/bitcoin/bitcoin/pull/11457 -- Followup PRs: 1. Give `CNode` a `Disconnect` method ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248065847)) 2. Add a comment to `std::atomic_bool fDisconnect` in `net.h` that setting this to true will cause the node to be disconnected the next time `DisconnectNodes()` runs ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248384309)) Tree-SHA512: 9c207edbf577415c22c9811113e393322d936a843d4ff265186728152a67c057779ac4d4f27b895de9729f7a53e870f828b9ebc8bcdab757520c2aebe1e9be35
2019-01-21 18:45:59 +01:00
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
Merge #14733: P2P: Make peer timeout configurable, speed up very slow test and ensure correct code path tested. 48b37db50 make peertimeout a debug argument, remove error message translation (Zain Iqbal Allarakhia) 8042bbfbf p2p: allow p2ptimeout to be configurable, speed up slow test (Zain Iqbal Allarakhia) Pull request description: **Summary:** 1. _Primary_: Adds a `debug_only=true` flag for peertimeout, defaults to 60 sec., the current hard-coded setting. 2. _Secondary_: Drastically speeds up `p2p_timeout.py` test. 3. _Secondary_: Tests that the correct code path is being tested by adding log assertions to the test. **Rationale:** - P2P timeout was hard-coded: make it explicitly specified and configurable, instead of a magic number. - Addresses #13518; `p2p_timeout.py` takes 4 sec. to run instead of 61 sec. - Makes `p2p_timeout.py` more explicit. Previously, we relied on a comment to inform us of the timeout amount being tested. Now it is specified directly in the test via passing in the new arg; `-peertimeout=3`. - Opens us up to testing more P2P scenarios; oftentimes slow tests are the reason we don't test. **Locally verified changes:** _With Proposed Change (4.7 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:04:19.077000Z TestFramework (INFO): Initializing test directory /tmp/testhja7g2n7 2018-11-19T00:04:23.479000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:04:23.683000Z TestFramework (INFO): Cleaning up /tmp/testhja7g2n7 on exit 2018-11-19T00:04:23.683000Z TestFramework (INFO): Tests successful real 0m4.743s ``` _Currently on master (62.8 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:06:10.948000Z TestFramework (INFO): Initializing test directory /tmp/test6mo6k21h 2018-11-19T00:07:13.376000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:07:13.631000Z TestFramework (INFO): Cleaning up /tmp/test6mo6k21h on exit 2018-11-19T00:07:13.631000Z TestFramework (INFO): Tests successful real 1m2.836s ``` _Error message demonstrated for new argument `-peertimeout`:_ ``` $ ./bitcoind -peertimeout=-5 ... Error: peertimeout cannot be configured with a negative value. ``` Tree-SHA512: ff7a244ebea54c4059407bf4fb86465714e6a79cef5d2bcaa22cfe831a81761aaf597ba4d5172fc2ec12266f54712216fc41b5d24849e5d9dab39ba6f09e3a2a
2018-12-04 12:06:35 +01:00
m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
{
LOCK(cs_totalBytesSent);
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(cs_vAddedNodes);
vAddedNodes = connOptions.m_added_nodes;
}
socketEventsMode = connOptions.socketEventsMode;
m_onion_binds = connOptions.onion_binds;
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
}
CConnman(uint64_t seed0, uint64_t seed1, CAddrMan& addrman);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
~CConnman();
Merge #10977: [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) 11dd29b [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) (practicalswift) Pull request description: When running `test_bitcoin` under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable `nLocalServices` is triggered by `g_connman->GetLocalServices()` in `getnetworkinfo(const JSONRPCRequest& request)` (`net.cpp:462`): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized `nLocalServices` is that `CConnman::Start(...)` is not called by the tests, and hence the initialization normally performed by `CConnman::Start(...)` is not done. This commit adds a method `Init(const Options& connOptions)` which is called by both the constructor and `CConnman::Start(...)`. This method initializes `nLocalServices` and the other relevant values from the supplied `Options` object. Tree-SHA512: d8742363acffd03b2ee081cc56840275569e17edc6fa4bb1dee4a5971ffe4b8ab1d2fe7b68f98a086bf133b7ec46f4e471243ca08b45bf82356e8c831a5a5f21
2017-08-05 13:23:10 +02:00
bool Start(CScheduler& scheduler, const Options& options);
void StopThreads();
void StopNodes();
void Stop()
{
StopThreads();
StopNodes();
};
void Interrupt();
Backport Bitcoin Qt/Gui changes up to 0.14.x part 3 (#1617) * Merge #8996: Network activity toggle 19f46f1 Qt: New network_disabled icon (Luke Dashjr) 54cf997 RPC/Net: Use boolean consistently for networkactive, and remove from getinfo (Luke Dashjr) b2b33d9 Overhaul network activity toggle (Jonas Schnelli) 32efa79 Qt: Add GUI feedback and control of network activity state. (Jon Lund Steffensen) e38993b RPC: Add "togglenetwork" method to toggle network activity temporarily (Jon Lund Steffensen) 7c9a98a Allow network activity to be temporarily suspended. (Jon Lund Steffensen) * Revert on-click behavior of network status icon to showing peers list Stay with the way Dash handled clicking on the status icon * Add theme support for network disabled icon * Merge #8874: Multiple Selection for peer and ban tables 1077577 Fix auto-deselection of peers (Andrew Chow) addfdeb Multiple Selection for peer and ban tables (Andrew Chow) * Merge #9190: qt: Plug many memory leaks ed998ea qt: Avoid OpenSSL certstore-related memory leak (Wladimir J. van der Laan) 5204598 qt: Avoid shutdownwindow-related memory leak (Wladimir J. van der Laan) e4f126a qt: Avoid splash-screen related memory leak (Wladimir J. van der Laan) 693384e qt: Prevent thread/memory leak on exiting RPCConsole (Wladimir J. van der Laan) 47db075 qt: Plug many memory leaks (Wladimir J. van der Laan) * Merge #9218: qt: Show progress overlay when clicking spinner icon 042f9fa qt: Show progress overlay when clicking spinner icon (Wladimir J. van der Laan) 827d9a3 qt: Replace NetworkToggleStatusBarControl with generic ClickableLabel (Wladimir J. van der Laan) * Merge #9266: Bugfix: Qt/RPCConsole: Put column enum in the right places df17fe0 Bugfix: Qt/RPCConsole: Put column enum in the right places (Luke Dashjr) * Merge #9255: qt: layoutAboutToChange signal is called layoutAboutToBeChanged f36349e qt: Remove on_toggleNetworkActiveButton_clicked from RPCConsole (Wladimir J. van der Laan) 297cc20 qt: layoutAboutToChange signal is called layoutAboutToBeChanged (Wladimir J. van der Laan) * Use UniValue until bitcoin PR #8788 is backported Network active toggle was already based on "[RPC] Give RPC commands more information about the RPC request" We need to use the old UniValue style until that one is backported * Merge #8906: [qt] sync-overlay: Don't show progress twice fafeec3 [qt] sync-overlay: Don't show progress twice (MarcoFalke) * Merge #8985: Use pindexBestHeader instead of setBlockIndexCandidates for NotifyHeaderTip() 3154d6e [Qt] use NotifyHeaderTip's height and date for the progress update (Jonas Schnelli) 0a261b6 Use pindexBestHeader instead of setBlockIndexCandidates for NotifyHeaderTip() (Jonas Schnelli) * Merge #9280: [Qt] Show ModalOverlay by pressing the progress bar, allow hiding 89a3723 [Qt] Show ModalOverlay by pressing the progress bar, disabled show() in sync mode (Jonas Schnelli) * Merge #9461: [Qt] Improve progress display during headers-sync and peer-finding 40ec7c7 [Qt] Improve progress display during headers-sync and peer-finding (Jonas Schnelli) * Merge #9588: qt: Use nPowTargetSpacing constant fa4d478 qt: Use nPowTargetSpacing constant (MarcoFalke) * Hide modal overlay forever when syncing has catched up Don't allow to open it again by clicking on the progress bar and spinner icon. Currently the overlay does not show meaningful information about masternode sync and it gives the impression of being stuck after the block chain sync is done. * Don't include chainparams.h in sendcoinsdialog.cpp This was just a remainder of a backported PR which meant to change some calculation in this file which does not apply to Dash. * Also check for fNetworkActive in ConnectNode * Merge #9528: [qt] Rename formateNiceTimeOffset(qint64) to formatNiceTimeOffset(qint64) 988d300 [qt] Rename formateNiceTimeOffset(qint64) to formatNiceTimeOffset(qint64) (practicalswift) * Merge #11237: qt: Fixing division by zero in time remaining c8d38abd6 Refactor tipUpdate as per style guide (MeshCollider) 3b69a08c5 Fix division by zero in time remaining (MeshCollider) Pull request description: Fixes https://github.com/bitcoin/bitcoin/issues/10291, https://github.com/bitcoin/bitcoin/issues/11265 progressDelta may be 0 (or even negative according to 11265), this checks for that and prints unknown if it is, because we cannot calculate an estimate for the time remaining (would be infinite or negative). Tree-SHA512: bc5708e5ed6e4670d008219558c5fbb25709bd99a32c98ec39bb74f94a0b7fa058f3d03389ccdd39e6723e6b5b48e34b13ceee7c051c2db631e51d8ec3e1d68c
2017-09-11 15:38:14 +02:00
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
Backport Bitcoin Qt/Gui changes up to 0.14.x part 3 (#1617) * Merge #8996: Network activity toggle 19f46f1 Qt: New network_disabled icon (Luke Dashjr) 54cf997 RPC/Net: Use boolean consistently for networkactive, and remove from getinfo (Luke Dashjr) b2b33d9 Overhaul network activity toggle (Jonas Schnelli) 32efa79 Qt: Add GUI feedback and control of network activity state. (Jon Lund Steffensen) e38993b RPC: Add "togglenetwork" method to toggle network activity temporarily (Jon Lund Steffensen) 7c9a98a Allow network activity to be temporarily suspended. (Jon Lund Steffensen) * Revert on-click behavior of network status icon to showing peers list Stay with the way Dash handled clicking on the status icon * Add theme support for network disabled icon * Merge #8874: Multiple Selection for peer and ban tables 1077577 Fix auto-deselection of peers (Andrew Chow) addfdeb Multiple Selection for peer and ban tables (Andrew Chow) * Merge #9190: qt: Plug many memory leaks ed998ea qt: Avoid OpenSSL certstore-related memory leak (Wladimir J. van der Laan) 5204598 qt: Avoid shutdownwindow-related memory leak (Wladimir J. van der Laan) e4f126a qt: Avoid splash-screen related memory leak (Wladimir J. van der Laan) 693384e qt: Prevent thread/memory leak on exiting RPCConsole (Wladimir J. van der Laan) 47db075 qt: Plug many memory leaks (Wladimir J. van der Laan) * Merge #9218: qt: Show progress overlay when clicking spinner icon 042f9fa qt: Show progress overlay when clicking spinner icon (Wladimir J. van der Laan) 827d9a3 qt: Replace NetworkToggleStatusBarControl with generic ClickableLabel (Wladimir J. van der Laan) * Merge #9266: Bugfix: Qt/RPCConsole: Put column enum in the right places df17fe0 Bugfix: Qt/RPCConsole: Put column enum in the right places (Luke Dashjr) * Merge #9255: qt: layoutAboutToChange signal is called layoutAboutToBeChanged f36349e qt: Remove on_toggleNetworkActiveButton_clicked from RPCConsole (Wladimir J. van der Laan) 297cc20 qt: layoutAboutToChange signal is called layoutAboutToBeChanged (Wladimir J. van der Laan) * Use UniValue until bitcoin PR #8788 is backported Network active toggle was already based on "[RPC] Give RPC commands more information about the RPC request" We need to use the old UniValue style until that one is backported * Merge #8906: [qt] sync-overlay: Don't show progress twice fafeec3 [qt] sync-overlay: Don't show progress twice (MarcoFalke) * Merge #8985: Use pindexBestHeader instead of setBlockIndexCandidates for NotifyHeaderTip() 3154d6e [Qt] use NotifyHeaderTip's height and date for the progress update (Jonas Schnelli) 0a261b6 Use pindexBestHeader instead of setBlockIndexCandidates for NotifyHeaderTip() (Jonas Schnelli) * Merge #9280: [Qt] Show ModalOverlay by pressing the progress bar, allow hiding 89a3723 [Qt] Show ModalOverlay by pressing the progress bar, disabled show() in sync mode (Jonas Schnelli) * Merge #9461: [Qt] Improve progress display during headers-sync and peer-finding 40ec7c7 [Qt] Improve progress display during headers-sync and peer-finding (Jonas Schnelli) * Merge #9588: qt: Use nPowTargetSpacing constant fa4d478 qt: Use nPowTargetSpacing constant (MarcoFalke) * Hide modal overlay forever when syncing has catched up Don't allow to open it again by clicking on the progress bar and spinner icon. Currently the overlay does not show meaningful information about masternode sync and it gives the impression of being stuck after the block chain sync is done. * Don't include chainparams.h in sendcoinsdialog.cpp This was just a remainder of a backported PR which meant to change some calculation in this file which does not apply to Dash. * Also check for fNetworkActive in ConnectNode * Merge #9528: [qt] Rename formateNiceTimeOffset(qint64) to formatNiceTimeOffset(qint64) 988d300 [qt] Rename formateNiceTimeOffset(qint64) to formatNiceTimeOffset(qint64) (practicalswift) * Merge #11237: qt: Fixing division by zero in time remaining c8d38abd6 Refactor tipUpdate as per style guide (MeshCollider) 3b69a08c5 Fix division by zero in time remaining (MeshCollider) Pull request description: Fixes https://github.com/bitcoin/bitcoin/issues/10291, https://github.com/bitcoin/bitcoin/issues/11265 progressDelta may be 0 (or even negative according to 11265), this checks for that and prints unknown if it is, because we cannot calculate an estimate for the time remaining (would be infinite or negative). Tree-SHA512: bc5708e5ed6e4670d008219558c5fbb25709bd99a32c98ec39bb74f94a0b7fa058f3d03389ccdd39e6723e6b5b48e34b13ceee7c051c2db631e51d8ec3e1d68c
2017-09-11 15:38:14 +02:00
void SetNetworkActive(bool active);
SocketEventsMode GetSocketEventsMode() const { return socketEventsMode; }
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
enum class MasternodeConn {
IsNotConnection,
IsConnection,
};
enum class MasternodeProbeConn {
IsNotConnection,
IsConnection,
};
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound = nullptr, const char *strDest = nullptr, bool fOneShot = false, bool fFeeler = false, bool manual_connection = false, bool block_relay_only = false, MasternodeConn masternode_connection = MasternodeConn::IsNotConnection, MasternodeProbeConn masternode_probe_connection = MasternodeProbeConn::IsNotConnection);
void OpenMasternodeConnection(const CAddress& addrConnect, MasternodeProbeConn probe = MasternodeProbeConn::IsConnection);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CheckIncomingNonce(uint64_t nonce);
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
struct CFullyConnectedOnly {
bool operator() (const CNode* pnode) const {
return NodeFullyConnected(pnode);
}
};
constexpr static const CFullyConnectedOnly FullyConnectedOnly{};
struct CAllNodes {
bool operator() (const CNode*) const {return true;}
};
constexpr static const CAllNodes AllNodes{};
bool ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
bool ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
template<typename Callable>
bool ForNode(const CService& addr, Callable&& func)
{
return ForNode(addr, FullyConnectedOnly, func);
}
template<typename Callable>
bool ForNode(NodeId id, Callable&& func)
{
return ForNode(id, FullyConnectedOnly, func);
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool IsConnected(const CService& addr, std::function<bool(const CNode* pnode)> cond)
{
return ForNode(addr, cond, [](CNode* pnode){
return true;
});
}
bool IsMasternodeOrDisconnectRequested(const CService& addr);
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg);
Backport Bitcoin PR#8708: net: have CConnman handle message sending (#1553) * serialization: teach serializers variadics Also add a variadic CDataStream ctor for ease-of-use. * connman is in charge of pushing messages The changes here are dense and subtle, but hopefully all is more explicit than before. - CConnman is now in charge of sending data rather than the nodes themselves. This is necessary because many decisions need to be made with all nodes in mind, and a model that requires the nodes calling up to their manager quickly turns to spaghetti. - The per-node-serializer (ssSend) has been replaced with a (quasi-)const send-version. Since the send version for serialization can only change once per connection, we now explicitly tag messages with INIT_PROTO_VERSION if they are sent before the handshake. With this done, there's no need to lock for access to nSendVersion. Also, a new stream is used for each message, so there's no need to lock during the serialization process. - This takes care of accounting for optimistic sends, so the nOptimisticBytesWritten hack can be removed. - -dropmessagestest and -fuzzmessagestest have not been preserved, as I suspect they haven't been used in years. * net: switch all callers to connman for pushing messages Drop all of the old stuff. * drop the optimistic write counter hack This is now handled properly in realtime. * net: remove now-unused ssSend and Fuzz * net: construct CNodeStates in place * net: handle version push in InitializeNode
2017-07-27 16:28:05 +02:00
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
template<typename Condition, typename Callable>
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func)
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
LOCK(cs_vNodes);
for (auto&& node : vNodes)
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
if (cond(node))
if(!func(node))
return false;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
return true;
};
template<typename Callable>
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
bool ForEachNodeContinueIf(Callable&& func)
{
return ForEachNodeContinueIf(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func) const
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
LOCK(cs_vNodes);
for (const auto& node : vNodes)
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
if (cond(node))
if(!func(node))
return false;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
return true;
};
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
template<typename Callable>
bool ForEachNodeContinueIf(Callable&& func) const
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
return ForEachNodeContinueIf(FullyConnectedOnly, func);
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
template<typename Condition, typename Callable>
void ForEachNode(const Condition& cond, Callable&& func)
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
LOCK(cs_vNodes);
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
for (auto&& node : vNodes) {
if (cond(node))
func(node);
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
template<typename Callable>
void ForEachNode(Callable&& func)
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
{
ForEachNode(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
void ForEachNode(const Condition& cond, Callable&& func) const
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
LOCK(cs_vNodes);
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
for (auto&& node : vNodes) {
if (cond(node))
func(node);
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
template<typename Callable>
void ForEachNode(Callable&& func) const
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
{
ForEachNode(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable, typename CallableAfter>
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post)
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
LOCK(cs_vNodes);
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
for (auto&& node : vNodes) {
if (cond(node))
pre(node);
}
post();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
{
ForEachNodeThen(FullyConnectedOnly, pre, post);
}
template<typename Condition, typename Callable, typename CallableAfter>
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post) const
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
{
LOCK(cs_vNodes);
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
for (auto&& node : vNodes) {
if (cond(node))
pre(node);
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
{
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
ForEachNodeThen(FullyConnectedOnly, pre, post);
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
std::vector<CNode*> CopyNodeVector(std::function<bool(const CNode* pnode)> cond);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
std::vector<CNode*> CopyNodeVector();
void ReleaseNodeVector(const std::vector<CNode*>& vecNodes);
void RelayTransaction(const CTransaction& tx);
void RelayInv(CInv &inv, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
void RelayInvFiltered(CInv &inv, const CTransaction &relatedTx, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
// This overload will not update node filters, so use it only for the cases when other messages will update related transaction data in filters
void RelayInvFiltered(CInv &inv, const uint256 &relatedTxHash, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
// Addrman functions
/**
* Return all or many randomly selected addresses, optionally by network.
*
* @param[in] max_addresses Maximum number of addresses to return (0 = all).
* @param[in] max_pct Maximum percentage of addresses to return (0 = all).
* @param[in] network Select only addresses of this network (nullopt = all).
*/
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network);
/**
* Cache is used to minimize topology leaks, so it should
* be used for all non-trusted calls, for example, p2p.
* A non-malicious call (from RPC or a peer with addr permission) should
* call the function without a parameter to avoid using the cache.
*/
std::vector<CAddress> GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer();
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraOutboundCount();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool AddNode(const std::string& node);
bool RemoveAddedNode(const std::string& node);
std::vector<AddedNodeInfo> GetAddedNodeInfo();
bool AddPendingMasternode(const uint256& proTxHash);
void SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
void SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
bool HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
std::set<uint256> GetMasternodeQuorums(Consensus::LLMQType llmqType);
// also returns QWATCH nodes
std::set<NodeId> GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const;
void RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
bool IsMasternodeQuorumNode(const CNode* pnode);
bool IsMasternodeQuorumRelayMember(const uint256& protxHash);
void AddPendingProbeConnections(const std::set<uint256>& proTxHashes);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
size_t GetNodeCount(NumConnections num);
size_t GetMaxOutboundNodeCount();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void GetNodeStats(std::vector<CNodeStats>& vstats);
bool DisconnectNode(const std::string& node);
Merge #14605: Return of the Banman 18185b57c32d0a43afeca4c125b9352c692923e9 scripted-diff: batch-recase BanMan variables (Carl Dong) c2e04d37f3841d109c1fe60693f9622e2836cc29 banman: Add, use CBanEntry ctor that takes ban reason (Carl Dong) 1ffa4ce27d4ea6c1067d8984455df97994c7713e banman: reformulate nBanUtil calculation (Carl Dong) daae598feb034f2f56e0b00ecfb4854d693d3641 banman: add thread annotations and mark members const where possible (Cory Fields) 84fc3fbd0304a7d6e660bf783c84bed2dd415141 scripted-diff: batch-rename BanMan members (Cory Fields) af3503d903b1a608cd212e2d74b274103199078c net: move BanMan to its own files (Cory Fields) d0469b2e9386a7a4b268cb9725347e7517acace6 banman: pass in default ban time as a parameter (Cory Fields) 2e56702ecedd83c4b7cb8de9de5c437c8c08e645 banman: pass the banfile path in (Cory Fields) 4c0d961eb0d7825a1e6f8389d7f5545114ee18c6 banman: create and split out banman (Cory Fields) 83c1ea2e5e66b8a83072e3d5ad6a4ced406eb1ba net: split up addresses/ban dumps in preparation for moving them (Cory Fields) 136bd7926c72659dd277a7b795ea17f72e523338 tests: remove member connman/peerLogic in TestingSetup (Cory Fields) 7cc2b9f6786f9bc33853220551eed33ca6b7b7b2 net: Break disconnecting out of Ban() (Cory Fields) Pull request description: **Old English à la Beowulf** ``` Banman wæs bréme --blaéd wíde sprang-- Connmanes eafera Coreum in. aéglaéca léodum forstandan Swá bealdode bearn Connmanes guma gúðum cúð gódum daédum· dréah æfter dóme· nealles druncne slóg ``` **Modern English Translation** ``` Banman was famed --his renown spread wide-- Conman's hier, in Core-land. against the evil creature defend the people Thus he was bold, the son of Connman man famed in war, for good deeds; he led his life for glory, never, having drunk, slew ``` -- With @theuni's blessing, here is Banman, rebased. Original PR: https://github.com/bitcoin/bitcoin/pull/11457 -- Followup PRs: 1. Give `CNode` a `Disconnect` method ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248065847)) 2. Add a comment to `std::atomic_bool fDisconnect` in `net.h` that setting this to true will cause the node to be disconnected the next time `DisconnectNodes()` runs ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248384309)) Tree-SHA512: 9c207edbf577415c22c9811113e393322d936a843d4ff265186728152a67c057779ac4d4f27b895de9729f7a53e870f828b9ebc8bcdab757520c2aebe1e9be35
2019-01-21 18:45:59 +01:00
bool DisconnectNode(const CSubNet& subnet);
bool DisconnectNode(const CNetAddr& addr);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool DisconnectNode(NodeId id);
//! Used to convey which local services we are offering peers during node
//! connection.
//!
//! The data returned by this is used in CNode construction,
//! which is used to advertise which services we are offering
//! that peer during `net_processing.cpp:PushNodeVersion()`.
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
ServiceFlags GetLocalServices() const;
uint64_t GetMaxOutboundTarget();
std::chrono::seconds GetMaxOutboundTimeframe();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
//! check if the outbound target is reached
//! if param historicalBlockServingLimit is set true, the function will
//! response true if the limit for serving historical blocks has been reached
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool OutboundTargetReached(bool historicalBlockServingLimit);
//! response the bytes left in the current max outbound cycle
//! in case of no limit, it will always response 0
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t GetOutboundTargetBytesLeft();
//! returns the time left in the current max outbound cycle
//! in case of no limit, it will always return 0
std::chrono::seconds GetMaxOutboundTimeLeftInCycle();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t GetTotalBytesRecv();
uint64_t GetTotalBytesSent();
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler();
void WakeSelect();
/** Attempts to obfuscate tx time through exponentially distributed emitting.
Works assuming that a single interval is used.
Variable intervals will result in privacy decrease.
*/
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
2020-01-29 22:55:40 +01:00
void SetAsmap(std::vector<bool> asmap) { addrman.m_asmap = std::move(asmap); }
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
private:
struct ListenSocket {
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
public:
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
SOCKET socket;
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); }
ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {}
private:
NetPermissionFlags m_permissions;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
Merge #16224: gui: Bilingual GUI error messages 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad util: Cleanup translation.h (Hennadii Stepanov) e95e658b8ec6e02229691a1941d688e96d4df6af doc: Do not translate technical or extremely rare errors (Hennadii Stepanov) 7e923d47ba9891856b86bc9f718cf2f1f773bdf6 Make InitError bilingual (Hennadii Stepanov) 917ca93553917251e0fd59717a347c63cdfd8a14 Make ThreadSafe{MessageBox|Question} bilingual (Hennadii Stepanov) 23b9fa2e5ec0425980301d2eebad81e660a5ea39 gui: Add detailed text to BitcoinGUI::message (Hennadii Stepanov) Pull request description: This is an alternative to #15340 (it works with the `Chain` interface; see: https://github.com/bitcoin/bitcoin/pull/15340#issuecomment-502674004). Refs: - #16218 (partial fix) - https://github.com/bitcoin/bitcoin/pull/15894#issuecomment-487947077 This PR: - makes GUI error messages bilingual: user's native language + untranslated (i.e. English) - insures that only untranslated messages are written to the debug log file and to `stderr` (that is not the case on master). If a translated string is unavailable only an English string appears to a user. Here are some **examples** (updated): ![Screenshot from 2020-04-24 17-08-37](https://user-images.githubusercontent.com/32963518/80222043-e2458780-864e-11ea-83fc-197b7121dba5.png) ![Screenshot from 2020-04-24 17-12-17](https://user-images.githubusercontent.com/32963518/80222051-e5407800-864e-11ea-92f7-dfef1144becd.png) * `qt5ct: using qt5ct plugin` message is my local environment specific; please ignore it. --- Note for reviewers: `InitWarning()` is out of this PR scope. ACKs for top commit: Sjors: re-tACK 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad MarcoFalke: ACK 18bd83b1fee2eb47ed4ad05c91f2d6cc311fc9ad 🐦 Tree-SHA512: 3cc8ec44f84403e54b57d11714c86b0855ed90eb794b5472e432005073354b9e3f7b4e8e7bf347a4c21be47299dbc7170f2d0c4b80e308205ff09596e55a4f96 # Conflicts: # src/dashd.cpp # src/httpserver.cpp # src/index/base.cpp # src/init.cpp # src/interfaces/chain.cpp # src/interfaces/chain.h # src/interfaces/node.cpp # src/net.h # src/qt/bitcoingui.cpp # src/ui_interface.h # src/wallet/init.cpp # src/wallet/load.cpp
2020-05-08 18:17:47 +02:00
bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions);
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions);
bool InitBinds(
const std::vector<CService>& binds,
const std::vector<NetWhitebindPermissions>& whiteBinds,
const std::vector<CService>& onion_binds);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void ThreadOpenAddedConnections();
void AddOneShot(const std::string& strDest);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void ProcessOneShot();
void ThreadOpenConnections(std::vector<std::string> connect);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void ThreadMessageHandler();
void ThreadI2PAcceptIncoming();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void AcceptConnection(const ListenSocket& hListenSocket);
/**
* Create a `CNode` object from a socket that has just been accepted and add the node to
* the `vNodes` member.
* @param[in] hSocket Connected socket to communicate with the peer.
* @param[in] permissionFlags The peer's permissions.
* @param[in] addr_bind The address and port at our side of the connection.
* @param[in] addr The address and port at the peer's side of the connection.
*/
void CreateNodeFromAcceptedSocket(SOCKET hSocket,
NetPermissionFlags permissionFlags,
const CAddress& addr_bind,
const CAddress& addr);
void DisconnectNodes();
void NotifyNumConnectionsChanged();
Backporting Statoshi and bitcoin#16728 (#2515) * Backport Statoshi This backports some of https://github.com/jlopp/statoshi. Missing stuff: README.md and client name changes, segwit and fee estimation stats. Fix RejectCodeToString Fix copy-paste mistake s/InvalidBlockFound/InvalidChainFound/ * Merge #16728: move-only: move coins statistics utils out of RPC 8a3b2eb17572ca2131778d52cc25ec359470a90f move-only: move coins statistics utils out of RPC (James O'Beirne) Pull request description: This is part of the [assumeutxo project](https://github.com/bitcoin/bitcoin/projects/11): Parent PR: #15606 Issue: #15605 Specification: https://github.com/jamesob/assumeutxo-docs/tree/master/proposal --- In the short-term, this move-only commit will help with fuzzing (https://github.com/bitcoin/bitcoin/pull/15606#issuecomment-524482297). Later, these procedures will be used to compute statistics (particularly a content hash) for UTXO sets coming in from snapshots. Most easily reviewed with `git ... --color-moved=dimmed_zebra`. A nice follow-up would be adding unittests, which I'll do if nobody else gets around to it. ACKs for top commit: MarcoFalke: ACK 8a3b2eb17572ca2131778d52cc25ec359470a90f, checked --color-moved=dimmed-zebra Tree-SHA512: a187d2f7590ad2450b8e8fa3d038c80a04fc3d903618c24222d7e3172250ce51badea35860c86101f2ba266eb4354e6efb8d7d508b353f29276e4665a1efdf74 * Fix 16728 * Modernize StatsdClient - Reuse some functionality from netbase - Switch from GetRand to FastRandomContext - Drop `using namespace std` and add `// namespace statsd` * Introduce PeriodicStats and make StatsdClient configurable via -stats<smth> (enabled/host/port/ns/period) * Move/rename tip stats from CheckBlock to ConnectBlock * Add new false positives to lint-format-strings.py * Add snprintf in statsd_client to the list of known violations in lint-locale-dependence.sh * Fix incorrect include guard * Use bracket syntax includes * Replace magic numbers with defaults * Move connection stats calculation into its own function And bail out early if stats are disabled * assert in PeriodicStats Co-authored-by: PastaPastaPasta <6443210+PastaPastaPasta@users.noreply.github.com> Co-authored-by: MarcoFalke <falke.marco@gmail.com> Co-authored-by: PastaPastaPasta <6443210+PastaPastaPasta@users.noreply.github.com>
2020-12-15 17:22:23 +01:00
void CalculateNumConnectionsChangedStats();
void InactivityCheck(CNode *pnode);
bool GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
2020-12-30 20:34:42 +01:00
#ifdef USE_KQUEUE
void SocketEventsKqueue(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
#endif
2020-04-07 17:58:38 +02:00
#ifdef USE_EPOLL
void SocketEventsEpoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
#endif
#ifdef USE_POLL
void SocketEventsPoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
#endif
void SocketEventsSelect(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
void SocketHandler();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void ThreadSocketHandler();
void ThreadDNSAddressSeed();
void ThreadOpenMasternodeConnections();
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
CNode* FindNode(const CNetAddr& ip, bool fExcludeDisconnecting = true);
CNode* FindNode(const CSubNet& subNet, bool fExcludeDisconnecting = true);
CNode* FindNode(const std::string& addrName, bool fExcludeDisconnecting = true);
CNode* FindNode(const CService& addr, bool fExcludeDisconnecting = true);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool AttemptToEvictConnection();
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
CNode* ConnectNode(CAddress addrConnect, const char *pszDest = nullptr, bool fCountFailure = false, bool manual_connection = false, bool block_relay_only = false);
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void DeleteNode(CNode* pnode);
NodeId GetNewNodeId();
2020-04-07 14:27:06 +02:00
size_t SocketSendData(CNode *pnode);
size_t SocketRecvData(CNode* pnode);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes);
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode* pnode);
2020-04-07 17:58:38 +02:00
void RegisterEvents(CNode* pnode);
void UnregisterEvents(CNode* pnode);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
// Network usage totals
RecursiveMutex cs_totalBytesRecv;
RecursiveMutex cs_totalBytesSent;
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv) {0};
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent) {0};
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent) {0};
std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent) {0};
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
Merge #14733: P2P: Make peer timeout configurable, speed up very slow test and ensure correct code path tested. 48b37db50 make peertimeout a debug argument, remove error message translation (Zain Iqbal Allarakhia) 8042bbfbf p2p: allow p2ptimeout to be configurable, speed up slow test (Zain Iqbal Allarakhia) Pull request description: **Summary:** 1. _Primary_: Adds a `debug_only=true` flag for peertimeout, defaults to 60 sec., the current hard-coded setting. 2. _Secondary_: Drastically speeds up `p2p_timeout.py` test. 3. _Secondary_: Tests that the correct code path is being tested by adding log assertions to the test. **Rationale:** - P2P timeout was hard-coded: make it explicitly specified and configurable, instead of a magic number. - Addresses #13518; `p2p_timeout.py` takes 4 sec. to run instead of 61 sec. - Makes `p2p_timeout.py` more explicit. Previously, we relied on a comment to inform us of the timeout amount being tested. Now it is specified directly in the test via passing in the new arg; `-peertimeout=3`. - Opens us up to testing more P2P scenarios; oftentimes slow tests are the reason we don't test. **Locally verified changes:** _With Proposed Change (4.7 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:04:19.077000Z TestFramework (INFO): Initializing test directory /tmp/testhja7g2n7 2018-11-19T00:04:23.479000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:04:23.683000Z TestFramework (INFO): Cleaning up /tmp/testhja7g2n7 on exit 2018-11-19T00:04:23.683000Z TestFramework (INFO): Tests successful real 0m4.743s ``` _Currently on master (62.8 sec.):_ ``` $ time ./test/functional/p2p_timeouts.py 2018-11-19T00:06:10.948000Z TestFramework (INFO): Initializing test directory /tmp/test6mo6k21h 2018-11-19T00:07:13.376000Z TestFramework (INFO): Stopping nodes 2018-11-19T00:07:13.631000Z TestFramework (INFO): Cleaning up /tmp/test6mo6k21h on exit 2018-11-19T00:07:13.631000Z TestFramework (INFO): Tests successful real 1m2.836s ``` _Error message demonstrated for new argument `-peertimeout`:_ ``` $ ./bitcoind -peertimeout=-5 ... Error: peertimeout cannot be configured with a negative value. ``` Tree-SHA512: ff7a244ebea54c4059407bf4fb86465714e6a79cef5d2bcaa22cfe831a81761aaf597ba4d5172fc2ec12266f54712216fc41b5d24849e5d9dab39ba6f09e3a2a
2018-12-04 12:06:35 +01:00
// P2P timeout in seconds
int64_t m_peer_connect_timeout;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
std::vector<NetWhitelistPermissions> vWhitelistedRange;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
CAddrMan& addrman;
std::deque<std::string> vOneShots GUARDED_BY(cs_vOneShots);
RecursiveMutex cs_vOneShots;
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
RecursiveMutex cs_vAddedNodes;
std::vector<uint256> vPendingMasternodes;
mutable RecursiveMutex cs_vPendingMasternodes;
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumNodes GUARDED_BY(cs_vPendingMasternodes);
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumRelayMembers GUARDED_BY(cs_vPendingMasternodes);
std::set<uint256> masternodePendingProbes GUARDED_BY(cs_vPendingMasternodes);
std::vector<CNode*> vNodes GUARDED_BY(cs_vNodes);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
std::list<CNode*> vNodesDisconnected;
2020-04-07 07:00:41 +02:00
std::unordered_map<SOCKET, CNode*> mapSocketToNode;
mutable RecursiveMutex cs_vNodes;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
/**
* Cache responses to addr requests to minimize privacy leak.
* Attack example: scraping addrs in real-time may allow an attacker
* to infer new connections of the victim by detecting new records
* with fresh timestamps (per self-announcement).
*/
struct CachedAddrResponse {
std::vector<CAddress> m_addrs_response_cache;
std::chrono::microseconds m_cache_entry_expiration{0};
};
/**
* Addr responses stored in different caches
* per (network, local socket) prevent cross-network node identification.
* If a node for example is multi-homed under Tor and IPv6,
* a single cache (or no cache at all) would let an attacker
* to easily detect that it is the same node by comparing responses.
* Indexing by local socket prevents leakage when a node has multiple
* listening addresses on the same network.
*
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
* distinct Network (up to 5) we have/had an inbound peer from,
* resulting in at most ~196 KB. Every separate local socket may
* add up to ~196 KB extra.
*/
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
/**
* Services this instance offers.
*
* This data is replicated in each CNode instance we create during peer
* connection (in ConnectNode()) under a member also called
* nLocalServices.
*
* This data is not marked const, but after being set it should not
* change. See the note in CNode::nLocalServices documentation.
*
* \sa CNode::nLocalServices
*/
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
ServiceFlags nLocalServices;
Merge #11043: Use std::unique_ptr (C++11) where possible a357293 Use MakeUnique<Db>(...) (practicalswift) 3e09b39 Use MakeUnique<T>(...) instead of std::unique_ptr<T>(new T(...)) (practicalswift) 8617989 Add MakeUnique (substitute for C++14 std::make_unique) (practicalswift) d223bc9 Use unique_ptr for pcoinscatcher/pcoinsdbview/pcoinsTip/pblocktree (practicalswift) b45c597 Use unique_ptr for pdbCopy (Db) and fix potential memory leak (practicalswift) 29ab96d Use unique_ptr for dbenv (DbEnv) (practicalswift) f72cbf9 Use unique_ptr for pfilter (CBloomFilter) (practicalswift) 8ccf1bb Use unique_ptr for sem{Addnode,Outbound} (CSemaphore) (practicalswift) 73db063 Use unique_ptr for upnp_thread (boost::thread) (practicalswift) 0024531 Use unique_ptr for dbw (CDBWrapper) (practicalswift) fa6d122 Use unique_ptr:s for {fee,short,long}Stats (TxConfirmStats) (practicalswift) 5a6f768 Use unique_ptr for httpRPCTimerInterface (HTTPRPCTimerInterface) (practicalswift) 860e912 Use unique_ptr for pwalletMain (CWallet) (practicalswift) Pull request description: Use `std::unique_ptr` (C++11) where possible. Rationale: 1. Avoid resource leaks (specifically: forgetting to `delete` an object created using `new`) 2. Avoid undefined behaviour (specifically: double `delete`:s) **Note to reviewers:** Please let me know if I've missed any obvious `std::unique_ptr` candidates. Hopefully this PR should cover all the trivial cases. Tree-SHA512: 9fbeb47b800ab8ff4e0be9f2a22ab63c23d5c613a0c6716d9183db8d22ddbbce592fb8384a8b7874bf7375c8161efb13ca2197ad6f24b75967148037f0f7b20c
2017-11-09 21:22:08 +01:00
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
int nMaxConnections;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// How many full-relay (tx, block, addr) outbound peers we want
int m_max_outbound_full_relay;
// How many block-relay only outbound peers we want
// We do not relay tx or addr messages with these peers
int m_max_outbound_block_relay;
int nMaxAddnode;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
int nMaxFeeler;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
int m_max_outbound;
bool m_use_addrman_outgoing;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CClientUIInterface* clientInterface;
NetEventsInterface* m_msgproc;
Merge #14605: Return of the Banman 18185b57c32d0a43afeca4c125b9352c692923e9 scripted-diff: batch-recase BanMan variables (Carl Dong) c2e04d37f3841d109c1fe60693f9622e2836cc29 banman: Add, use CBanEntry ctor that takes ban reason (Carl Dong) 1ffa4ce27d4ea6c1067d8984455df97994c7713e banman: reformulate nBanUtil calculation (Carl Dong) daae598feb034f2f56e0b00ecfb4854d693d3641 banman: add thread annotations and mark members const where possible (Cory Fields) 84fc3fbd0304a7d6e660bf783c84bed2dd415141 scripted-diff: batch-rename BanMan members (Cory Fields) af3503d903b1a608cd212e2d74b274103199078c net: move BanMan to its own files (Cory Fields) d0469b2e9386a7a4b268cb9725347e7517acace6 banman: pass in default ban time as a parameter (Cory Fields) 2e56702ecedd83c4b7cb8de9de5c437c8c08e645 banman: pass the banfile path in (Cory Fields) 4c0d961eb0d7825a1e6f8389d7f5545114ee18c6 banman: create and split out banman (Cory Fields) 83c1ea2e5e66b8a83072e3d5ad6a4ced406eb1ba net: split up addresses/ban dumps in preparation for moving them (Cory Fields) 136bd7926c72659dd277a7b795ea17f72e523338 tests: remove member connman/peerLogic in TestingSetup (Cory Fields) 7cc2b9f6786f9bc33853220551eed33ca6b7b7b2 net: Break disconnecting out of Ban() (Cory Fields) Pull request description: **Old English à la Beowulf** ``` Banman wæs bréme --blaéd wíde sprang-- Connmanes eafera Coreum in. aéglaéca léodum forstandan Swá bealdode bearn Connmanes guma gúðum cúð gódum daédum· dréah æfter dóme· nealles druncne slóg ``` **Modern English Translation** ``` Banman was famed --his renown spread wide-- Conman's hier, in Core-land. against the evil creature defend the people Thus he was bold, the son of Connman man famed in war, for good deeds; he led his life for glory, never, having drunk, slew ``` -- With @theuni's blessing, here is Banman, rebased. Original PR: https://github.com/bitcoin/bitcoin/pull/11457 -- Followup PRs: 1. Give `CNode` a `Disconnect` method ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248065847)) 2. Add a comment to `std::atomic_bool fDisconnect` in `net.h` that setting this to true will cause the node to be disconnected the next time `DisconnectNodes()` runs ([source](https://github.com/bitcoin/bitcoin/pull/14605#discussion_r248384309)) Tree-SHA512: 9c207edbf577415c22c9811113e393322d936a843d4ff265186728152a67c057779ac4d4f27b895de9729f7a53e870f828b9ebc8bcdab757520c2aebe1e9be35
2019-01-21 18:45:59 +01:00
BanMan* m_banman;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
/** flag for waking the message processor. */
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
std::condition_variable condMsgProc;
2021-06-04 21:26:33 +02:00
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
/**
* This is signaled when network activity should cease.
* A pointer to it is saved in `m_i2p_sam_session`, so make sure that
* the lifetime of `interruptNet` is not shorter than
* the lifetime of `m_i2p_sam_session`.
*/
CThreadInterrupt interruptNet;
/**
* I2P SAM session.
* Used to accept incoming and make outgoing I2P connections.
*/
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session;
#ifdef USE_WAKEUP_PIPE
/** a pipe which is added to select() calls to wakeup before the timeout */
int wakeupPipe[2]{-1,-1};
#endif
std::atomic<bool> wakeupSelectNeeded{false};
SocketEventsMode socketEventsMode;
2020-12-30 20:34:42 +01:00
#ifdef USE_KQUEUE
int kqueuefd{-1};
#endif
2020-04-07 17:58:38 +02:00
#ifdef USE_EPOLL
int epollfd{-1};
#endif
/** Protected by cs_vNodes */
std::unordered_map<NodeId, CNode*> mapReceivableNodes GUARDED_BY(cs_vNodes);
std::unordered_map<NodeId, CNode*> mapSendableNodes GUARDED_BY(cs_vNodes);
/** Protected by cs_mapNodesWithDataToSend */
std::unordered_map<NodeId, CNode*> mapNodesWithDataToSend GUARDED_BY(cs_mapNodesWithDataToSend);
mutable RecursiveMutex cs_mapNodesWithDataToSend;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadOpenMasternodeConnections;
std::thread threadMessageHandler;
std::thread threadI2PAcceptIncoming;
/** flag for deciding to connect to an extra outbound peer,
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
* in excess of m_max_outbound_full_relay
* This takes the place of a feeler connection */
std::atomic_bool m_try_another_outbound_peer;
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
/**
* A vector of -bind=<address>:<port>=onion arguments each of which is
* an address and port that are designated for incoming Tor connections.
*/
std::vector<CService> m_onion_binds;
friend struct CConnmanTest;
friend struct ConnmanTestMsg;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
};
void Discover();
uint16_t GetListenPort();
2013-11-18 01:25:17 +01:00
struct CombinerAll
{
typedef bool result_type;
template<typename I>
bool operator()(I first, I last) const
{
while (first != last) {
if (!(*first)) return false;
++first;
}
return true;
}
};
/**
* Interface for message handling
*/
class NetEventsInterface
{
public:
/** Initialize a peer (setup state, queue any initial messages) */
virtual void InitializeNode(CNode* pnode) = 0;
/** Handle removal of a peer (clear state) */
virtual void FinalizeNode(const CNode& node) = 0;
/**
* Process protocol messages received from a given node
*
* @param[in] pnode The node which we have received messages from.
* @param[in] interrupt Interrupt condition for processing threads
* @return True if there is more work to be done
*/
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) = 0;
/**
* Send queued protocol messages to a given node.
*
* @param[in] pnode The node which we are sending messages to.
* @return True if there is more work to be done
*/
virtual bool SendMessages(CNode* pnode) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived classes.
* If that restriction is no longer desired, this should be made public and virtual.
*/
~NetEventsInterface() = default;
};
2012-02-12 13:45:24 +01:00
enum
{
LOCAL_NONE, // unknown
LOCAL_IF, // address a local interface listens on
LOCAL_BIND, // address explicit bound to
LOCAL_MAPPED, // address reported by UPnP or NAT-PMP
LOCAL_MANUAL, // address explicitly specified (-externalip=)
LOCAL_MAX
2012-02-12 13:45:24 +01:00
};
bool IsPeerAddrLocalGood(CNode *pnode);
void AdvertiseLocal(CNode *pnode);
/**
* Mark a network as reachable or unreachable (no automatic connects to it)
* @note Networks are reachable by default
*/
void SetReachable(enum Network net, bool reachable);
/** @returns true if the network is reachable, false otherwise */
bool IsReachable(enum Network net);
/** @returns true if the address is in a reachable network, false otherwise */
bool IsReachable(const CNetAddr& addr);
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices);
2012-02-12 13:45:24 +01:00
2012-05-24 19:02:21 +02:00
extern bool fDiscover;
extern bool fListen;
/** Subversion as sent to the P2P network in `version` messages */
extern std::string strSubVersion;
struct LocalServiceInfo {
int nScore;
uint16_t nPort;
};
extern Mutex g_maplocalhost_mutex;
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
extern const std::string NET_MESSAGE_COMMAND_OTHER;
typedef std::map<std::string, uint64_t> mapMsgCmdSize; //command, total bytes
class CNodeStats
{
public:
2013-11-18 01:25:17 +01:00
NodeId nodeid;
ServiceFlags nServices;
2015-11-21 00:51:44 +01:00
bool fRelayTxes;
int64_t nLastSend;
int64_t nLastRecv;
int64_t nTimeConnected;
2014-12-15 11:06:15 +01:00
int64_t nTimeOffset;
std::string addrName;
int nVersion;
2013-11-26 12:52:21 +01:00
std::string cleanSubVer;
bool fInbound;
Merge #11456: Replace relevant services logic with a function suite. 15f5d3b17 Switch DNSSeed-needed metric to any-automatic-nodes, not services (Matt Corallo) 5ee88b4bd Clarify docs for requirements/handling of addnode/connect nodes (Matt Corallo) 57edc0b0c Rename fAddnode to a more-descriptive "manual_connection" (Matt Corallo) 44407100f Replace relevant services logic with a function suite. (Matt Corallo) Pull request description: This was mostly written as a way to clean things up so that the NETWORK_LIMITED PR (#10387) can be simplified a ton, but its also a nice standalone cleanup that will also require a bit of review because it tweaks a lot of stuff across net. The new functions are fine in protocol.h right now since they're straight-forward, but after NETWORK_LIMITED will really want to move elsewhere after @theuni moves the nServices-based selection to addrman from connman. Adds HasAllRelevantServices and GetRelevantServices, which check for NETWORK|WITNESS. This changes the following: * Removes nRelevantServices from CConnman, disconnecting it a bit more from protocol-level logic. * Replaces our sometimes-connect-to-!WITNESS-nodes logic with simply always requiring WITNESS|NETWORK for outbound non-feeler connections (feelers still only require NETWORK). * This has the added benefit of removing nServicesExpected from CNode - instead letting net_processing's VERSION message handling simply check HasAllRelevantServices. * This implies we believe WITNESS nodes to continue to be a significant majority of nodes on the network, but also because we cannot sync properly from !WITNESS nodes, it is strange to continue using our valuable outbound slots on them. * In order to prevent this change from preventing connection to -connect= nodes which have !WITNESS, -connect nodes are now given the "addnode" flag. This also allows outbound connections to !NODE_NETWORK nodes for -connect nodes (which was already true of addnodes). * Has the (somewhat unintended) consequence of changing one of the eviction metrics from the same sometimes-connect-to-!WITNESS-nodes metric to requiring HasRelevantServices. This should make NODE_NETWORK_LIMITED much simpler to implement. Tree-SHA512: 90606896c86cc5da14c77843b16674a6a012065e7b583d76d1c47a18215358abefcbab44ff4fab3fadcd39aa9a42d4740c6dc8874a58033bdfc8ad3fb5c649fc
2017-10-14 00:25:16 +02:00
bool m_manual_connection;
int nStartingHeight;
uint64_t nSendBytes;
mapMsgCmdSize mapSendBytesPerMsgCmd;
uint64_t nRecvBytes;
mapMsgCmdSize mapRecvBytesPerMsgCmd;
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
NetPermissionFlags m_permissionFlags;
bool m_legacyWhitelisted;
int64_t m_ping_usec;
int64_t m_ping_wait_usec;
int64_t m_min_ping_usec;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
Backport Bitcoin Qt/Gui changes up to 0.14.x part 2 (#1615) * Merge #7506: Use CCoinControl selection in CWallet::FundTransaction d6cc6a1 Use CCoinControl selection in CWallet::FundTransaction (João Barbosa) * Merge #7732: [Qt] Debug window: replace "Build date" with "Datadir" fc737d1 [Qt] remove unused formatBuildDate method (Jonas Schnelli) 4856f1d [Qt] Debug window: replace "Build date" with "Datadir" (Jonas Schnelli) * Merge #7707: [RPC][QT] UI support for abandoned transactions 8efed3b [Qt] Support for abandoned/abandoning transactions (Jonas Schnelli) * Merge #7688: List solvability in listunspent output and improve help c3932b3 List solvability in listunspent output and improve help (Pieter Wuille) * Merge #8006: Qt: Add option to disable the system tray icon 8b0e497 Qt: Add option to hide the system tray icon (Tyler Hardin) * Merge #8073: qt: askpassphrasedialog: Clear pass fields on accept 02ce2a3 qt: askpassphrasedialog: Clear pass fields on accept (Pavel Vasin) * Merge #8231: [Qt] fix a bug where the SplashScreen will not be hidden during startup b3e1348 [Qt] fix a bug where the SplashScreen will not be hidden during startup (Jonas Schnelli) * Merge #8257: Do not ask a UI question from bitcoind 1acf1db Do not ask a UI question from bitcoind (Pieter Wuille) * Merge #8463: [qt] Remove Priority from coincontrol dialog fa8dd78 [qt] Remove Priority from coincontrol dialog (MarcoFalke) * Merge #8678: [Qt][CoinControl] fix UI bug that could result in paying unexpected fee 0480293 [Qt][CoinControl] fix UI bug that could result in paying unexpected fee (Jonas Schnelli) * Merge #8672: Qt: Show transaction size in transaction details window c015634 qt: Adding transaction size to transaction details window (Hampus Sjöberg) \-- merge fix for s/size/total size/ fdf82fb Adding method GetTotalSize() to CTransaction (Hampus Sjöberg) * Merge #8371: [Qt] Add out-of-sync modal info layer 08827df [Qt] modalinfolayer: removed unused comments, renamed signal, code style overhaul (Jonas Schnelli) d8b062e [Qt] only update "amount of blocks left" when the header chain is in-sync (Jonas Schnelli) e3245b4 [Qt] add out-of-sync modal info layer (Jonas Schnelli) e47052f [Qt] ClientModel add method to get the height of the header chain (Jonas Schnelli) a001f18 [Qt] Always pass the numBlocksChanged signal for headers tip changed (Jonas Schnelli) bd44a04 [Qt] make Out-Of-Sync warning icon clickable (Jonas Schnelli) 0904c3c [Refactor] refactor function that forms human readable text out of a timeoffset (Jonas Schnelli) * Merge #8805: Trivial: Grammar and capitalization c9ce17b Trivial: Grammar and capitalization (Derek Miller) * Merge #8885: gui: fix ban from qt console cb78c60 gui: fix ban from qt console (Cory Fields) * Merge #8821: [qt] sync-overlay: Don't block during reindex fa85e86 [qt] sync-overlay: Don't show estimated number of headers left (MarcoFalke) faa4de2 [qt] sync-overlay: Don't block during reindex (MarcoFalke) * Support themes for new transaction_abandoned icon * Fix constructor call to COutput * Merge #7842: RPC: do not print minping time in getpeerinfo when no ping received yet 62a6486 RPC: do not print ping info in getpeerinfo when no ping received yet, fix help (Pavel Janík) * Merge #8918: Qt: Add "Copy URI" to payment request context menu 21f5a63 Qt: Add "Copy URI" to payment request context menu (Luke Dashjr) * Merge #8925: qt: Display minimum ping in debug window. 1724a40 Display minimum ping in debug window. (R E Broadley) * Merge #8972: [Qt] make warnings label selectable (jonasschnelli) ef0c9ee [Qt] make warnings label selectable (Jonas Schnelli) * Make background of warning icon transparent in modaloverlay * Merge #9088: Reduce ambiguity of warning message 77cbbd9 Make warning message about wallet balance possibly being incorrect less ambiguous. (R E Broadley) * Replace Bitcoin with Dash in modal overlay * Remove clicked signals from labelWalletStatus and labelTransactionsStatus As both are really just labels, clicking on those is not possible. This is different in Bitcoin, where these labels are actually buttons. * Pull out modaloverlay show/hide into it's own if/else block and switch to time based check Also don't use masternodeSync.IsBlockchainSynced() for now as it won't report the blockchain being synced before the first block (or other MN data?) arrives. This would otherwise give the impression that sync is being stuck.
2017-09-09 09:04:02 +02:00
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
// Name of the network the peer connected through
std::string m_network;
uint32_t m_mapped_as;
// In case this is a verified MN, this value is the proTx of the MN
uint256 verifiedProRegTxHash;
// In case this is a verified MN, this value is the hashed operator pubkey of the MN
uint256 verifiedPubKeyHash;
bool m_masternode_connection;
};
/** Transport protocol agnostic message container.
* Ideally it should only contain receive time, payload,
* command and size.
*/
class CNetMessage {
public:
CDataStream m_recv; // received message data
int64_t m_time = 0; // time (in microseconds) of message receipt.
uint32_t m_message_size = 0; // size of the payload
uint32_t m_raw_message_size = 0; // used wire size of the message (including header/checksum)
std::string m_command;
CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {}
void SetVersion(int nVersionIn)
{
m_recv.SetVersion(nVersionIn);
}
};
/** The TransportDeserializer takes care of holding and deserializing the
* network receive buffer. It can deserialize the network buffer into a
* transport protocol agnostic CNetMessage (command & payload)
*/
class TransportDeserializer {
public:
// returns true if the current deserialization is complete
virtual bool Complete() const = 0;
// set the serialization context version
virtual void SetVersion(int version) = 0;
/** read and deserialize data, advances msg_bytes data pointer */
virtual int Read(Span<const uint8_t>& msg_bytes) = 0;
// decomposes a message from the context
virtual std::optional<CNetMessage> GetMessage(int64_t time, uint32_t& out_err) = 0;
virtual ~TransportDeserializer() {}
};
class V1TransportDeserializer final : public TransportDeserializer
{
private:
const CChainParams& m_chain_params;
const NodeId m_node_id; // Only for logging
mutable CHash256 hasher;
mutable uint256 data_hash;
bool in_data; // parsing header (false) or data (true)
CDataStream hdrbuf; // partially received header
CMessageHeader hdr; // complete header
CDataStream vRecv; // received message data
unsigned int nHdrPos;
unsigned int nDataPos;
const uint256& GetMessageHash() const;
int readHeader(Span<const uint8_t> msg_bytes);
int readData(Span<const uint8_t> msg_bytes);
void Reset() {
vRecv.clear();
hdrbuf.clear();
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
data_hash.SetNull();
hasher.Reset();
}
public:
V1TransportDeserializer(const CChainParams& chain_params, const NodeId node_id, int nTypeIn, int nVersionIn)
: m_chain_params(chain_params),
m_node_id(node_id),
hdrbuf(nTypeIn, nVersionIn),
vRecv(nTypeIn, nVersionIn)
{
Reset();
}
bool Complete() const override
{
if (!in_data)
return false;
return (hdr.nMessageSize == nDataPos);
}
void SetVersion(int nVersionIn) override
{
hdrbuf.SetVersion(nVersionIn);
vRecv.SetVersion(nVersionIn);
}
int Read(Span<const uint8_t>& msg_bytes) override
{
int ret = in_data ? readData(msg_bytes) : readHeader(msg_bytes);
if (ret < 0) {
Reset();
} else {
msg_bytes = msg_bytes.subspan(ret);
}
return ret;
}
std::optional<CNetMessage> GetMessage(int64_t time, uint32_t& out_err_raw_size) override;
};
/** The TransportSerializer prepares messages for the network transport
*/
class TransportSerializer {
public:
// prepare message for transport (header construction, error-correction computation, payload encryption, etc.)
virtual void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) = 0;
virtual ~TransportSerializer() {}
};
class V1TransportSerializer : public TransportSerializer {
public:
void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) override;
};
2012-03-26 16:48:23 +02:00
/** Information about a peer */
class CNode
{
Backport Bitcoin PR#8708: net: have CConnman handle message sending (#1553) * serialization: teach serializers variadics Also add a variadic CDataStream ctor for ease-of-use. * connman is in charge of pushing messages The changes here are dense and subtle, but hopefully all is more explicit than before. - CConnman is now in charge of sending data rather than the nodes themselves. This is necessary because many decisions need to be made with all nodes in mind, and a model that requires the nodes calling up to their manager quickly turns to spaghetti. - The per-node-serializer (ssSend) has been replaced with a (quasi-)const send-version. Since the send version for serialization can only change once per connection, we now explicitly tag messages with INIT_PROTO_VERSION if they are sent before the handshake. With this done, there's no need to lock for access to nSendVersion. Also, a new stream is used for each message, so there's no need to lock during the serialization process. - This takes care of accounting for optimistic sends, so the nOptimisticBytesWritten hack can be removed. - -dropmessagestest and -fuzzmessagestest have not been preserved, as I suspect they haven't been used in years. * net: switch all callers to connman for pushing messages Drop all of the old stuff. * drop the optimistic write counter hack This is now handled properly in realtime. * net: remove now-unused ssSend and Fuzz * net: construct CNodeStates in place * net: handle version push in InitializeNode
2017-07-27 16:28:05 +02:00
friend class CConnman;
friend struct ConnmanTestMsg;
public:
std::unique_ptr<TransportDeserializer> m_deserializer;
std::unique_ptr<TransportSerializer> m_serializer;
NetPermissionFlags m_permissionFlags{ PF_NONE };
std::atomic<ServiceFlags> nServices{NODE_NONE};
SOCKET hSocket GUARDED_BY(cs_hSocket);
size_t nSendSize{0}; // total size of all vSendMsg entries
size_t nSendOffset{0}; // offset inside the first vSendMsg already sent
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
std::list<std::vector<unsigned char>> vSendMsg GUARDED_BY(cs_vSend);
std::atomic<size_t> nSendMsgSize{0};
RecursiveMutex cs_vSend;
RecursiveMutex cs_hSocket;
RecursiveMutex cs_vRecv;
RecursiveMutex cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize{0};
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
RecursiveMutex cs_sendProcessing;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<int> nRecvVersion{INIT_PROTO_VERSION};
std::atomic<int64_t> nLastSend{0};
std::atomic<int64_t> nLastRecv{0};
const int64_t nTimeConnected;
std::atomic<int64_t> nTimeOffset{0};
std::atomic<int64_t> nLastWarningTime{0};
std::atomic<int64_t> nTimeFirstMessageReceived{0};
std::atomic<bool> fFirstMessageIsMNAUTH{false};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
std::atomic<int> nNumWarningsSkipped{0};
std::atomic<int> nVersion{0};
/**
* cleanSubVer is a sanitized string of the user agent byte array we read
* from the wire. This cleaned string can safely be logged or displayed.
*/
std::string cleanSubVer GUARDED_BY(cs_SubVer){};
RecursiveMutex cs_SubVer; // used for both cleanSubVer and strSubVer
bool m_prefer_evict{false}; // This peer is preferred for eviction.
Merge #16248: Make whitebind/whitelist permissions more flexible c5b404e8f1973afe071a07c63ba1038eefe13f0f Add functional tests for flexible whitebind/list (nicolas.dorier) d541fa391844f658bd7035659b5b16695733dd56 Replace the use of fWhitelisted by permission checks (nicolas.dorier) ecd5cf7ea4c3644a30092100ffc399e30e193275 Do not disconnect peer for asking mempool if it has NO_BAN permission (nicolas.dorier) e5b26deaaa6842f7dd7c4537ede000f965ea0189 Make whitebind/whitelist permissions more flexible (nicolas.dorier) Pull request description: # Motivation In 0.19, bloom filter will be disabled by default. I tried to make [a PR](https://github.com/bitcoin/bitcoin/pull/16176) to enable bloom filter for whitelisted peers regardless of `-peerbloomfilters`. Bloom filter have non existent privacy and server can omit filter's matches. However, both problems are completely irrelevant when you connect to your own node. If you connect to your own node, bloom filters are the most bandwidth efficient way to synchronize your light client without the need of some middleware like Electrum. It is also a superior alternative to BIP157 as it does not require to maintain an additional index and it would work well on pruned nodes. When I attempted to allow bloom filters for whitelisted peer, my proposal has been NACKed in favor of [a more flexible approach](https://github.com/bitcoin/bitcoin/pull/16176#issuecomment-500762907) which should allow node operator to set fine grained permissions instead of a global `whitelisted` attribute. Doing so will also make follow up idea very easy to implement in a backward compatible way. # Implementation details The PR propose a new format for `--white{list,bind}`. I added a way to specify permissions granted to inbound connection matching `white{list,bind}`. The following permissions exists: * ForceRelay * Relay * NoBan * BloomFilter * Mempool Example: * `-whitelist=bloomfilter@127.0.0.1/32`. * `-whitebind=bloomfilter,relay,noban@127.0.0.1:10020`. If no permissions are specified, `NoBan | Mempool` is assumed. (making this PR backward compatible) When we receive an inbound connection, we calculate the effective permissions for this peer by fetching the permissions granted from `whitelist` and add to it the permissions granted from `whitebind`. To keep backward compatibility, if no permissions are specified in `white{list,bind}` (e.g. `--whitelist=127.0.0.1`) then parameters `-whitelistforcerelay` and `-whiterelay` will add the permissions `ForceRelay` and `Relay` to the inbound node. `-whitelistforcerelay` and `-whiterelay` are ignored if the permissions flags are explicitly set in `white{bind,list}`. # Follow up idea Based on this PR, other changes become quite easy to code in a trivially review-able, backward compatible way: * Changing `connect` at rpc and config file level to understand the permissions flags. * Changing the permissions of a peer at RPC level. ACKs for top commit: laanwj: re-ACK c5b404e8f1973afe071a07c63ba1038eefe13f0f Tree-SHA512: adfefb373d09e68cae401247c8fc64034e305694cdef104bdcdacb9f1704277bd53b18f52a2427a5cffdbc77bda410d221aed252bc2ece698ffbb9cf1b830577
2019-08-14 16:35:54 +02:00
bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permissionFlags, permission);
}
// This boolean is unusued in actual processing, only present for backward compatibility at RPC/QT level
bool m_legacyWhitelisted{false};
bool fFeeler{false}; // If true this node is being used as a short lived feeler.
bool fOneShot{false};
bool m_manual_connection{false};
bool fClient{false}; // set by version message
bool m_limited_node{false}; //after BIP159, set by version message
const bool fInbound;
/**
* Whether the peer has signaled support for receiving ADDRv2 (BIP155)
* messages, implying a preference to receive ADDRv2 instead of ADDR ones.
*/
std::atomic_bool m_wants_addrv2{false};
std::atomic_bool fSuccessfullyConnected{false};
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
std::atomic<int64_t> nDisconnectLingerTime{0};
std::atomic_bool fSocketShutdown{false};
std::atomic_bool fOtherSideDisconnected { false };
bool fSentAddr{false};
// If 'true' this node will be disconnected on CMasternodeMan::ProcessMasternodeConnections()
std::atomic<bool> m_masternode_connection{false};
// If 'true' this node will be disconnected after MNAUTH
std::atomic<bool> m_masternode_probe_connection{false};
// If 'true', we identified it as an intra-quorum relay connection
std::atomic<bool> m_masternode_iqr_connection{false};
CSemaphoreGrant grantOutbound;
std::atomic<int> nRefCount{0};
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
std::atomic_bool fHasRecvData{false};
std::atomic_bool fCanSendData{false};
/**
* Get network the peer connected through.
*
* Returns Network::NET_ONION for *inbound* onion connections,
* and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly
* because it doesn't detect the former, and it's not the responsibility of
* the CNetAddr class to know the actual network a peer is connected through.
*
* @return network the peer connected through.
*/
Network ConnectedThroughNetwork() const;
protected:
mapMsgCmdSize mapSendBytesPerMsgCmd;
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
public:
uint256 hashContinue;
std::atomic<int> nStartingHeight{-1};
// flood relay
std::vector<CAddress> vAddrToSend;
const std::unique_ptr<CRollingBloomFilter> m_addr_known;
bool fGetAddr{false};
int64_t nNextAddrSend GUARDED_BY(cs_sendProcessing){0};
int64_t nNextLocalAddrSend GUARDED_BY(cs_sendProcessing){0};
// Don't relay addr messages to peers that we connect to as block-relay-only
// peers (to prevent adversaries from inferring these links from addr
// traffic).
bool IsAddrRelayPeer() const { return m_addr_known != nullptr; }
bool IsBlockRelayOnly() const;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// List of block ids we still have announce.
// There is no final sorting before sending, as they are always sent immediately
// and in the order requested.
std::vector<uint256> vInventoryBlockToSend GUARDED_BY(cs_inventory);
RecursiveMutex cs_inventory;
/** UNIX epoch time of the last block received from this peer that we had
* not yet seen (e.g. not already received from another peer), that passed
* preliminary validity checks and was saved to disk, even if we don't
* connect the block or it eventually fails connection. Used as an inbound
* peer eviction criterium in CConnman::AttemptToEvictConnection. */
std::atomic<int64_t> nLastBlockTime{0};
/** UNIX epoch time of the last transaction received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our mempool. Used as an inbound peer eviction criterium
* in CConnman::AttemptToEvictConnection. */
std::atomic<int64_t> nLastTXTime{0};
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
struct TxRelay {
TxRelay() { }
mutable RecursiveMutex cs_filter;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// We use fRelayTxes for two purposes -
// a) it allows us to not relay tx invs before receiving the peer's version message
// b) the peer may tell us in its version message that we should not relay tx invs
// unless it loads a bloom filter.
bool fRelayTxes GUARDED_BY(cs_filter){false};
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter){nullptr};
mutable RecursiveMutex cs_tx_inventory;
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// inventory based relay
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){50000, 0.000001};
// Set of transaction ids we still have to announce.
// They are sorted by the mempool before relay, so the order is not important.
std::set<uint256> setInventoryTxToSend GUARDED_BY(cs_tx_inventory);
// List of non-tx/non-block inventory items
std::vector<CInv> vInventoryOtherToSend GUARDED_BY(cs_tx_inventory);
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// Used for BIP35 mempool sending, also protected by cs_tx_inventory
bool fSendMempool GUARDED_BY(cs_tx_inventory){false};
// Last time a "MEMPOOL" request was serviced.
std::atomic<std::chrono::seconds> m_last_mempool_req{0s};
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
std::chrono::microseconds nNextInvSend{0};
};
// in bitcoin: m_tx_relay == nullptr if we're not relaying transactions with this peer
// in dash: m_tx_relay should never be nullptr, use `IsAddrRelayPeer() == false` instead
std::unique_ptr<TxRelay> m_tx_relay{std::make_unique<TxRelay>()};
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
// Used for headers announcements - unfiltered blocks to relay
std::vector<uint256> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
// Ping time measurement:
// The pong reply we're expecting, or 0 if no pong expected.
std::atomic<uint64_t> nPingNonceSent{0};
// Time (in usec) the last ping was sent, or 0 if no ping was ever sent.
std::atomic<int64_t> nPingUsecStart{0};
// Last measured round-trip time.
std::atomic<int64_t> nPingUsecTime{0};
2015-08-13 11:31:46 +02:00
// Best measured round-trip time.
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
// Whether a ping is requested.
std::atomic<bool> fPingQueued{false};
// If true, we will send him CoinJoin queue messages
std::atomic<bool> fSendDSQueue{false};
// If true, we will announce/send him plain recovered sigs (usually true for full nodes)
std::atomic<bool> fSendRecSigs{false};
// If true, we will send him all quorum related messages, even if he is not a member of our quorums
std::atomic<bool> qwatch{false};
CNode(NodeId id, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn = "", bool fInboundIn = false, bool block_relay_only = false, bool inbound_onion = false);
~CNode();
CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete;
private:
const NodeId id;
const uint64_t nLocalHostNonce;
//! Services offered to this peer.
//!
//! This is supplied by the parent CConnman during peer connection
//! (CConnman::ConnectNode()) from its attribute of the same name.
//!
//! This is const because there is no protocol defined for renegotiating
//! services initially offered to a peer. The set of local services we
//! offer should not change after initialization.
//!
//! An interesting example of this is NODE_NETWORK and initial block
//! download: a node which starts up from scratch doesn't have any blocks
//! to serve, but still advertises NODE_NETWORK because it will eventually
//! fulfill this role after IBD completes. P2P code is written in such a
//! way that it can gracefully handle peers who don't make good on their
//! service advertisements.
const ServiceFlags nLocalServices;
int nSendVersion {0};
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
mutable RecursiveMutex cs_addrName;
std::string addrName GUARDED_BY(cs_addrName);
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(cs_addrLocal);
mutable RecursiveMutex cs_addrLocal;
//! Whether this peer connected via our Tor onion service.
const bool m_inbound_onion{false};
// Challenge sent in VERSION to be answered with MNAUTH (only happens between MNs)
mutable RecursiveMutex cs_mnauth;
uint256 sentMNAuthChallenge GUARDED_BY(cs_mnauth);
uint256 receivedMNAuthChallenge GUARDED_BY(cs_mnauth);
uint256 verifiedProRegTxHash GUARDED_BY(cs_mnauth);
uint256 verifiedPubKeyHash GUARDED_BY(cs_mnauth);
public:
2013-11-18 01:25:17 +01:00
NodeId GetId() const {
return id;
2013-11-18 01:25:17 +01:00
}
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
uint64_t GetLocalNonce() const {
return nLocalHostNonce;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
}
int GetRefCount() const
{
assert(nRefCount >= 0);
return nRefCount;
}
/**
* Receive bytes from the buffer and deserialize them into messages.
*
* @param[in] msg_bytes The raw data
* @param[out] complete Set True if at least one message has been
* deserialized and is ready to be processed
* @return True if the peer should stay connected,
* False if the peer should be disconnected from.
*/
bool ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete);
void SetRecvVersion(int nVersionIn)
{
nRecvVersion = nVersionIn;
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
}
int GetRecvVersion() const
Backport Bitcoin PR#9441: Net: Massive speedup. Net locks overhaul (#1586) * net: fix typo causing the wrong receive buffer size Surprisingly this hasn't been causing me any issues while testing, probably because it requires lots of large blocks to be flying around. Send/Recv corks need tests! * net: make vRecvMsg a list so that we can use splice() * net: make GetReceiveFloodSize public This will be needed so that the message processor can cork incoming messages * net: only disconnect if fDisconnect has been set These conditions are problematic to check without locking, and we shouldn't be relying on the refcount to disconnect. * net: wait until the node is destroyed to delete its recv buffer when vRecvMsg becomes a private buffer, it won't make sense to allow other threads to mess with it anymore. * net: set message deserialization version when it's actually time to deserialize We'll soon no longer have access to vRecvMsg, and this is more intuitive anyway. * net: handle message accounting in ReceiveMsgBytes This allows locking to be pushed down to only where it's needed Also reuse the current time rather than checking multiple times. * net: record bytes written before notifying the message processor * net: Add a simple function for waking the message handler This may be used publicly in the future * net: remove useless comments * net: remove redundant max sendbuffer size check This is left-over from before there was proper accounting. Hitting 2x the sendbuffer size should not be possible. * net: rework the way that the messagehandler sleeps In order to sleep accurately, the message handler needs to know if _any_ node has more processing that it should do before the entire thread sleeps. Rather than returning a value that represents whether ProcessMessages encountered a message that should trigger a disconnnect, interpret the return value as whether or not that node has more work to do. Also, use a global fProcessWake value that can be set by other threads, which takes precedence (for one cycle) over the messagehandler's decision. Note that the previous behavior was to only process one message per loop (except in the case of a bad checksum or invalid header). That was changed in PR #3180. The only change here in that regard is that the current node now falls to the back of the processing queue for the bad checksum/invalid header cases. * net: add a new message queue for the message processor This separates the storage of messages from the net and queued messages for processing, allowing the locks to be split. * net: add a flag to indicate when a node's process queue is full Messages are dumped very quickly from the socket handler to the processor, so it's the depth of the processing queue that's interesting. The socket handler checks the process queue's size during the brief message hand-off and pauses if necessary, and the processor possibly unpauses each time a message is popped off of its queue. * net: add a flag to indicate when a node's send buffer is full Similar to the recv flag, but this one indicates whether or not the net's send buffer is full. The socket handler checks the send queue when a new message is added and pauses if necessary, and possibly unpauses after each message is drained from its buffer. * net: remove cs_vRecvMsg vRecvMsg is now only touched by the socket handler thread. The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also only used by the socket handler thread, with the exception of queries from rpc/gui. These accesses are not threadsafe, but they never were. This needs to be addressed separately. Also, update comment describing data flow
2017-08-23 16:20:43 +02:00
{
return nRecvVersion;
}
Backport Bitcoin PR#9609: net: fix remaining net assertions (#1575) + Dashify * Dont deserialize nVersion into CNode, should fix #9212 * net: deserialize the entire version message locally This avoids having some vars set if the version negotiation fails. Also copy it all into CNode at the same site. nVersion and fSuccessfullyConnected are set last, as they are the gates for the other vars. Make them atomic for that reason. * net: don't run callbacks on nodes that haven't completed the version handshake Since ForEach* are can be used to send messages to all nodes, the caller may end up sending a message before the version handshake is complete. To limit this, filter out these nodes. While we're at it, may as well filter out disconnected nodes as well. Delete unused methods rather than updating them. * net: Disallow sending messages until the version handshake is complete This is a change in behavior, though it's much more sane now than before. * net: log an error rather than asserting if send version is misused Also cleaned up the comments and moved from the header to the .cpp so that logging headers aren't needed from net.h * Implement conditions for ForEachNode() and ForNode() methods of CConnman. A change making ForEachNode() and ForNode() methods ignore nodes that have not completed initial handshake have been backported from Bitcoin. Unfortunately, some Dash-specific code needs to iterate over all nodes. This change introduces additional condition argument to these methods. This argument is a functional object that should return true for nodes that should be taken into account, not ignored. Two functional objects are provided in CConnman namespace: * FullyConnectedOnly returns true for nodes that have handshake completed, * AllNodes returns true for all nodes. Overloads for ForEachNode() and ForNode() methods without condition argument are left for compatibility with non-Dash-specific code. They use FullyConnectedOnly functional object for condition. Signed-off-by: Oleg Girko <ol@infoserver.lv> * Iterate over all nodes in Dash-specific code using AllNodes condition. Use AllNodes functional object as newly introduced condition argument for ForEachNode() and ForNode() methods of CConnman to iterate over all nodes where needed in Dash-specific code. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-08-17 20:37:22 +02:00
void SetSendVersion(int nVersionIn);
int GetSendVersion() const;
CService GetAddrLocal() const;
//! May not be called more than once
void SetAddrLocal(const CService& addrLocalIn);
CNode* AddRef()
{
nRefCount++;
return this;
}
void Release()
{
nRefCount--;
}
void AddAddressKnown(const CAddress& _addr)
{
assert(m_addr_known);
m_addr_known->insert(_addr.GetKey());
}
/**
* Whether the peer supports the address. For example, a peer that does not
* implement BIP155 cannot receive Tor v3 addresses because it requires
* ADDRv2 (BIP155) encoding.
*/
bool IsAddrCompatible(const CAddress& addr) const
{
return m_wants_addrv2 || addr.IsAddrV1Compatible();
}
void PushAddress(const CAddress& _addr, FastRandomContext &insecure_rand)
{
// Known checking here is only to save space from duplicates.
// SendMessages will filter it again for knowns that were added
// after addresses were pushed.
assert(m_addr_known);
if (_addr.IsValid() && !m_addr_known->contains(_addr.GetKey()) && IsAddrCompatible(_addr)) {
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr;
} else {
vAddrToSend.push_back(_addr);
}
}
}
void AddInventoryKnown(const CInv& inv)
{
AddInventoryKnown(inv.hash);
}
void AddInventoryKnown(const uint256& hash)
{
LOCK(m_tx_relay->cs_tx_inventory);
m_tx_relay->filterInventoryKnown.insert(hash);
}
void PushInventory(const CInv& inv)
{
if (inv.type == MSG_BLOCK) {
LogPrint(BCLog::NET, "%s -- adding new inv: %s peer=%d\n", __func__, inv.ToString(), id);
Merge bitcoin#15759: p2p: Add 2 outbound block-relay-only connections (#4862) * Remove unused variable * [refactor] Move tx relay state to separate structure * [refactor] Change tx_relay structure to be unique_ptr * Check that tx_relay is initialized before access * Add comment explaining intended use of m_tx_relay * Add 2 outbound block-relay-only connections Transaction relay is primarily optimized for balancing redundancy/robustness with bandwidth minimization -- as a result transaction relay leaks information that adversaries can use to infer the network topology. Network topology is better kept private for (at least) two reasons: (a) Knowledge of the network graph can make it easier to find the source IP of a given transaction. (b) Knowledge of the network graph could be used to split a target node or nodes from the honest network (eg by knowing which peers to attack in order to achieve a network split). We can eliminate the risks of (b) by separating block relay from transaction relay; inferring network connectivity from the relay of blocks/block headers is much more expensive for an adversary. After this commit, bitcoind will make 2 additional outbound connections that are only used for block relay. (In the future, we might consider rotating our transaction-relay peers to help limit the effects of (a).) * Don't relay addr messages to block-relay-only peers We don't want relay of addr messages to leak information about these network links. * doc: improve comments relating to block-relay-only peers * Disconnect peers violating blocks-only mode If we set fRelay=false in our VERSION message, and a peer sends an INV or TX message anyway, disconnect. Since we use fRelay=false to minimize bandwidth, we should not tolerate remaining connected to a peer violating the protocol. * net_processing. Removed comment + fixed formatting * Refactoring net_processing, removed duplicated code * Refactor some bool in a many-arguments function to enum It's made to avoid possible typos with arguments, because some of them have default values and it's very high probability to make a mistake here. * Added UI debug option for Outbound * Fixed data race related to `setInventoryTxToSend`, introduced in `[refactor] Move tx relay state to separate structure` Co-authored-by: Suhas Daftuar <sdaftuar@gmail.com>
2022-06-19 08:02:28 +02:00
LOCK(cs_inventory);
vInventoryBlockToSend.push_back(inv.hash);
return;
}
LOCK(m_tx_relay->cs_tx_inventory);
if (m_tx_relay->filterInventoryKnown.contains(inv.hash)) {
LogPrint(BCLog::NET, "%s -- skipping known inv: %s peer=%d\n", __func__, inv.ToString(), id);
return;
}
LogPrint(BCLog::NET, "%s -- adding new inv: %s peer=%d\n", __func__, inv.ToString(), id);
if (inv.type == MSG_TX || inv.type == MSG_DSTX) {
m_tx_relay->setInventoryTxToSend.insert(inv.hash);
return;
}
m_tx_relay->vInventoryOtherToSend.push_back(inv);
}
void PushBlockHash(const uint256 &hash)
{
LOCK(cs_inventory);
vBlockHashesToAnnounce.push_back(hash);
}
2020-04-07 07:00:41 +02:00
void CloseSocketDisconnect(CConnman* connman);
2020-01-29 22:55:40 +01:00
void copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap);
2013-08-22 18:09:32 +02:00
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
ServiceFlags GetLocalServices() const
{
return nLocalServices;
}
std::string GetAddrName() const;
//! Sets the addrName only if it was not previously set
void MaybeSetAddrName(const std::string& addrNameIn);
std::string GetLogString() const;
bool CanRelay() const { return !m_masternode_connection || m_masternode_iqr_connection; }
uint256 GetSentMNAuthChallenge() const {
LOCK(cs_mnauth);
return sentMNAuthChallenge;
}
uint256 GetReceivedMNAuthChallenge() const {
LOCK(cs_mnauth);
return receivedMNAuthChallenge;
}
uint256 GetVerifiedProRegTxHash() const {
LOCK(cs_mnauth);
return verifiedProRegTxHash;
}
uint256 GetVerifiedPubKeyHash() const {
LOCK(cs_mnauth);
return verifiedPubKeyHash;
}
void SetSentMNAuthChallenge(const uint256& newSentMNAuthChallenge) {
LOCK(cs_mnauth);
sentMNAuthChallenge = newSentMNAuthChallenge;
}
void SetReceivedMNAuthChallenge(const uint256& newReceivedMNAuthChallenge) {
LOCK(cs_mnauth);
receivedMNAuthChallenge = newReceivedMNAuthChallenge;
}
void SetVerifiedProRegTxHash(const uint256& newVerifiedProRegTxHash) {
LOCK(cs_mnauth);
verifiedProRegTxHash = newVerifiedProRegTxHash;
}
void SetVerifiedPubKeyHash(const uint256& newVerifiedPubKeyHash) {
LOCK(cs_mnauth);
verifiedPubKeyHash = newVerifiedPubKeyHash;
}
};
2015-05-25 22:59:38 +02:00
class CExplicitNetCleanup
{
public:
static void callCleanup();
};
/** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
/** Wrapper to return mockable type */
inline std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
return std::chrono::microseconds{PoissonNextSend(now.count(), average_interval.count())};
}
#endif // BITCOIN_NET_H